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Absrtact: The paper deals with estimating shift point which occurs in any sequences of independent observations xj,
X2y +vy Xmy Xmtl» ---» Xn Of poisson and geometric distributions. This shift point occurs in the sequence when x,, i. e. m life
data are observed. With known shift point 'm', the Bayes estimator on befor and after shift process means 0; and 0, are
derived for symmetric and assymetric loss functions. The sensitivity analysis of Bayes estimators are carried out by
simulation and numerical comparisons with R-programming. The results show the effectiveness of shift in sequences of

both poisson and geometric distributions.
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1. Introduction

In some real life applications, like medical science and
physical systems manufacturing the items are often subject
to abrupt shifts in the failure rate function, which are
observed due to major operations or specific activities, that
is may observed at some point of time instability in the
sequence of life times. These situations are for the times
when the shift point, m, is known. there are many studies
on shift point problem in a sequence of random variables.
Hinkley (1970) studied the shift point problem and
considered a sequence of independent continuous random
variables.

Most authors' investigations are based on the work of
Hinkley (1970). For example the shift point problem in a
sequence of binomial variables is studied by Hinkley and
Hinkley (1970); the shift point in a sequence of exponential
and poisson variables are investigated by Worsley (1986);
Haccou, Meelis and Geer (1988); Estimation of shift point
in a homogeneous poisson process studied by Jandhyala
and Fotopolus (1999) and Boudjelaba, MacGibbon and
Sawyer (2001); Fotopolus and Jandhyala (2001). The study
of homogeneous poisson process and continuous thime
shift point problem in such poissonprocess has been carried
out by some authors, For example use of cumulating sum

(CUSUM) control charts and exponentially weighted charts
are studied by Montgomery (2001) and Wu et. al. (2004).
Lim et. al. (2002), Wu and Tiau (2005) and Zhang and Wu
(2005) considered the applications ofCUSUM control
charts. Bayes estimation of unknown shift point in
geometric distribution is studied by Shah and Patel (2006);
Many of statisticians like Chin and Broemeling (1980),
Calabria and Pulcini (1994), Zacks (1983), Pandaya and
Jani (2006), Shah and Patel (2007, 2009), Chib (2998),
Altessimo and Corradi (2003) and Fiteni (2004) studied the
shift point Models in Bayesian framework, and Bayesian
estimation of shift point in poisson Model is studied by
gorakhpour university's authors (2012).

In this paper the Bayes estimator of mean parameter 6,
and 0,, for the sequences, befor and after shift point 'm' of
independent life times from poisson and geometric
population are derived for symmetric and assymetric loss
functions. squared error loss function, linex loss function,
general entropy loss function, and precautionary loss
function. A sensitivity analysis of these Bayes estimates has
also been presented by simulation and numerical
comparison study through R-programming.
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2. Likelihood Functions

Let x;, X3, ..., X, and yy, Vo, ..., Yo (n > 3) be the
sequences of observed discrete life times. First let
observation  Xx;, X, ..., Xshave come from

poissondistribution, and y;, ya,
geometric  distribution with
functions(pmf) as

..., Yo have come from
their probability mass

Oex

:x=0,1,...,0>0 (1)

e~

p(x) =

p(y) = 0(1 —0)Y;y=0, 1, 2)

Let 'm' is shift point in the observation which breaks the
distribution in two sequences, that is for poisson model (x,
X2, «voy Xm) & (Xms1s - - - » Xp), and for geometric model (y,
Y2 ees ym) & (Yerla vees YH)

The probability mass functions of the above sequences
are

-0 X
P1(x) = —1ix=0. 1, ... ;> 0 (3)
-0 X
P2 () = “—"2x=0, 1, ..., 8,> 0 “
and
p:1(y) = 6,(1 —87)¥;y=0, 1, Q)
p2(y) = 0,(1 —0,)¥;y=0, 1, (6)

The likelihood function of p. m. f. 's of the sequences are

— ym — yn
Whereslm - Zi:l Xij> S1n — S1m = Zi=m+1Xiand

L(0a]y) = 0.1 = 0y ©)

L (91|X) - ez(n—m)(l — 92)(S1n—51m) (10)

Where
Sim = Z{-I:ll Yi> S1n = S1m = Zin=m+1 Yi (11)
Then, the joint likelihood functions is given by

-mb1), Sim  g—(n-m)h2q,(S1n-S1m)

L(040,x) = (12)

X1!..Xm! X(m+1)!-Xn!

