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Abstract: Following Deissler’s approach, the decay in homogeneous turbulence at times preceding to the ultimate phase
for the concentration fluctuation of a dilute contaminant undergoing a first-order chemical reaction in a rotating system for
the case of four-point correlation is studied. Two-, three-, and four-point correlation equations have been obtained and the
correlation equations are converted to spectral form by their Fourier-transform, the terms containing quintuple correlations
are neglected in comparison to the third and fourth order correlation terms. Finally, integrating the energy spectrum over all
wave numbers, the energy decay law of homogeneous turbulent flow for the concentration fluctuations ahead of the ultimate
phase in a rotating system for four-point correlation has been obtained and it is shown by graphically in the text.
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1. Introduction

Deissler (1958, 1960) developed a theory ‘on the decay of
homogeneous turbulence before the final period. Using
Deissler’s theory, Kumar and patel (1974) studied the first-
order reactant in homogeneous turbulence before the final
period of decay for the case of multi-point and single- time
correlation. Kumar and Patel (1975) extended their problem
for the case of multi-point and multi- time concentration
correlation. Loeffler and Deissler (1961) studied the decay
of temperature fluctuations in homogeneous turbulence
before the final period. Batchelor (1953) studied the theory
of homogeneous turbulence. Bkar Pk ef al. (2012) studied
the decay of energy of MHD turbulence for four point
correlation. Aziz et al. (2010) obtained the first order
reactant in MHD turbulence before the final period of decay
for the case of multi-point and multi-time in a rotating
system in presence of dust particle. Bkar Pk ef al (2013(a))
furthermore considered the first order reactant in
homogeneous turbulence prior to the ultimate phase of
decay for four point correlation in presence of dust particle.

Chandrasekhar (1951) obtained the invariant theory of
isotropic turbulence in magneto-hydrodynamics. Sarker and
Kishore (1991) studied the decay of MHD turbulence before
the final period. Sarker and Islam (2001) obtained the decay
of dusty fluid MHD turbulence before the final period in a
rotating system. Bkar Pk et a/ (2013(b)) further calculated
the decay of MHD turbulence before the final period for
four-point correlation in a rotating system. Mondal (2006)
discussed the energy decay law of dusty fluid turbulent flow
in a rotating system. Shamima Sultan (2008) studied the
energy decay law of dusty fluid turbulent flow in a rotating
system.

In this paper, following Deissler’s theory we have studied
the first-order reactant in homogeneous turbulence prior to
the ultimate phase of decay for four-point correlation in a
rotating system under the restrictions that the turbulence and
the concentration fields are homogeneous; the reaction rate
and the diffusivity are constant. This study shows that the
chemical reaction causes the concentration fluctuation to
decay more rapidly than they would for non pure mixing.
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2. Basic Equation

The differential equation governing the concentration of a
dilute contaminant undergoing a first-order chemical
reaction in homogeneous fluid turbulence in a rotating
system could be written as
Ou; 0%u,

Ou;
Lty L=D————Ru; —2€,,,Q2,u; 1
dt k axk axk axk i mhki=“m*i ( )

where u,(X) is a random function of position and time

at a point p, u,(X,¢) is the turbulent velocity, R is the
constant reaction rate, D is the diffusivity, ¢ is the

time, £, is the alternating tensor, Q_ is the angular velocity

mki

components, %, is the turbulent velocity component, X,

i
is the space coordinate, and repeated subscript in a term
indicates a summation of terms, with the subscripts

successively taking on the values 1, 2,3.

