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Abstract: This paper examines lag selection problem in unit root tests which has become a major specification problem in 

empirical analysis of non-stationary time series data. It is known that the implementation of unit root tests requires the choice 

of optimal truncation lag for good power proper ties and it is equally unrealistic to assume that the true optimal truncation lag 

is known a prior to the practitioners and other applied researchers. Consequently, these users rely largely on the use of standard 

information criteria for selection of truncation lag in unit root tests. A number of previous studies have shown that these 

criteria have problem of over-specification of truncation lag-length leading to the well-known low power problem that is 

commonly associated with most unit root tests in the literature. This paper focuses on the problem of over-specification of 

truncation lag-length within the context of augmented Dickey-Fuller (ADF) and generalized least squares Dickey-Fuller (DF-

GLS)unit root tests. In an attempt to address this lag selection problem, we propose a new criterion for the selection of 

truncation lag in unit root tests based on Koyck distributed lag model and we show that this new criterion avoids the problem 

of over-specification of truncationlag-length that is commonly associated with standard information criteria. 

Keywords: Truncation Lag, Information Criteria, Koyck Distributed Lag Model, Unit Root Test, Low Power,  

Partial Correlation Coefficient 

 

1. Introduction 

Testing for the presence of unit root in time series data is 

a major precondition in any cointegration analysis and 

other empirical research using time series data. 

Determination of appropriate truncation lag is quite a 

challenging aspect of unit root testing. A number of 

previous studies such as [1], [2], [3],[4],[5] and [6] have 

shown that there is a strong connection between truncation 

lag and the empirical power of unit root tests. Among 

numerous unit root tests proposed in the literature, the 

augmented Dickey–Fuller (ADF) test introduced by [7] and 

the generalized least squares Dickey-Fuller (DF-GLS) test 

introduced by [8] appears to be the most popular unit root 

tests among applied researchers. Both ADF and DF-GLS 

unit root tests are well-formulated to handle any possible 

serial correlations in the error terms of the Dickey–Fuller 

regressions by augmenting the regressions with lagged 

differences of the original series. However, the empirical 

implementation of the ADF and DF-GLS unit root tests 

requires the inclusion of appropriate number of lagged 

differences in the Dickey–Fuller regression, which is 

commonly referred to as lag selection problem in the 

literature. In practice, lag-lengths are commonly selected 

by two different lag selection techniques such as general-

to-specific criterion proposed by [9] which is based on 

some sequential t-test procedure and standard information 

criteria such as Akaike information criterion (AIC), Final 

Prediction Error (FPE),Bayesian information criterion(BIC) 

and Hannan-Quinn information criterion (HQIC) to 

mention only a few but these criteria are generally well-

known to have problem of over-fitting the truncation lags in 

unit root tests  leading to low power  in unit root tests.[2],[9] 

and [10]compared the performance of ADF test under these 

two lag-selection techniques and showed that  sequential t-

test outperformed standard information criteria.[11] 

compared the performance of DF-GLS test under modified 

Akaike information criteria (MAIC) and sequential t-testing 

procedure and show that the latter perform better than 

former. In an attempt to address the well-known problem of 

low power of ADF unit root test occasioned by over-

specification of truncation lag-length, [8] introduced a class 

of efficient unit root tests called generalized least squares 

Dickey-Fuller(DF-GLS) test using ADF test based on GLS-

detrending. Although, DF-GLS test was shown to be more 

powerful than the ADF test but it also inherits the lag 

length selection problem since it is a modification of the 

original ADF test. Hence, DF-GLS test is also characterized 

by low power problem due to over-specification of 

truncation lag-length. Another noticeable problem of 
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standard information criteria is the fact that different lag 

selection criteria choose different optimal truncation lag-

lengths for the same dataset. This multiple suggestions of 

possible truncation lags by different information criteria 

raises a fundamental question as to on which particular 

information criterion could we rely upon for the choice of 

optimal truncation lag-length. To date, there exists no 

operational procedure for selecting optimal truncation lag-

length for unit root tests that gives the best results. Hence, 

this paper focuses on the choice of optimal truncation lag-

length for the ADF family of unit root tests and DF-GLS 

test since these are the most widely used unit root tests in 

empirical analysis. 