L (040 ]y) = 0,™(1 = 0,)%m x 6,7 ™ (1 — ) Eansm)(13)
Suppose the marginal prior distributions of 8, , 6, are
natural conjugate priorfor poisson model:

b,1

9,%171e7b1b1: 5 b >0
ran 1, by

8:1(61) = (14)

b,?2
I'(az)

g,(8,) = 2—0,"2 te7P202; 4, h, >0  (15)

and for geometric Model:

I'(ai+by)

Faproy 0T - 0)°171;a;,b; > 0 (16)

g1(01) =

T'(az+bz) - -
82(02) = 2 s (82)%71 (1 - 0,)°2 7" 1, by > 0(17)

The joint prior distribution of 8, , 6, and shift point 'm',

L(8, |x) = e~MA1y, 51m 7 according to Ganji(2010) by using the exponential family
- X1!.Xm!
model
e~(n-m)62g_(S1n=S1m) For poisson model:
L) = — ®)
g(6,,0,;m) = 22 g a1-1g -1 oy p 6 ) exp (—byH,) (18)
1, Y2, I'(a;)T(az) 1 2 1V1 2V2
In case of, geometric model:
. _ T(ai+by) ['(az+by) a;—1¢1 _ bi-1 az—1¢1 _ by-1
g(01,05;,m) = T@lby) @y, (071 (1 = 07)"171(0,)7271 (1 — 02)°2 (19)

where 0, 0,> 0 and m=1, ..., (n- 1)

The joint posterior density of 0;, 6, and m is obtained by using equations (12), (18) for poissonmodel, and (13), (19) for

geometric Model

e~(b1+m)B1g, (A1+51m—1)—(bz+n-m)8z g, (a2+S1n-S1m~1)

p(eb 0y; mlﬁ) = D(ag,a3,b1,bg,mm) (20)
where
_ I'(aj+si1m) I'(az+S1n=S1m)
D(all az, bl: bz, m, n) - [(b1+m)(31+51m) (b2+n_m)(az+51n_51m) (21)
) _ (0)@1tm=1)(q_g y(P1+s1m=1)(p,)(@z+n-m-1)(7_g y(b2+S1n-S1m~1)
p (91' 02; m|X) - D(ay,az,by,by,mn) (22)
where
_ [r@i+m)I'(by+s1m) _ T'(@z+n—m)I'(by+S1n—S1m)
D(al' az, by, bz, m, n) = [ '(a;+m+bg+S1m) I'(ag+n—-m+by+S1n—S1m) (23)
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The marginal posterior distribution of 0, , forpoissonmodel, by using the equations (12), (14) and dor geometric Model,

by using the equations (13), (16)

e~(P1+m)d1g, (A1+s1m—1)

F(@az+s1n—S1m) ]

(bz+n-m)(@2+51n=S1m)]

p(6:]x) =

D(aj,az,bi,bz,mn)

24

(61)(al+m—1)(1_61)(b1+51m—1)xr(32 +n-m)I'(ba+s1n—-S1m)

I'(azg+n-m+b2+s1n—S1m)

p(0r]y) =

D(aj,az,by,bz,mn)

(25)

the marginal posterior distribution of 6, , for poissonModel, by using the equations (12), (15) and for geometric Model, by

using the equations (13), (17)

p(62]x) =

p(0:]y) =

3. Bayes Estimators under Symmetric
and Asymmetric Loss Functions

e—(b2+n-m)ozg (az+sin-sim-1)__@1+Sim)
2 (b1+m)(31+51m) (26)
D(aj,az,by,bz,mn)
(azg+n-m-1)q _g_y(b2+s1n—-S1m-1)s L@1+mI(b1+S1m)
(82)"2 e XI‘(a1+m+b1+s1m) (27)
D(ay,az,by,bz,mn)
[T(a1+m+1)I'(b1+s1m) I‘(a2+n—m)l‘(b2+51n—51m)]
é — I T(@ai+m+bi+sim+1) ~ T'(ag+n-m+by+s1n—S1m) (30)
1BS D(aj,az,b1,bz,m,n)
o __ D((ag+1),a3,by,by,mn)
0 1ps = (€29)

In decision theory the loss criterion is specified in order
to obtain best estimator. The simplest form of loss function
is squared error loss function (SELF) which assigns equal
magnitudes to both positive and negative errors. However
this assumption may be inappropriate in most of the
estimation problems. some time overestimation leads to
many serious qonsequences. In such situation many outhors
found the asymmetric loss functions, moreappropriate. In
this paper we have considered some of the asymmetric loss
functions, Linex loss function (LLF) suggested and studied
by Varian (1975) , Zellner (1986) , Basu and Ebrahimi
(1991) , General entropy loss function (GELF) by Calabria
and Pulcini (1996) and Precautionary loss function (PLF)
studied by Norstrom (1996). Such asymmetric loss
functions are also studied by Ohtani (1995) , Parsian and
Kirmani (2002) , Brases and Dette (2004) , Pandyaet. al.
(2004) and Gorakhpour university's authors (2012).