3. Two-Point Correlation and Spectral
Equations

Under the restrictions that the turbulence and the
concentration fields are homogeneous, the chemical reaction
and the local mass transfer have no effect on the velocity
field and the reaction rate and the diffusivity are constant.
The differential equation of a dilute contaminant undergoing
a first-order chemical reaction in homogencous system
could be written as

o°r
0x,0x,

or or
—tu, =

at ox,

-RI (2

Subtracting the mean of (2) from Equ. (2), we obtain

oo 5. RX €)

where X (%,7)1s the fluctuation of concentration about the
mean at a point p(x) and time ¢. The two-point correlation
for the fluctuating concentration can be written, as

a<XX'>+u {xXX") _ b a7 (xx')

R{XX'
ot Ox, 0x,0x, { ) @

where the fluctuating concentration at the point and the point
p' is at a distance r from the point p. The symbol () is the

ensemble average. Putting the Fourier transforms

(XX'(r) )= 7]?6?(12,1)exp[i((1€,f)]d16, (5)
(u XX' (1)) = _ka (K, t)expli(K,F)|dK, (6)
(U XX (1)) = ij([%,z)exp[i((l%,f)]dk, (7)

into equation (4),we obtains

% +(DK? +2R)0 =ik, [, (K1) -y (R )] ®)

4. Three-Point Correlation and Spectral
Equation

Before By taking the Navier-Stokes equations for a
first-order chemical reaction in homogenecous fluid
turbulence in a rotating system at p is

2
i 07u,

Ou; Ou
+ U, —=
axk axka.xk

o

~Ru; =2¢€,,,Q,u;

and the fluctuation equations at p'& p" one can find the
three-point correlation equation as

6<uiX'X"> . 6<uku}cX'/\’"> N 6<uiu;€X'X"> N 6<uiu;€'X'X">

ot 0x, ox;, oxj,
o 2 nn
_ L0<pX > Va <uiXX > )
p  Ox; Ox, 0x,
2 2
A ‘? — XXy = 2R(u, XX ") =26, Q,, (u, XX")
axkaxk axkaxk
Using the transformations op
J > Alz > 1
o _ (o ,0)0 _0 o _a 7S +[V(K+K) +D(K+K)+2R+2£mk,-9m]ﬁj
ax, \or, or Jox, ox, ox o’ (10)

In order to convert Eq. (9) to spectral form, using
six-dimensional Fourier transforms (Kumar and Patel, 1974)
and with the fact that (u,uy X'X") = (u,u; X'X"), we can write

equation (9) in the form

. . . . 1. :
=ik Yk i +ilk Y ROY e "’;l(kj +kyy

where g ( K,K',1)=L B,(R,K',1) If the momentum equation

(3) at p is multiplied by XX" and divergence of the time
averages is taken, the resulting equation will be
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02<ul—ukX'X" __L(?z(pX'/Y") (1n

0x,;0x, p  0x,;0x;

In Fourier space it can be written as

0B; L A
%+[V(K +K')2 +D(K +K')+ 2R+2€,,,2,1B; = =ik + k)Y’
t

5. Four-Point Correlation and Spectral
Equation

Again by taking the Navier-Stokes equations at p and p'

1

OfuaXx")ou Xx") fulstu XX o

= (kg +k )W =;(k,- +k))y. (12)

Substituting this into equation (10), we obtain
(13)

and the concentration equations at p", p" , and following

the same procedure as before, one can get the four-point
correlations as

I n I nr ! iy n
uu' i XX >+6<uiujukXX >

ot 0x;, 0x, ox}, ox;’
o pu', X'X™) 3 pu XX 2 2 ’ ’ 14
:_i[ < J >+ <p — >]+ 9 + 9 <uiu'jX”X"'>+D ? —+ ?” — <ul-u'jX”X"'> 19
P 0x; 0x'; 0x;0x; Ox Ox;0x;  Ox;0x)
~2R{u, X"X"") = 2,,,2,, (', X'X"")
Using the transformations,
0 _ (0 0 0 _ 0 0 _0 0 _0
— =" —t——++— S, A~ S~ A~ T~
Ox; or, Or, O0r')o0x, Ox, Ox; Or, Ox;' Or'

In order to convert Eq. (14) to spectral form, using nine-dimensional Fourier transforms (Kumar and Patel, 1974) and with

the fact that

m I nr nen A1~ —_— n I " mgen ~r.~nm
<ukul-u_/X X'(r,r',r )> —<ukul-u_/XX (r,r',r )>

Equation (14) can be written as

%+[V(K+K'+K" +|/K2+D(K'+K" +2R+2¢,,,9,1g;
t

=—i(k, +k; +kj)[hy (K, K',K") =ik, [y (K =K'= K",K',K")]

