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Abstract: In this paper we, consider a restrictions on the choice of relaxation time in single relaxation time (SRT) models, 

simulation of flows is generally limited base on this technique. In the current study of the SRT lattice Boltzmann equation 

have been used to simulate lid driven cavity flow at various Reynolds numbers (100-5000) and three aspect ratios, K=1, 1.5 

and 4. The point which is vital in convergence of this technique is how the boundary conditions will be implemented. Two 

kinds of boundary conditions which imply no-slip and constant inlet velocity, imposed in the present work. For square cavity, 

results show that with increasing the Reynolds number, bottom corner vortices will grow but they won’t merge together. In 

this case which the aspect ratio equals four, and Reynolds number reaches over 1000, simulations predicted four primary 

vortices, which have not predicted by previous single relaxation time models. The results have been compared by previous 

multi relaxation model. 
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1. Introduction 

In recent decays, the Lattice Boltzmann equation has 

achieved an important role in solution of engineering 

problems. This fact is confirmed with numerous papers 

which have been published in recent years[1]. LBE with 

Bhatnagar-Gross-krook approximation (LBGK) model has 

reached the vast successes in fluid simulations. Using this 

model has many advantages such as application of boundary 

condition in complex geometries, reduction of running time 

and simple parallelism in computations[2-5]. But this model 

suffers from some numerical instabilities and limitations of 

usage of high Reynolds numbers. This problems cause that 

in some cases multiple-relaxation-time model be considered. 

Although this method increases the stability and limitation 

of the solution domain but simplicity of single relaxation 

time is the reason to more usage of this model. Solution of 

cavity flow has been studied by many people. Hou et al[6] 

and Guo et al[7] have studied cavity flow by LBGK model. 

Ghia[8] investigated this problem by MRT model which in 

this model collision term in generally is different with 

LBGK. Etroke et al[9] completely studied cavity flow 

problem in high Reynolds numbers with stream function and 

vorticity formulation method. Taneda investigated the effect 

of aspect ratio on the laminar regime experimentally[10], 

and results have been verified numerically by Shen and 

Floryan[11]. 

By increasing the cavity depth, bottom corner vortices 

begin to grow and finally they merge and make another 

primary vortex. With further increases in cavity depth, two 

another bottom vortexes are created. This process is 

continuing as the cavity depth is increasing. Patil et al[12] 

has simulated the cavity flow with LBGK model in different 

Reynolds number ranges from 50 until 3200, and different 

aspect ratios between K=1 and K=4. Their conclusions were 

Compatible with Taneda and Chen works results. Few 

studies have conducted in cavity flow problem with 

Reynolds number more than 3200 and aspect ratio beyond 1. 

Lin et al[14] has simulated the deep lid driven cavity flow in 

Reynolds numbers between 100 and 7500 and aspect ratios 

K=1, 1.5, 4. They used Multi relaxation time lattice 

Boltzmann model and compared results with pervious 
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works. 

In this paper LBGK model is used for deep lid driven 

cavity flow simulation in Reynolds number ranges between 

100 and 5000, and aspect ratios equal with 1, 1.5 and 4, 

which is not used before and results are compared with latest 

results. 

2. Boltzmann Equation with BGK 

Approximation 

Consider a Lattice Boltzmann equation are given below (1) 

( , ) ( , )i i i if x c t t t f x tδ δ+ + − = Ω
� �

         (1) 

Where
i

f  is the distribution function for the particles 

which have discrete velocities indicated by
i

c . Right hand 

side of the above equation includes the collision term and 

Bhatnagar-Gross-krook (BGK) approximation is used for 

evaluate this term by the following form: 
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In equation (2) τ is the relaxation time, 
eq

if  is the 

equilibrium distribution function and
i
Fδ  denotes the 

external forces field. As introduced in[1] the equilibrium 

distribution function, 
eq

if is evaluated by: 
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In equation (3) u and ρ are macroscopic velocity and 

density, respectively. 
i

ω  and
i

c quantities are weight factors 

and discrete velocities which in D2Q9 lattice, are given 

below : 