3.1. Bayes Estimators under Squared Error Loss
Functions (SELF)

From a decision theorical view point, in order to select
value as representing on 'best' estimator , a loss function
must be specified, In this section we consider SELF.

The Bayes estimate of a generic parameter 0 based on a
SELF is given byL,(8,d) = (6 —d)? , where 'd' is a
decision rule to estimate 6 , is posterior mean.

The Bayes estimate 6,55 of 0, under SELF using
marginal posterior density equation (24) for poisson model
is given by

[ r@itsim+1) I'(az+sin=S1m)

~ _ Lp1+m)@1+s1m*+ D" (b, +n-m)@2+S1n=S1m)
e1BS -

(28)

D(aj,az,bi,bz,mn)

A _ D(aj+1),a3,by,bym,n)
B1ps =

(29)

D(aj,az,bi,bz,mn)

and equation (25) for geometric model is given by

D(aj,az,b1,bz,m,n)

The Bayes estimate 8,55 of 0, under SELF using
marginal posterior density equation (26) for poisson model
is given by

T(@z+sin=Sim+1) r(@i+sim)
~ __ |a4n-m)@2+s1n=S1m+1D) " (p, +m)@1+S1m)
0 2s = (32)
D(aj,az,bi,bz,mn)
a __D(ay,(az+1),bg,by,mn)
O28s = (33)
D(aj,az,bi,bz,mn)
The equation (27) for geometric model is given by
M@ai+m)l'(b1+s1m) I(az+n-m+1)I'(by +51n—51m)]
@ _ Ir(@i+m+by+s1m) ~ I'(@z+n—-m+by+s1n—S1m+1) (34)
2BS D(aj,az,by,bz,mn)
A _ D(aj,(az+1),by,by,m,n)
O28s = (35)

D(aj,az,bq,bz,mn)
3.2. Bayes Estimator under Linex Loss function (LLF)

The asymmetric loss function given by Varian (1975).
known as Linex loss function (LLF), is defined by

L,(6,d) = exp[y,(d = 0)] —y,(d—0) —1;7, #0 (36)

Where d is the decision rule to estimate unknown
parameter 6.

The Bayes estimate 8 ;5; 0f 6, using marginal posterior
density equation (24) under LLF , forpoisson model is
given by

F(az+sim+1) F(@az+s1n—sSim)
é _ —_1lrl (b1+m+y,)(@151m+ D" (b, +n-m)(@2+S1n=S1m) 37)
1BL Y1 D(aj,az,bi,bz,mn)
A -1 D(ay.az,(b1+y;).bz,m,n)
0 =—In [ L
1BL D(ay,az,bq,bz,mn) (38)

11

The Bayes estimate of 8,5, of 6, using marginal
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posterior density equation (26) under LLF , forpoisson
model is given by

(@i +sim) F(32+51(n—51m) -
~ -1 b1+m)(@1+51m)” (b, +n—m+y,)(@2+S1n—S1m
e 2BL = —11’1 (b1 ) (b2 Y1) (39)
Y1 D(ay,az,by,bz,m,n)
0 51, = L In [2emzbubatpm (40)
ZBL 7y, D(ay,az,b1,bz,mn)

We can not use linex loss function for geometric loss
function.

3.3. Bayes Estimator under General Entropy Loss
Function

Occasionally, the use of symmetric loss function ,
namely SELF , was found inappropriate, since for example ,
an overestimation of reliability function usually much more
serious than an underestimation. Here was considered
asymmetric loss function namely general entropy loss
function (GELF) proposed by Calabria and Pulcini (1994),
is given by

L3(6,d) = (52 —1,In (5) — 137,70 (41)

The Bayes estimate 8,55 of 0, , unde GELF using

marginal posterior distribution equation (24) for
poissonmodel, is given by
_1
F@@i1+sim-vp) F'(az+sin—Sim) T2
é _ (b1+m)(31+51m_72) (bz+n-m)(@2+S1n=S1m) (42)
1BE D(aj,az,bi,bz,mn)
1
A _ [P((@1~1,)az,b1,b2,mn)] 7y,
0 1BE ™ [ D(aq,a2,b1,bz,m,n) (43)

and equation (25) for geometric model is given by

-1

F@i+m+yz)l(by+sim), F@z+n-mI(bz+s1n-s1m)i1y,
A _ I'(@aj+m+yz+b1+si1m) = I'(az+n—-m+by+s1pn—S1m)
0 18g = (44)
D(ay,az,by,bz,mn)
-1
~ D((ag1+Y2),az,b1,b,mn)]y,
elBE=[( 1+Y2).a2,b1,by Y2 (45)
D(ay,az,by,bz,mn)

