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Abstract: Following Deissler’s approach, the decay in homogeneous turbulence at times preceding to the ultimate phase 

for the concentration fluctuation of a dilute contaminant undergoing a first-order chemical reaction in a rotating system for 

the case of four-point correlation is studied. Two-, three-, and four-point correlation equations have been obtained and the 

correlation equations are converted to spectral form by their Fourier-transform, the terms containing quintuple correlations 

are neglected in comparison to the third and fourth order correlation terms. Finally, integrating the energy spectrum over all 

wave numbers, the energy decay law of homogeneous turbulent flow for the concentration fluctuations ahead of the ultimate 

phase in a rotating system for four-point correlation has been obtained and it is shown by graphically in the text. 
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1. Introduction 

Deissler (1958, 1960) developed a theory ‘on the decay of 

homogeneous turbulence before the final period. Using 

Deissler’s theory, Kumar and patel (1974) studied the first- 

order reactant in homogeneous turbulence before the final 

period of decay for the case of multi-point and single- time 

correlation. Kumar and Patel (1975) extended their problem 

for the case of multi-point and multi- time concentration 

correlation. Loeffler and Deissler (1961) studied the decay 

of temperature fluctuations in homogeneous turbulence 

before the final period. Batchelor (1953) studied the theory 

of homogeneous turbulence. Bkar Pk et al. (2012) studied 

the decay of energy of MHD turbulence for four point 

correlation. Aziz et al. (2010) obtained the first order 

reactant in MHD turbulence before the final period of decay 

for the case of multi-point and multi-time in a rotating 

system in presence of dust particle. Bkar Pk et al (2013(a)) 

furthermore considered the first order reactant in 

homogeneous turbulence prior to the ultimate phase of 

decay for four point correlation in presence of dust particle. 

Chandrasekhar (1951) obtained the invariant theory of 

isotropic turbulence in magneto-hydrodynamics. Sarker and 

Kishore (1991) studied the decay of MHD turbulence before 

the final period. Sarker and Islam (2001) obtained the decay 

of dusty fluid MHD turbulence before the final period in a 

rotating system. Bkar Pk et al (2013(b)) further calculated 

the decay of MHD turbulence before the final period for 

four-point correlation in a rotating system. Mondal (2006) 

discussed the energy decay law of dusty fluid turbulent flow 

in a rotating system. Shamima Sultan (2008) studied the 

energy decay law of dusty fluid turbulent flow in a rotating 

system. 

In this paper, following Deissler’s theory we have studied 

the first-order reactant in homogeneous turbulence prior to 

the ultimate phase of decay for four-point correlation in a 

rotating system under the restrictions that the turbulence and 

the concentration fields are homogeneous; the reaction rate 

and the diffusivity are constant. This study shows that the 

chemical reaction causes the concentration fluctuation to 

decay more rapidly than they would for non pure mixing. 
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2. Basic Equation 

The differential equation governing the concentration of a 

dilute contaminant undergoing a first-order chemical 

reaction in homogeneous fluid turbulence in a rotating 

system could be written as 
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where )ˆ(xui  is a random function of position and time 

at a point p, ),ˆ( txuk  is the turbulent velocity, R is the 

constant reaction rate, D is the diffusivity, t is the 

time, mkiε is the alternating tensor,
mΩ is the angular velocity  

components, iu  is the turbulent velocity component, kx  

is the space coordinate, and repeated subscript in a term 

indicates a summation of terms, with the subscripts 

successively taking on the values 1, 2,3. 

3. Two-Point Correlation and Spectral 

Equations 

Under the restrictions that the turbulence and the 

concentration fields are homogeneous, the chemical reaction 

and the local mass transfer have no effect on the velocity 

field and the reaction rate and the diffusivity are constant. 

The differential equation of a dilute contaminant undergoing 

a first-order chemical reaction in homogeneous system 

could be written as 
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Subtracting the mean of (2) from Equ. (2), we obtain  
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where ),ˆ( txX is the fluctuation of concentration about the 

mean at a point )ˆ(xp  and time t. The two-point correlation 

for the fluctuating concentration can be written, as 
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where the fluctuating concentration at the point and the point 

p′ is at a distance r from the point p. The symbol  is the 

ensemble average. Putting the Fourier transforms 
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into equation (4),we obtains 
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4. Three-Point Correlation and Spectral 

Equation 

Before By taking the Navier-Stokes equations for a 

first-order chemical reaction in homogeneous fluid 

turbulence in a rotating system at p is 
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and the fluctuation equations at pp ′′′ & one can find the 

three-point correlation equation as  
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Using the transformations  
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In order to convert Eq. (9) to spectral form, using 

six-dimensional Fourier transforms (Kumar and Patel, 1974) 

and with the fact that ,XXuuXXuu kiki
′′′′=′′′′′ we can write 

equation (9) in the form  
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where ),ˆ,ˆ( tKKi
′µ =L ),ˆ,ˆ( tKKj

′β .If the momentum equation 

(3) at p is multiplied by XX ′′′  and divergence of the time 

averages is taken, the resulting equation will be 
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In Fourier space it can be written as 
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Substituting this into equation (10), we obtain 
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5. Four-Point Correlation and Spectral 