4
( 0)

9

1
( 1,2,3, 4)

9

1
( 5,6,7,8)

36

i

i

i

i

ω

 =

= =

 =


            (4) 

0

2 1

2

(0,0)

[cos( ),sin( )], 0,1,2,3
4 4

(2 1) (2 1)
2[cos( ),sin( )], 1, 2,3, 4

4 4

i

i

c

i i
c c i

i i
c i

π π

π π

+


 =

 = =


− − = =

 (5) 

Where /c x tδ δ= . For simplicity we assume that

1x tδ δ= = . 

Chapman–Enskog expansion depicts that lattice 

Boltzmann equation satisfies the continuity and momentum 

equations. 

With substituting equation (2) in equation (1) one obtains: 

1
( , ) ( , ) [ ( , ) ( , )]eq

i i i if x t t f x t f x t f x tδ
τ

+ = − −
� � � �

   (6) 

The above equation consists of two parts. The streaming 

term is given below. 

( , ) ( , )i i if x c t t t f x t tδ δ δ+ + = +
� �

         (7) 

The equation (7) yields quantities of 
i

f  for adjacent 

areas after one moment and collision process is evaluated by 

equation (6). Fluid viscosity is given by relaxation time and 

the lattice sound velocity, as the following form: 

21
( )

2
s

cυ τ= −                  (8) 

where / 3sc c=  .  

For positive values of viscosity, it is necessary that the 

relaxation time parameter,τ  be more than 0.5. But stability 

conditions forces that this amount has to be enough larger 

than 0.5. Macroscopic velocity and density in each point will 

be calculated by the following equations: 

eq

i ii i
f fρ = =∑ ∑               (9) 

eq

i i c ii i
u c f c fρ = =∑ ∑            (10) 

3. Boundary Conditions 

In the present work, there are two kinds of boundary 

conditions. The first boundary condition is referred to 

the top of the cavity with uniform horizontal velocity 

(Fig1).  

 

Figure 1. Schematic of lid driven cavity flow problem 

Second boundary condition implies the static walls on the 

left, right and bottom of cavity. On the static walls no-slip 

boundary condition is applied and for this purpose bounce 

back method is used. On the other hand the orientation is 

fixed but direction is inversed. Pseudo-code of this method 

on the bottom wall is shown as follows: 
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For the inlet boundary condition there are several 

suggestion such as Chen et al[15], Zou et al[2]. By these 

methods problem is easily solved when the aspect ratio K=1, 

but by increasing the cavity depth, using the above methods 

cause the slow convergence. Hou proposed substitution of 

the equilibrium distribution function to distribution function 

in this way: 

( , ) ( , ),   1,
eq

i if x Ny f x Ny i Nx= =          (12)

 

Figure 2. Comparisons of predicted (a) horizontal and (b) vertical velocity with Ghia et al. [8] at different Reynolds number-aspect ratio K =1

4. Numerical Results 

Now the numerical solutions in case of various Reynolds 

numbers and aspect ratios in lid-driven cavity flow have 

been shown in figure. In this problem the dimensionless 

cavity Reynolds number is defined as
0

Re /U Ny υ= , where 

0
U  is uniform velocity which is on the top of the cavity, Ny 

is the width of the cavity andυ  is the kinematic viscosity of 

fluid. Aspect ratio is characterized by K and its value is 

equal with 1, 1.5 and 4 respectively. In fixed k numbers we 

change the Re from 100 up to 5000. Lin et al[14] showed 

that mesh sizes have less effect on solutions accuracies 

especially when the mesh sizes are greater than129 129× .  

To verify the written program code the comparisons of 

predicted (a) horizontal and (b) vertical velocity with Ghia et 

al.[8] at different Reynolds number of aspect ratio K =1 are 

plotted in Fig.2 . For more precision the location of primary 

vortex and two bottom secondary vortices of K=1 are shown 

in table 1 with solutions of[8], [18], [19], [20], [13] and[14]. 