2. Standard Information Criteria 

In this study, we considered four standard information 

criteria for lag selection in unit root testing. The procedure 

is to fit autoregressive model on ( )  , 1,....,4
i

ty i =  for order 

ranging from 1 to 9 and subsequently obtaining the 

quantities to compute the values of the criteria. The 

following lag selection methods are considered: 

i.[12]: Final Prediction Error (FPE) 

( ) ( ) ( )2
2 1

ˆln
k

k
FPE k

N k
σ

+
= +

−
 

ii.[13]: Akaike Information Criterion(AIC) 

( ) ( )2 2 1
ˆln k

k
AIC k

N
σ

+
= +  

iii.[14]:Bayesian Information Criterion (BIC) 

( ) ( ) ( )2
1 ln

ˆln k

k N
BIC k

N
σ

+
= +  

iv.[15]: Hannan-Quinn Information Criteria (HQIC) 

( ) ( ) ( ) ( )( )2
2 1 ln ln

ˆln k

k N
HQIC k

N
σ

+
= +  

Where k is the lag-length  selected, N is the sample size 

and 2ˆ
k

σ  is the MLE of the model residual. Our objective is 

to ascertain if these conventional lag selection criteria 

either over-fit or under-fit the truncation lags by comparing 

the lag-length suggested by these information criteria with 

lag-length suggested by the new lag selection criterion. 

3. A New Approach to Selection of 

Truncation Lag in Unit Root Tests 

We consider a distributed lag representation of ADF and 

DF-GLS regression models in the form: 

( )

( )

( )

( )

1
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d d d
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ρ γ ε
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− −
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=

− −
=

− −
=

= ∆ − = ∆ + 



= ∆ − − = ∆ +




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




= ∆ − − − = ∆ + 


∑

∑

∑

∑

    (1) 

Where 
( )1

ty  is ADF Model I with no constant and no 

trend 
( )2

ty is ADF Model IIwith constant  but no trend 

( )3

ty is ADF Model III with both constant and  trend 

( )4

ty is DF-GLS with both constant and  trend 

, 1,..., 4ti iε = are white noise error terms, k  is the 

truncation lag-length to be determined empirically, jγ  and 

jδ are coefficients of differenced lagged values. The R.H.S 

of equation (1) is similar to typical distributed lag models 

used in econometric modeling. [16] has proposed an 

ingenious method of specifying the lag in distributed lag 

model by assuming that the coefficients of 
iγ ’s and 

iδ ’s 

on the R.H.S of equation (1) are all of the same  sign and 

declines geometrically, then without loss of generality we 

can assume Koyck postulations as follows: 

Let  

 or 
k k k

λ δ γ 
  
 

=                           (2) 

then we have  

( )0      0,1,   1,....,4
i
k

k
R k iλλ = = =              (3) 

Where R is the partial correlation coefficient between 

( )
1,..., 4/

i

ty i =  and  t jy −∆ or   d
t jy −∆  and measures the rate 

at which ( )i
ty depends on either 

t jy −∆  or   d
t jy −∆  and for 

the rate of decline of 
k

λ ’s  we take 
( )iR such that ( )0 1

i
R< <  

is the indicator of decay of the distributed lag and ( )1
i

R−  is 

the speed of adjustment[17]. 

Equation(2) fundamentally postulates that each λ  

coefficient is a measure of dependence of ( )i

ty  on either 
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t j
y −∆  or     d

t jy −∆  and each successive λ  coefficient is 

numerically less than each preceding λ ,this implies that as 

one goes back into the distant past the effect of that lag on 

( )i
ty  becomes progressively smaller. 

To obtain the mean lag, we ensure that the long-run 

multiplier is finite 

That is the sum of 
k

λ  is defined as 

( )0
0

i
k

k
k

Rλ λ
∞

=
=∑ ∑                      (4) 

but 

( ) ( )
1

1i
i

k
R

R = −∑                        (5) 

is the inverse of speed of adjustment. Therefore, the Mean 

lag is 
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         (6) 

Applying arithmetic-geometric progression rule to (6) we 

obtain the sum to infinity for the term 
( )i

kkR  to be 

( )
( )

( )

2

0 1

i

i

i

k

k

R
kR

R
 
 
 
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∞

=
=

−
∑                      (7) 

So using (7) in (6) gives 

( )
( )

( )
  , 1,.....,5

1
i

i

i

R
L i

R
= =−                   (8) 

The notation 
( )iR  indicates that we generate different R’s 

for each of the models described in equation (1) and we 

shall demonstrate the power of test for
( )iR for different 

values of 0.001,0.5,  0.999andρ = . 