Equation 

Again by taking the Navier-Stokes equations at p and p′  

and the concentration equations at pp ′′′′′ ,  , and following 

the same procedure as before, one can get the four-point 

correlations as 
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In order to convert Eq. (14) to spectral form, using nine-dimensional Fourier transforms (Kumar and Patel, 1974) and with 

the fact that  
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Equation (14) can be written as  
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where ),ˆ,ˆ,ˆ( tKKKij
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same procedure as was used in obtaining (12), we get  

).ˆ,ˆ,ˆ(
)(

)(
)ˆ,ˆ,ˆ( KKKh

kkk

kkk
KKKΩ ijk

iii

kkk
j ′′′

′′+′+
′′+′+

−=′′′ ρ    (16) 

Equation (15) and (16) are the spectral equations 

corresponding to the four-point correlations. To get a better 

picture of the of the first-order reactant of homogeneous 

turbulence decay in a rotating system from its initial period 

to its final period, four-point correlations are to be 

considered. The same ideology could be applied to the 

concentration phenomenon. Here, we neglect the quintuple 

correlations since the decay faster than the lower-order 

correlations. As pointed out by Deissler (1958, 1960) when 

the quintuple correlations are neglected, the corresponding 

pressure-force terms which are related to them are also 

neglected. Under these assumptions, equations, (15) and (16) 

give the solution as 
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this with the help of equation (17), gives 
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Now, the solution of equation (19) is  
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In analogy with the turbulent energy spectrum function, 

the quantity G, in equation (23) can be called concentration 

energy spectrum function, and W, the energy transfer 

function, is responsible for the transfer of concentration 

from one wave number to another. In order to find solution 

completely and following Deissler’s (1958, 1960) we 

assume that 
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where 
0ξ  and 

1ξ  are arbitrary constants depending on the 

initial conditions. If these results are used in equation (24) 

and the integration is performed, we obtain  
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It is very interesting that, 
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energy and the total energy transformed to all wave numbers 

is to be zero, which is what equation (26) gives. The linear 
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In a turbulent phenomenon, such as turbulent kinetic 

energy, we associate the so-called concentration energy with 

the fluctuating concentration, defined by the relation 

∫
∞

∞−

=′ dktkGXX ),(
2

1
                  (29) 

The substitution of equation (28) and subsequent 
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This is the decay law of first order reactant in 

homogeneous fluid turbulence in a rotating system, where 
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The first term of equation (30) corresponds to the 

concentration energy for two-point concentration; the 

second term represents first order reactant in homogeneous 

fluid turbulence in a rotating system for three-point 

correlation. The expression )](exp[ 02 ttR −− represents the 

fluid turbulence in a rotating system for three-point 

correlation, )](exp[ 03 ttR −−  and the remainders are due to 

four-point correlation. 

6. Results and Discussion 
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Fig. 1. Comparison between equation (30) and equation (31) if R=0.025. 
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Fig. 2. Comparison between equation (30) and equation (31) if R=0.5. 
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Fig. 3. Comparison between equation (30) and equation (31) if R=0.8. 
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Fig. 4. Comparison between equation (30) and equation (31) if R=0. 

In equation (30) we obtained the decay law of first order 

reactant in homogeneous fluid turbulence for four-point 

correlation in a rotating system after neglecting quintuple 

correlation terms. The equation contains the terms 
2/3

0 )( −− tt  , 5

0 )( −− tt , 2/15

0 )( −− tt  Thus, the terms 

associated with the higher-order correlation die out faster 

than those associated with the lower-order ones; therefore, 

the assumption that the higher-order correlations can be 

neglected in comparison with lower-order correlations 

seems to be valid in our case. If the system is non-rotating 

)0.,.( =Ωmei the equation (30) becomes 
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      (31) 

this is obtained by Kumar and Patel (1974). Here A, B, C, 1D , 

E,F,G are an arbitrary constants. With R=0 and the 

contaminant replaced by the temperature, the results show 

complete argument with the result obtained by Loeffler and 

Deissler (1961) for the decay of temperature fluctuation in 

homogeneous turbulence before the final period up to 

three-point correlations. For large times, the last terms 

become negligible and give the -3/2 power decay law for the 

final period. In figures, Eq. (30) represented by the curves y1, 

y2, y3 and (31) by y4, y5, y6. For 25.02 =R , the 

comparison between the Eq. (30) and (31) are shown in 

Fig.1, Fig.2, Fig.3 and Fig.4 corresponding to the values 

R=.025, .5, .8 and 0 respectively, which indicated in the 

figures clearly. 

7. Conclusion 

From the figures and discussions, this study shows that 

the chemical reaction (R=0) of the first exponential factor of 

equation (30) and (31) causes the concentration fluctuation 

to decay more rapidly than they would for )0( ≠R non pure 

mixing and due to the effect of rotation of homogeneous 

fluid turbulence in the flow field of the first order chemical 

reaction for four-point correlation, the turbulent energy 

decays more slowly than the energy decay for first order 

reactant in homogeneous turbulence. 
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