Structural changes in the vortex at different Reynolds 

numbers of K=1 are shown in Fig3.  

To investigate the effect of cavity depth on flow structure, 

we will study the case of K=1.5. Horizontal and vertical 

velocity at different Reynolds number at K=1.5 are shown in 

Fig4. This figure presents the predicted horizontal and 

vertical velocities along x = 0.5 and y = 0.75, respectively. 

The appearance of the second primary vortex can be 

observed from Fig. 4a, where forward velocity is present at 

location for y < 0.2. With increasing depth of the cavity, the 

vortices in the lower corners are growing. 

As the Reynolds number is increasing these vortices 

merge and create second primary vortex (Fig.5). As the 

Reynolds number increases further, another two corner 

vortices would emerge. As we see this event (merger of 

corner vortices) did not happen in the previous case when 

K=1. Comparing the detail results of the present work with 

Patil et al.[12], Pantil[13] and Lin et al.[14] are reported in 

table 2. 

 

Figure 3. Streamline distributions at different Reynolds number-aspect 

ratio K =1. 
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Figure 4. Predicted (a) horizontal and (b) vertical velocity at different Reynolds number, K=1.5 

Table 1. Comparisons of the locations of the vortices at different Reynolds numbers with Ghia et al. [8], Pandit [13] and Lin et al[14] – aspect ratio  K =1 

Right 2ndary vortex 
x                y 

Left 2ndary vortex 

x                 y 
Primary vortex 

x              y    
Re 

 100 
0.0625        0.9453 
0.0575         0.9425 
0.0591         0.9448 
0.0816         0.9416 

0.0391        0.0313 
0.0439         0.0316 

0.0342         0.0346 

0.0603         0.0606 

0.7344         0.6172 
0.7273         0.6184 
0.7323         0.6140 

0.7366         0.6179 

[8] 
[13] 

[14] 

Current work 
 400 

0.1205         0.8906 
0.1384         0.8908 
0.1206         0.8875 
0.1439       0.8805 

0.0469         0.0508 
0.0439         0.0528 
0.0468        0.0510 
0.0659         0.0700 

0.6065         0.5547 
0.6065         0.5532 
0.6024         0.5543 
0.6133         0.5657 

[8] 
[13] 
[14] 

Current work 
 1000 

0.1094         0.8594 
0.1092         0.8577 
0.1117        0.8652 
0.1215         0.8646 

0.0781       0.0859 
0.0840       0.0840 

0.0776         0.0833 
0.0846         0.0904 

0.5625         0.5313 
0.5532         0.5266 
0.5645         0.5309 
0.5686        0.5346 

[8] 
[13] 
[14] 

Current work 
 3200 

0.0859         0.8125 
0.0843         0.8248 
0.0954       0.8253 

0.1094         0.0859 
0.1195         0.0812 
0.1251         0.0909 

0.5469         0.5165 
0.5396         0.5178 
0.5440        0.5203 

[8] 
[14] 

Current work 
 5000 

0.0742         0.8086 
0.0730         0.8085 
0.0841        0.8055 

0.1367       0.0703 
0.1365         0.0732 
0.1414         0.0837 

0.5352         0.5117 
0.5349        0.5151 
0.5390         0.5176 

[8] 
[14] 

Current work 

 

Figure 5. Variations of unsteady streamlines at one period-Re = 7500 and aspect ratio K = 1.5. 
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Figure 6. Predicted (a) horizontal and(b) vertical velocity at different Reynolds number-aspect ratio K=4

Fig. 6, showing the predicted horizontal and vertical 

velocities along x = 0.5 and y = 2, respectively. It can be seen 

that below y = 2, the strength of the vortex is rather week, 

reflected by the low level of horizontal velocity. Streamlines 

in the case with K=4 are shown in Fig.7. As we see in this 

figure with increasing depth to width ratio of the cavity and 

with growth of Re two bottom vortices are joining and create 

another primary vortex. This fact can be seen clearly in Fig.7 

(a), (b) and (c). In the previous disquisitions and also in this 

paper, at Re=400 three primary vortices was predicted while 

Pandit predicted four primary vortices which disagrees with 

Patil et al. , Lin et al. and current work.   Patil also on his 

calculations at Reynolds numbers1000 and 3200, predicted 

three primary vortices. The results of his work have been 

inconsistent with[13], [14, 17] and the present paper.  