. T n o} A' A" 1 T _” ! A' A"
—i(ky +ki)hy (K, K',K )_;[_(ki +hk +k)Q;(K,K',K") +k

where 4 (K,K',K",t) :Mg[/_(IQ,IQ',K",t). Following the

same procedure as was used in obtaining (12), we get

_ Wy ke k)

= kv

hy(K,K',K").  (16)

Equation (15) and (16) are the spectral equations
corresponding to the four-point correlations. To get a better
picture of the of the first-order reactant of homogeneous
turbulence decay in a rotating system from its initial period

(15)

A A

1Q;(-K-K'-K".K',K")].

to its final period, four-point correlations are to be
considered. The same ideology could be applied to the
concentration phenomenon. Here, we neglect the quintuple
correlations since the decay faster than the lower-order
correlations. As pointed out by Deissler (1958, 1960) when
the quintuple correlations are neglected, the corresponding
pressure-force terms which are related to them are also
neglected. Under these assumptions, equations, (15) and (16)
give the solution as

g;(K.K'.K".1)=[g;(K,K'.K" ty)exp{=D[2N k> +(1+ N )(k'> +k"*)

N, (ki + ik + kekf )] = 2R + 26,42, }(t = 1o)

(17)
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N, =v/D .A relation between gl_j(]%,]%',]%",to) and

;( K,K' ) can be found by taking 7
for <

expression for (i u, XX "(7,7"))-

" =0 in the expression

XX (7, ,9")> and comparing it with the

8, (KK = J' g, (-K =K. K" K"ndk".  (18)

Substituting this in to equation (13), we obtains
aﬁj 2 12
—+D[(I+N )K" +K'7)+2N, KK'+5= + Z5mhizZm

ot ’ D
==2i(k; +kp)lg; (K -K',K',K",t))]
art?

Now, the solution of equation (19) is

ﬂj(kyk':to):lﬂj(kzklzto)Jo-
><exp{ D[(1+N)K*+K'*)+2N KK’ +(2§ 2g””"QmJ](t fo)}

ik, +ky)b " -2

3{ : [ 3/2
DE(1+N )3/2 (r=1,)

. 4kD'*F (w)
(1+N)'"

]

N,(2+N)k’

(1+N
o[ 22 - xel-2r0 -,

x exp{~DJ +2N kk' +(1+ N k'

(20)
where

B o i T —tO)D 1/2
F(w) = exp(—a)z)_([exp(n )dn, w= kLHNV)} ’and

[g;(-K -K'.K',K",1)], =b, 1)

Now, by taking 7' =0 in the expression for
<u'X X" (7, f'> is performed, we obtain and comparing the

result with the expressi0n< Xu,, X'(f)) ,

#(K) = [ B KK (22)

Substituting equation (21) into equation (8), we obtain

+(2Dk* +2R)G =W,

G
o (23)

where G =27%*68and

+ 2
Y 372 372 XeXp _D[NS(2 Al
D?(1+N,)"*(t—ty) (1+Ny)

2R 28!2

aﬁ mki=“m ] ,8

a/ +D[(1+ N, )(K*+K'*)+2N KK += o

= =ik + k) j gy (K -k K K" 0k,

-0

this with the help of equation (17), gives

2R | 2,8

m ]ﬂ
(19)

2R 2&
+2N k' +(1+ N k' +== k2 t-
(1+Ny) D 5 ]}( 1)

W =271k* exp[-2R(t —t,)]
x [k B (K, K") = B (=K =K )],

xexp{=D[(1+ N, )(k2 +k'?)