The following are the immediate consequences of 

equation (8) : 

(i).The closer R is to +1 ,the slower the rate of decline in 

k
λ ,whereas the closer it is to zero, the more rapid the 

decline in 
k

λ .This ensures that, to have reasonable mean 

lag ( )iL we expect the absolute value of R to be in the 

interval [ )0.5,0.999  

(ii)The simple linear regression model will be fitted to 

the L.H.S of equation (1) to generate the parameters needed 

and to compute ( )  ,  1,.........,4
i

ty i∀ =  

(iii)If  ( ) 0.3
i

R <  , then the mean lag will be assumed to be 

zero since 
( )

( )1

i

i

R

R
 
 
 
 

−  for ( ) 0.3
i

R <  is a fraction not up to 0.5. 

(iv)The partial correlation coefficient ( )iR should be 

computed such that we include all variables and adjusted 

for maximum lag until it gives a value less than 0.3 

4. Power of Test for R 

We define power of test for 
( )iR as follows: 

( )0
: 1

i
H R =  against ( )1

: 1
i

H R <  

Assuming that 
( )iR  is normally distributed, then we 

define the test statistic as 

( )

( )

ˆ 1

ˆ

i

i

R
Z

V R
 
 
 

−
=

                           (9) 

We reject the null hypothesis of 
( ) 1
i

R = and hence leads to 

undefined mean lag L at a specified level of significance 

α  if Z Zα< − .The Power of  possible mean lag is the 

probability of rejecting
0

H when 
1

H  is true i.e when

( ) 1
i

R R∗< =  

Thus we have 

( )/
i

P R P Z Z R Rα
    
  

    

∗ ∗= < − =          (10) 

This reduces to 

( ) ( )

( )
( )

ˆ 1
/

ˆ

i

i

i

R
P R P Z R R

V R
α

∗ ∗

 
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After some algebraic manipulation of Equation (11) we 

have Equation (12) which defines the power of test for
( )iR  

5. Empirical Illustration 

For empirical illustration, we fit simulated data to the 

distributed lag specifications of Dickey-Fuller regression 

models of ADF and DF-GLS unit root tests as follows: 

For ADF MODEL I , ( )1

1 1

0

k

t t t j t j t

j

y y y yρ γ ε− −
=

= ∆ − = ∆ +∑  

We set 0.001,0.5 and 0.999ρ =  in 
( )1

ty  to have  the 

following representations: 

( )

1 1

1

1 2

1 3

0.001*   ,      0.001

0.5*      ,       0.5

0.999*  ,       0.999

t t

t t t

t t

y y a

y y y a

y y a

ρ

ρ

ρ

−

−

−

∆ − = =

= ∆ − = =



∆ − = =

 

We generate series 1  a , 2  a and 3  a for different values  

of  0.001,0.5 and 0.999ρ = .We compute partial 

correlation coefficients between : 1  a and different choices 

of variables from the set of independent variables 

1 2 12, , ,......,t t t ty y y y− − −∆ ∆ ∆ ∆  while controlling for the 

effects of other remaining independent variables. We also 

repeat the same procedure for 2  a and 3  a  

For ADF MODEL II , ( )2

1 2

0

k

t t t j t j t

j

y y y yα ρ γ ε− −
=

= ∆ − − = ∆ +∑ , 

we set 0.001,0.5 and 0.999ρ =  in 
( )2

ty  to have the 

following representations: 

( )