Comparisons of the locations of the primary vortices at 

different Reynolds numbers with Patil et al.[12], 

Pandit[13],Lin et al[14] and Navier–Stokes solutions are 

presented in table 3. 

5. Conclusion 

In this paper LBGK model is used to simulate two 

dimensional lid-driven cavity flow[16]at various Reynolds 

numbers between 100 and 5000 and three aspect ratios, K=1, 

1.5 and 4  which is not used before. Implementation of 

appropriate boundary conditions is discussed in order to 

achieve reasonable convergence. It is reported that bounce 

back boundary condition in static walls with equilibrium 

distribution function in the inlet boundaries will tend to 

appropriate convergence. Flow structures have been studied 

in details and good agreements were obtained. For K = 4 

cavity flow, four primary vortices are predicted by LBGK 

model for Reynolds number beyond 1000, which was not 

predicted by previous LBGK models, and results were 

verified by Lin et al. 

Table 2. Comparisons of the locations of the vortices at different Reynolds 

numbers with Patil et al. [12] and Pandit [13] – aspect ratio K = 1.5 

2nd primary vortex  

x              y 
1st primary vortex  

x            y    
Re 

 400 

0.3906           0.4453 
0.3950           0.4205 

0.3825          0.4259 

0.3949           0.4468 

1.1172           0.5625 
1.1241           0.5399 

1.1030           0.5522 

1.1093           0.5596 

[12] 
[13] 

[14] 

Current work 

 1000 

0.4179          0.3007 

0.3950         0.3439 
0.4135          0.2960 

0.4285           0.3111 

1.0820          0.5352 

1.0851           0.5399 
1.0783           0.5293 

1.0840           0.5346 

[12] 

[13] 
[14] 

Current work 

 3200 

0.3632           0.3320 

0.3560           0.3293 
0.3692           0.3394 

1.0703           0.5195 

1.0668           0.5175 
1.0718           0.5208 

[12] 

[14] 
Current work 

 5000 

0.3504           0.3322 
0.3622           0.3411 

1.0658           0.5151 
1.0684           0.5178 

[14] 
Current work 
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Figure 7. Streamline distributions at different Reynolds number-aspect ratio K = 4 

Table 3. Comparisons of the locations of the primary vortices at different Reynolds numbers with Patil et al. [12], Pandit [13],Lin et al[14] and 

Navier–Stokes solutions – aspect ratio K =4. 

 

 

References 

[1] Chen, S., Doolen, G.D., “Lattice Boltzmann method for 
fluid flow”, Ann Rev Fluid Mech, Vol. 30 (1998), 329-364. 

[2] Zou, Q., He, X., “On pressure and velocity boundary 
conditions for the lattice Boltzmann BGK model”, Phys 
Fluids, Vol. 9 (1997), 1591-1598. 

[3] Niu, X.D., Shu, C., Chew, Y.T., “A thermal lattice 
Boltzmann model with diffuse scattering boundary 
condition for micro thermal flows” , Comput Fluids, Vol. 36 
(2006), 273-281. 

[4] Ho, C.F., Chang, C., Lin, K.H., Lin, C.A., “Consistent 
boundary conditions for 2D and 3D laminar lattice 
Boltzmann Simulations”, CMES-Comput Model in Eng & 

Sci Vol. 44 (2009), 137-155. 

[5] Liu, C.H., Lin, K.H., Mai, H.C., Lin, C.A., “Thermal 
boundary conditions for thermal lattice Boltzmann 
simulations”, Comput Math Appl Vol. 59 (2010), 
2178-2193. 