+2NKK+( '")](f—f)}

L i TP
T KK DR K]
-2, 4kF(wD'"”

ol 1/2 1/2
(t=1,) (1+N,)

]

N,(2+N)k*

xexp{~D[ 1N )

+2N kk'+

(1 N,k + (oo

t,)dk'}. (24)

In analogy with the turbulent energy spectrum function,
the quantity G, in equation (23) can be called concentration
energy spectrum function, and W, the energy transfer
function, is responsible for the transfer of concentration
from one wave number to another. In order to find solution
completely and following Deissler’s (1958, 1960) we
assume that

@Rk |By(R.K") = By (R -1,
- _{O(kav4 _k4kv2)
and

8777/2

==& (KK - kK'Y,

i[b([&, K- b(—]%,—[%’)]o
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where £ = and g arearbitrary constants depending on the

initial conditions. If these results are used in equation (24)
and the integration is performed, we obtain

{Onl/st

xexp{— D[(1 2;]\[ Jk2+(

s

" —19)}

2
x i 154 N, 5 N, _3] k®
4DAN2 (t-1y)? 1+ N, 1+ N, 2°N,D(t-ty)

3
Ns —_ Ns 8
(5] (e
Eln.l/ZN

+ S
(t _t0)7/2D3/2(1 +NS)7/2

N Q
xexp{—w[(1 = jkz +(C =1}

105k° N, ), 15k®
8D N2 (t—1,) \1+ N, | 4D’N (t-1,)*

N, Y N K"
XW(HN\J 1]+[D(1+NS)(t—tO)J

2( N, Y N2K" N, Y
X[Z(HNJ 5]+(1+NS)2(z—t0)[[1+NSJ o

~ 25N,
(t=1,)"? D1+ N,)*

1+2N 2¢ .Q
xexp{—D[( = N“j+( o m)](r—to)}

105k’ N, 15k°
8D N2, (1-1,) \1+ N, ) 4D>N (1 -1,)?

N, Y Nk
x”[HNs] l]+(D(1+Ns)(r—ro)]

20( N Y Nk® (N
x[== s | =51+ —2 | -1
) et

x{

(1+N ) \1+N,
w
x j exp(n® )dn} exp[—2R(t 1,)]. (25)
0
It is very interesting that,
J'de =0, (26)

This indicates that the expression for W satisfies the
condition of continuity and homogeneity. Physically it was
to be expected , since W is the measure of transfer of

energy and the total energy transformed to all wave numbers
is to be zero, which is what equation (26) gives. The linear
equation (23) can be solved to give

G = J(k)exp|- 2Dk +2R)(t ~1,)|

+ exp[— (2Dk? +2R)(t - tO)HW 7)

x exp[— (2Dk* +2R)(t -1, )]dt,

N, k>
T

obtained as by (Corrsin,1951). Thus, by integrating the
right-hand side of equation, we obtain

where J(k) = is a constant of integration and can be

2
G = exp[-2R(t ~ 1, ){N 3)(717; al : ))g
0

xexp[-2(1+ N, )7’ + (%)}

50771/2]\[
+
2t —to)o/zD”/zZ(l +NA,)3/2

xexp[=(1+ 2N, )¢ +(2€”gQ )

3¢t (IN,-6) o
x + 3 T et 10 e F (g
{2]\] 3 fi SIEF()

_ qt1771/2
2(t _t0)7D15/2(1+NS)3/2

1056 5 5 s~ 10
X +—(11-24N"s +8N )E” + f,€
{ ) 16( DE T [

+ f,67 = 2f,6" exp(—26)[E,(2€7) - 0.5772] + (2’5’";39’")}

_ 25N,
2(t_t1)7D15/22(1+NS)3/2

) 2e Q
x exp{— [(A+2N )8 2+ (Z255m)]

J10s[ & 28 236”4986
8N, 3 3 30 630

xexpl[(-2¢ )+(

D' "IE,(2€%) - 0.5772]

+3.1808x107 " —2.7178%x107 &'
+1.3968%107 " —4.6204x107 %
+1.1584%x107 % -2.3139x107 £*
+3.8580%107° £ —5.5108x107 £**

+1.1584%107° &7 -2.3139x107* ¢*



86 M. Monuar Hossain et al.:

Homogeneous Fluid Turbulence before the Final Period of Decay for Four-Point Correlation in a

Rotating System for First-Order Reactant

+6.8898x107 &% -]

_IS(V's 2N, -D| g 56" 14e™
4N, 2 6 15

x exp[(—2€) +(2£'"1k)'9m IE (2€%) - 0.5772]