The Bayes estimate B,55 of 0, , unde GELF using

marginal posterior distribution equation (26) for
poissonmodel, is given by
_1
r(a;+s1m) T'(az+sin—s1m—72) Yo
5 _ (b1+m)@1+51m) " (p, +n—m)(@2+S1n~S1m—712) (46)
2BE D(aj,az,bi,bz,mn)
1
a D(a,(az-v,),b1,b2,mn)1 77,
G [ 2 2 4
2BE D(aj,azbq,bz,mn) (47)

and equation (27) for geometric model is given by

-1

[r(a1+m)r(b1+s1m) F(32*'1‘1—111—1(2)1"('32+51n—51m)] E
é — T'(aj+m+bq+s1m) = F(@az+n-m-yz+by+s1pn—s1m) (48)
2BE D(ay,az,bq,by,mn)
-1
B _ [D(ap(az—Yz)rbpbz,m,n) Yz (49)
2BE D(aq,ap,bq,by,mn)

3.4. Bayes Estimators under Precautioanary Loss
Function (PLF)

Norstrom (1996) introduced an alternative asymmetric
loss function and also presented a general class of
precautionary loss function with quadratic loss function as
a special case. These loss functions approach infinitely near
the origin to prevent the overestimation and thus giving
conservative estimators, especially when low failure rates
are being estimated which may lead to serious
consequences.

A very useful and simple asymmetric precautionary loss
function is given by

(8-d?

L4 (9, d) = d

(50)

The Bayes estimator 8,gp of 0, , under PLF using the
marginal posterior distribution (24) for poisson model is
given by

[ I'(ag+s1m+2)
(b1+m)@1+51m+2)" (b, +n-m)(@2+S1n—S1m)

1
T'(az+s1n=S1m) ]r

B 1pp = 1
1BP D(aj,az,bq,by,m,n) G
1
A _ [b((a1+2),az,b1,bz,mn)]2
Bupp = | (52)
D(aj,az,by,by,m,n)
and equation (25) for geometric model is given by
[l"(al+m+2)l"(b1+slm) T'(az+n-m)I'(b2+s1n—S1m)
é _ I'(aj+m+bq+s1m+2) * I(az+n—-m+by+s1n—S1m) (53)
1BP D(ay,az,b1,bz,m,n)
1
A D((a;+2),az,b1,by,mn)]z
81pp = | 54
1BP D(aj,az,by,bz,mn) (54)

The Bayes estimator 0,gp of 0, , under PLF using the
marginal posterior distribution (26) for poisson model is
given by

1
- P@i+sim) (@z+s1n—S1m+2) ] 2
6 _ ' +m)@1+sim)” (by+n-m)@2+S1n=S1m+2) 55
2BP = (55)
D(aj,az,by,bz,mn)
1
A _ [P(as,(@z+2),b1,bp,mn)]z
8200 = | (56)
D(ay,az,by,bz,mn)
and equation (27) for geometric model is given by
1
[l"(al+m)l“(b1+51m) I'(az+n-m+2)I'(ba+s1n—-s1m)1712
é _ I'(aj+m+bq+s1m) = TF(azg+n—-m+bo+sip—S1m+2) (57)
2BP D(aj,az,bq,by,mn)
1
A _ D(aq,(az+2),by,by,mn)]z
8200 = | (58)
D(aj,az,by,bz,m,n)
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3.5. Numerical Comparison

We have generated the random samples of different sizes 10,
15, 20, 25, 30, 35, 40, 45, 50 with known shift points 5, 10, 15,
20, 25, 30, 35, 40, 45 repectively for each of poisson and
geometric distributions. We also get 8 = 2 in poissonmodel,
and 6 = 0. 2 in geometric model. The Bayes estimators of 0,
and 0, for each distributions are calculated under Squared
Error Loss Function, Linex Loss Function, General Entropy
Loss Function and Precautionary Loss function by making

programs in R-2. 13. 2 statistical software.
3.6. Sensitivity Analysis of Bayes Estimation

In this section we have studied the sensitivity of the
Bayes estimators of 0, , 6,whth respect to the parameters of
prior distribution a;, a,, b; and b, . We have computed the
Bayes estimators of 0, and 0, under SELF, LLF, GELF and
PLF. we have also considered different sample sizes
n=10(05)50.