1 1 1

2

2 1 2

3 1 3

0.001*  ,    0.001

0.5*   ,       0.5

0.999*  ,    0.999

t t

t t t

t t

y y b

y y y b

y y b

α ρ

α ρ

α ρ

−

−

−

∆ − − = =

= ∆ − − = =



∆ − − = =

 

where  1α , 2α  and 3α  are obtained by fitting of a 

regression model 
( )2

ty  equals to a constant  for different 

values of ρ .With values of 1α , 2α  and 3α  known ,we 

therefore proceed to generate the series for 1  b , 2  b and 

3  b .Thereafter, we compute partial correlation coefficient 

between : 1  b and different choices of variables from the set 

of independent variables 1 2 12, , ,......,t t t ty y y y− − −∆ ∆ ∆ ∆  

while controlling for the effects of other remaining 

independent variables. We also repeat the same procedure 

for 2  b and 3  b  

For ADF MODEL III,  

( )3

1 3

0

k

t t t j t j t

j

y y t y yα β ρ γ ε− −
=

= ∆ − − − = ∆ +∑ , 

we set 0.001,0.5 and 0.999ρ =  in 
( )3

ty  to have  the 

following representations: 
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We estimate the regression equation 
( )3

1* *t t ty t y yα β ρ −= + + ∆ + , for values of 

0.001,0.5 and 0.999ρ = .Thereafter, we proceed to 

generate  series for 
1  d , 

2  d and 
3  d  .We compute partial 

correlation coefficients between: 1  d and different choices 

of variables from the set of independent variables 

1 2 12, , ,......,t t t ty y y y− − −∆ ∆ ∆ ∆  while controlling for the 

effects of other remaining independent variables. We also 

repeat the same procedure for 2  d and 3  d  

For DF-GLS unit root test,  

( )4

1 4

0

k
d d d

t t t j t j t

j

y y t y yα γ ρ δ ε− −
=

= ∆ − − − = ∆ +∑ , 

we set 0.001,0.5 and 0.999ρ =  in 
( )4

ty to have  the 

following representations: 
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4

2 2 1 2

3 3 1 3

0.001*    ,          0.001          

0.5*       ,              0.5

0.999*   ,            0.999

d d

t t

d d

t t t
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t t

y t y e
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
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We estimate the regression equation 
( )4

1* *d d

t t ty t y yα γ ρ −= + + ∆ + , for values of 

0.001,0.5 and 0.999ρ = .Thereafter, we  proceed to 

generate  series for 1  e , 2  e and 3  e  .We compute partial 

correlation coefficients between: 1  e and different choices 

of variables from the set of independent variables 

1 2 12, , ,......,t t t ty y y y− − −∆ ∆ ∆ ∆  while controlling for the 

effects of other remaining independent variables. We also 

repeat the same procedure for 2  e and 3  e  

6. Power of Test for ADF and DF-GLS 

Unit Root Tests under the New Lag 

Selection Criterion 

In this section, we discuss the power of test for R for the 

ADF and DF-GLS unit root tests based on the optimal 

truncation lag selected by the new criterion. 

Table 1.Power of Test for R When 0.001ρ =  

TABLE 1A 

Unit Root Test Lag R p-value Power of Test 

ADF MODEL I 0 0.652 0.000 0.6118 

ADF MODELII 0 0.652 0.000 0.6118 

ADF MODEL III 0 0.652 0.000 0.6118 

DF-GLS 0 0.752 0.000 0.7563 

TABLE 1B 

Unit Root Test Lag R p-value Power of Test 

ADF MODEL I 1 0.054 0.094 0.3423 

ADF MODELII 1 0.054 0.094 0.3423 

ADF MODEL III 1 0.054 0.094 0.3423 

DF-GLS 1 0.374 0.014 0.4475 

From Tables 1A and 1B above, it is obvious that the 

partial correlation coefficient denoted by R is significant at 

zero lag but not significant at lag 1.Hence,for 0.001ρ = , 
lag 1may be pre-specified as maximum lag for these unit 

root tests but  optimal truncation lag is 0 because the power 

of test for R is higher at lag 0 than at lag 1.From both tables 

it is also seen that the power of test for R under DF-GLS 

test is higher compared with ADF tests at lag 0 and lag 1 

respectively. 

From Tables 2A and 2B above, it is obvious that the 

partial correlation coefficient denoted by R is significant at 

zero lag but not significant at lag 1.Hence,for 0.5ρ = , lag 

1may be pre-specified as maximum lag for these unit root 

tests but  optimal truncation lag is 0 because the power of 

test for R is higher at lag 0 than at lag 1.From both tables it 

is also seen that the power of test for R under DF-GLS test 

is higher compared with ADF tests at lag 0 and lag 1 

respectively. 