+2.0261x1072£" +3.5487x107 £'¢
+5.4047x107 £" +7.2369x107 %
+8.6172x107° £2 +9.22057x107 £
+8.9477x10 % +7.9374 %107 &%
+6.4814x107°6% + ]
4

+(1v2, - 20w, —IO)NS[— £ +le"

xexp[(-2£2) + (%)][Ei (2£2)-0.5772]

+8.2505x1077 " +1.7495%x1072 £'¢

+3.1572x107 £'"* +4.90805x10™* £
+6.66926x107° £ +8.0290x107° £**
+8.6642x107 £ +8.4643x107" £

+7.5495x107 % +_.]
~(1+2N)N?, {s expl(-¢ )+( £ =X (E, (26%)-0.5772]

+2.2654x107"' " +1.0679%107"' &'
-3.3996 %107 " +9.0694 %107 £*
-1.1099%107 £ +3.7350x107 £*

—4.444x107° % +8.2388 x10° g

-8.47486x107 ¥ + | J}}, (28)
where
_ 2
&2 :D%, i =§(3N2,\\ —-2N, +3),

f = 15-40N°, (2N, +1) +4N* (1IN, =20N,)
: 16(1+N,)*D ’

5=

_[15+20(4N? =2N,)+4N>;(9N*; =20N,) - 16N>,
8(1+N,)’ '
In a turbulent phenomenon, such as turbulent kinetic
energy, we associate the so-called concentration energy with
the fluctuating concentration, defined by the relation

%()0(') = [ Gk, (29)

—00
The substitution of equation (28) and subsequent
integration with respect to k leads to the result

%<X2> = exp[-2R(t —1,)]

A(t —1 )—% + B(t _to)_5 exp[—R, (1 —1,)]
-3 s 1 §
x C( _IO)T_D](I_IO) Z(I—II)z—E( _to)l5 (30)
~Fle=0) % =60 ) =0 fespl-R, -1,
This is the decay law of first order reactant in
homogeneous fluid turbulence in a rotating system, where

NO B_Eo

= D3297/2 /2 ,C=cd,
D, =ce, E=c¢f"(gh+ g, —kl, —kn+ pq+ ps—tvw),
F=cf"(giy ~kym=ht"),G =cfpr,

157%,

15

Ly N
D*22N2(1+N,)

c=

7
=105, 35(11-24N° +8N,) | 63/, , 693f; 1808y 415910/3N7s

32 64N, SN2, 64N3, 256 T
(1+Ny)?
1 1
D2I(-2N &*,€)* , _37.12311&N 1 _ 105
e=2f; ( = 1),f= B — ’g—zN’
(+N)2m? De?(1+N,) s
9
p=_L_6_7590 2.52052x107¢>
3 & 521 5 ’
(1+N,)?
1
9 (1+N,)?
i, =1.118¢, ; { D) xI[(1+2N,)&,£%])°

i = 163(31808><102—40767><10 & +3561804£
&,

1

-2.2386x10&,” +1.1786 x10% £, —5.4148 x10% £,

+2.02576x10° £, —=8.7048 x £, +3.1561x10% g, - ..),

_135(6N,> =2N, -1)
j 5

ngl

11
_ 55 ~2.3510%107° x163¢,2

1
N 15 5
2 651 215(1+N,)7

I =-
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11
m =7.4469¢,2 x%[[(l +2N,)e, €2])

(SR

n= @(2.0261 +5.3230x107 ¢,

gl
+1.3782x107 ¢, +3.5063x10 "¢,
+8.7676 x10™ £, +2.57710 ' ¢,
+5.2347£,° +1.2538¢,7 +2.9690x10&,” +..)),

p=396(11N,” =20N, —~10)N, &,
13 it]
g=-1-3.0532x10""g2 (1+N,) 2 >

1
13 1 2 P
r 2106388 5 (—1,) LN T XT[(A+2N)e%, 7],
D

s =13&7(8.2504 +2.6243x10 ™ £ +8.0509x107' £
+2.3780 x £, +6.7856¢€, " +1.8789 x10¢,”