Table 1. shows the Bayes estimarors of 6, and 6, under SELF, LLF, GELF, PLF, and Loss functions of them that L, = L(éws' 6), L,= L(ézss: 9),
Ly =L(0,5,,0),Ly = L(8,5,,0),Ls = L(B155,0),Le = L(0,5£,0),L; = L(815p,0), Lg = L(D,5p,0).

o i 0155 0285 0151 0251 015 0285 O1sp 025p
10 5 2.00 1.83 1.57 1.61 1.78 1. 61 2.07 1.89
15 10 2.08 1. 11 1.92 0.98 1.96 0. 89 2.12 1.83
20 15 3.07 1.11 2.09 1.23 2.98 1.18 3.10 1.47
25 20 2.09 1.97 2.00 1.73 2.02 1.75 2. 11 2.04
30 25 1.85 0.68 1.78 0. 60 1.79 0. 46 1.87 0.75
35 30 2.22 1.83 2.15 1.61 2.17 1. 61 2.24 1.89
40 35 1.89 1.40 1.84 1.23 1.85 1.18 1.90 1.46
45 40 1.93 1.54 1.88 1.36 1.89 1.33 1.94 1. 61
50 45 2.00 1.54 1.96 1.36 1.99 1.33 2.01 1. 61
n m Ly L, L; Ly Ls Ls Ly Ls
10 5 0. 000 0. 029 0. 105 0. 240 0. 026 0.081 0. 003 0. 005
15 10 0. 007 0. 784 0.011 1. 169 0.001 0. 804 0. 007 0. 563
20 15 1. 155 0.784 3.295 0.752 0. 426 0.399 0.393 0.191
25 20 0. 008 0.001 0. 000 0.119 0. 000 0. 003 0. 006 0.001
30 25 0. 022 1.727 0. 081 1.855 0.022 1.968 0. 009 2. 060
35 30 0. 048 0. 029 0. 052 0. 240 0.014 0.081 0. 024 0. 005
40 35 0.012 0. 360 0. 045 0.752 0.011 0.399 0. 005 0.191
45 40 0. 005 0.209 0. 025 0.562 0. 006 0.261 0. 002 0.093
50 45 0. 000 0.209 0. 003 0.562 0. 000 0.261 0. 000 0.093
Table 2, shows the Bayes estimarors of 0, and 0, under SELF, LLF, GELF, PLF, and Loss functions of them that L, = L(GA1 BS 6), L, = L(@zss, 9),
Ly =L(0,5,,0),Ly = L(8,5,,0),Ls = L(B15£,0),Le = L(8,5£,0), Ly = L(815p,0), Lg = L(D,5p,0).
a L 0155 0255 0155 0255 O18p 025p
10 5 0.21 0.13 0.17 0.10 0.22 0.14
15 10 0.26 0.21 0.23 0.17 0.24 0.23
20 15 0.43 0.31 0.41 0.26 0. 44 0.33
25 20 0.17 0.38 0.16 0.32 0.17 0.39
30 25 0.23 0.36 0.22 0.31 0.23 0.38
35 30 0.19 0.21 0.19 0.17 0.19 0.22
40 35 0.23 0.26 0.22 0.21 0.23 0.28
45 40 0.26 0.24 0.25 0.13 0.26 0.25
50 45 0.28 0.22 0.27 0.18 0.28 0.23
n m L1 Lz L3 L4 L5 Lﬁ
10 5 0. 000 0. 005 0. 056 0. 594 0. 002 0. 029
15 10 0. 003 0. 000 0. 053 0. 034 0. 048 0. 003
20 15 0. 052 0.012 1.735 0. 165 0.129 0. 049
25 20 0. 000 0. 033 0.079 0. 658 0. 003 0. 098
30 25 0. 001 0. 026 0. 027 0. 482 0. 006 0. 083
35 30 0. 000 0. 000 0.018 0. 035 0. 000 0. 003
40 35 0. 000 0. 004 0.017 0.014 0. 004 0.021
45 40 0. 004 0. 001 0.133 0. 002 0.015 0. 009
50 45 0. 007 0. 000 0.231 0. 020 0.022 0. 004

Table 1, shows the Bayes estimarors of 6, and 6, under SELF, LLF, GELF, PLF, and Loss functions of them that L, = L(éws, 6), L,= L(ézss: 9),
Ly = L(0,p1,0), Ly = L(035,,0),Ls = L(B155,0), Le = L(025£,6), L7 = L(815p,0), Lg = L(B,5p,0).
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