Table 2.POWER OF TEST FOR R WHEN 0.5ρ =  

TABLE 2A 

Unit Root Test Lag R p-value Power of Test 

ADF MODEL I 0 0.785 0.000 0.9535 

ADF MODELII 0 0.785 0.000 0.9535 

ADF MODEL III 0 0.785 0.000 0.9535 

DF-GLS 0 0.815 0.000 0.9607 

TABLE 2B 

Unit Root Test Lag R p-value Power of Test 

ADF MODEL I 1 0.062 0.051 0.3771 

ADF MODELII 1 0.062 0.051 0.3771 

ADF MODEL III 1 0.062 0.051 0.3771 

DF-GLS 1 0.412 0.022 0.6237 

Table 3.POWER OF TESTFOR  R WHEN 0.999ρ =  

TABLE 3A 

Unit Root Test Lag R p-value Power of Test 

ADF MODEL I 0 0.850 0.000 0.9871 

ADF MODELII 0 0.850 0.000 0.9871 

ADF MODEL III 0 0.850 0.000 0.9871 

DF-GLS 0 0.883 0.000 0.9924 

TABLE 3B 

Unit Root Test Lag R p-value Power of Test 

ADF MODEL I 1 0.066 0.038 0.4317 

ADF MODELII 1 0.066 0.038 0.4317 

ADF MODEL III 1 0.066 0.038 0.4317 

DF-GLS 1 0.312 0.013 O.5978 

From Tables 3A and 3B above, it is obvious that the 

partial correlation coefficient denoted by R is significant at 

zero lagbut not significant at lag 1.Hence,for 0.999ρ = , 
lag 1may be pre-specified as maximum lag for these unit 

root tests but  optimal truncation lag is 0 because the power 

of test for R is higher at lag 0 than at lag 1.From both tables 

it is also seen that the power of test for R under DF-GLS 

test is higher compared with ADF tests at lag 0 and lag 1 

respectively. 

7. Lag-Selection by Conventional 

Information Criteria 

In order to evaluate the performance of standard 

information criteria, we fitted auto regression of order 1 to 

9 to our simulated data and these information criteria select 

the following truncation lag as represented in table 4 below: 
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Table 4. LAG-SELECTION BY CONVENTIONAL INFORMATION 

CRITERIA 

MODEL RMSE 
2ˆkσ  AIC FPE BIC HQIC 

( )1AR  2.38 5.6787 1.7496 1.7496 1.7736 1.7592 

( )2AR  2.36 5.5649 1.7358 1.7360 1.7720 1.7503 

( )3AR  2.34 5.4943 1.7296 1.7299 1.7779 1.7489 

( )4AR  2.34 5.4897 1.7353 1.7358 1.7959 1.7595 

( )5AR  2.35 5.5037 1.7445 1.7452 1.8174 1.7736 

( )6AR  2.32 5.4242 1.7366 1.7375 1.8218 1.7706 

( )7AR  2.33 5.4382 1.7459 1.7471 1.8435 1.7849 

( )8AR  2.33 5.4010 1.7458 1.7474 1.8558 1.7898 

( )9AR  2.33 5.4103 1.7543 1.7563 1.8769 1.8033 

Table 4 has autoregressive (AR) models of order 1 to 9 in 

the first column and root mean square error (RMSE) for each 

model in the second column. The optimal truncation lag for a 

particular criterion is the lag that minimizes the value of that 

criterion. Hence, the optimal truncation lag chosen by AIC, 

FPE and HQIC is 3 respectively whilst BIC picked 2.This is 

clearly an over-specification of truncation lag when 

compared with truncation lag suggested by our new criterion. 

8. Conclusion 

In this paper, we have highlighted the lag selection 

problem in the context of ADF and DF-GLS tests based on 

standard information criteria which we have shown to over-

estimate the truncation lag leading to the well-known 

problem of low-power associated with unit root tests. 

Given the persistent problem of over-specification of 

truncation lag by data-dependent standard information 

criteria, we introduced a new lag selection criterion based 

on Koyck distributed lag model where truncation lag is 

specified as a deterministic function of the partial 

correlation coefficient between dependent variable and 

different choices of independent variables of distributed lag 

specifications of ADF and DF-GLS unit root tests. This 

new procedure was shown to avoid the problem of over-

specification that is commonly associated with standard 

information criteria that are commonly used by applied 

researchers for lag-selection. 
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