+5.0688x10'g, " +1.3370x10%,” +3.4583x10%¢,” +..)),

1

11 —
{'=-14219N g2 (1+N,)?>

1

u={-3.1886x10° +1.4443%10% (1 ~ 1,)?
1 Nl
xD(1+N,) 2I[(1+2N ) &)y

s
v=1.8102x10°(1+2N,)%&, 2 >

w=(2.2653x107" +1.60195¢, ™

-8.6664%x107' £ +4.3941 108,
-1.1293x10%g,™ +8.7405x10% &,

-2.6001x10°¢," +1.3013x10*¢,”

-3.8822x10%¢, " +..) ,

n 9 _SN,(TN, -6)
R = |9 3NN,
S116 16(1+2N,)
2(1+Ny)(1+2N,)? '
s
10S/iN, | ANJH2N)? & 135..2n+9)

DA T AN A2 N

1,

£ =2(1+2N), R, =R, :(%),

and

[[-ag?, fe?] = J'exp(—ae2)[sl4 exp(Be2)E, (e dk.
0

The first term of equation (30) corresponds to the
concentration energy for two-point concentration; the
second term represents first order reactant in homogeneous
fluid turbulence in a rotating system for three-point

correlation. The expression exp[—R, (¢ — ¢, )] represents the

fluid turbulence in a rotating system for three-point
correlation, exp[—R, (¢ —¢,)] and the remainders are due to

four-point correlation.

6. Results and Discussion

5

»
o
T

IS
T

ylat t0=.3,t1=.5
y2at t0=.8,t1=1
y3at t0=1.3,t1=1.5

w
»
T

w
T

N
T

&)
T

y4 at t0=.3,t1=.5
y5 at t0=.8,t1=1
y6 at t0=1.3,t1=1.5

Decay of total energy of homo.turbulence=<X>
N
N o

o
o
T

1.8 2 2.2 24 2.6 2.8 3 3.2 3.4
Approximation of time=t

Fig. 1. Comparison between equation (30) and equation (31) if R=0.025.
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Fig. 4. Comparison between equation (30) and equation (31) if R=0.

In equation (30) we obtained the decay law of first order
reactant in homogeneous fluid turbulence for four-point
correlation in a rotating system after neglecting quintuple
correlation terms. The equation contains the terms
(t=t)>* , (t=t,)" . (t—t,))™""* Thus, the terms
associated with the higher-order correlation die out faster
than those associated with the lower-order ones; therefore,
the assumption that the higher-order correlations can be
neglected in comparison with lower-order correlations
seems to be valid in our case. If the system is non-rotating
(ie.,Q, =0)the equation (30) becomes

%<X2> = exp[—2R(t — 1o )% [ At ~ 1, )'% +B(t-1,)7

—{C(t—to)_;s —Dl(t—to)_%(t—tl)% —E(t-1,)" —F(t—to)_izg —G(t—to)_ls(t—tl);}]

this is obtained by Kumar and Patel (1974). Here 4, B, C, D1 :

E,FEG are an arbitrary constants. With R=0 and the
contaminant replaced by the temperature, the results show
complete argument with the result obtained by Loeffler and
Deissler (1961) for the decay of temperature fluctuation in
homogeneous turbulence before the final period up to
three-point correlations. For large times, the last terms
become negligible and give the -3/2 power decay law for the
final period. In figures, Eq. (30) represented by the curves y1,
y2, y3 and (31) by y4, y5, y6. For R, =0.25, the
comparison between the Eq. (30) and (31) are shown in
Fig.1, Fig.2, Fig.3 and Fig.4 corresponding to the values
R=.025, .5, .8 and 0 respectively, which indicated in the
figures clearly.

7. Conclusion

From the figures and discussions, this study shows that
the chemical reaction (R=0) of the first exponential factor of
equation (30) and (31) causes the concentration fluctuation
to decay more rapidly than they would for (R # 0) non pure
mixing and due to the effect of rotation of homogeneous
fluid turbulence in the flow field of the first order chemical
reaction for four-point correlation, the turbulent energy
decays more slowly than the energy decay for first order
reactant in homogeneous turbulence.
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