[6] Hou , S., Zou, Q., Chen, S., Doolen, G., Cogley, A.C., 
“Simulation of cavity flow by the lattice Boltzmann 
method”, J Comput Phys, Vol. 118 (1995), 329-347. 

[7] Guo, Z.L., Shi, B.C., Wang , N., “Lattice BGK model for 
incompressible Navier–Stokes equation”, J Comput Phys, 
Vol. 165 (2000) 288-306. 

[8] Ghia, U., Ghia, K.N., Shin, C.T., “High-Resolutions for 
incompressible flow using the Navier–tokes equations and a 
multigrid method”, J Comput Phys, Vol. 48 (1982), 387-411. 

[9] Erturk, E., Corke, T.C., Gökçöl, C., “Numerical Solutions of 

4th primary vortex  

x              y  

3rd primary vortex  

x                y 

2nd primary vortex  

x                 y 

1st primary vortex  

x                 y    
Re  

 400 
-            -  

0.3300      0.5500 

-            -  
-            -  

-            -  

1.5000       0.5000 

1.5266       0.5000 

1.4875       0.4916 
1.4809       0.4914 

1.5611       0.5033 

2.8515       0.4375 

2.8750       0.4205 

2.8439       0.4230 
2.8378       0.4250 

2.8722       0.4472 

3.6172       0.5625 

3.6029      0.5399 

3.6078       0.5528 
3.6039       0.5528 

3.6141      0.5638 

[12] 

[13] 

[N-S] 
[14] 

Current work 
 1000 

-              -  

0.6667       0.5500 
0.4459       0.5019 

0.4385       0.5004 

0.5216       0.5100 

1.7734      0.4179 

1.8801       0.4601 
1.8244       0.4633 

1.8167       0.4635 

1.8521       0.4759 

2.8515       0.3437 

2.8750       0.3439 
2.8361       0.3449 

2.8356       0.3431 

2.8831       0.3574 

3.5820      0.5352 

3.5834       0.5399 
3.5794       0.5297 

3.5778       0.5298 

3.5871       0.5386 

[12] 

[13] 
[N-S] 

[14] 

Current work 
 3200 

-            -  

0.7247       0.5176 
0.7637      0.5196 

1.9961       0.5937 

2.0090       0.6215 
2.0485       0.6134 

2.7226       0.4453 

2.7132       0.4456 
2.7406       0.4488 

3.5703     0.5195 

3.5648      0.5172 
3.5711       0.5212 

[12] 

[14] 
Current work 

 5000 

0.9628      0.5750  0.9553      
0.5384 

1.9900       0.6547 
2.0360       0.6593 

2.6996       0.4612 
2.7232      0.4637 

3.5650       0.5146 
3.5619      0.5168 

[14] 
Current work 



 American Journal of Theoretical and Applied Statistics 2013; 2(3): 87-93  93 

 

 

2-D Steady Incompressible Driven Cavity Flow at High 
Reynolds Numbers”, Int. J. Numer. Meth. Fluids, Vol. 48 
(2005), 747-774. 

[10] Taneda, S., “Visulization of separating Stokes flows”, 
Journal of the Physical Society of Japan, Vol. 46(6) (1979), 
1935- 1941. 

[11] Shen, C., Floryan, J.M., “Low Reynolds number flows over 
cavities”, Phys Fluids, Vol. 28(11) (1985), 3191-3203. 

[12] Patil, D., Lakshmisha, K., Rogg, B., “Lattice Boltzmann 
simulation of lid-driven flow in deep cavities”, Comput 
Fluids, Vol. 35(10) (2006), 1116-1125. 

[13] Pandit, S.K., “On the use of compact 
streamfunction-velocity formulation of1stready 
Navier–Stokes equations on geometries beyond rectangular”, 
J Sci Comput, Vol. 36(2) (2008), 219-242. 

[14] Lin, L.S., Chen, Y.C., Lin, C.A., “Multi relaxation time 
lattice Boltzmann simulations of deep lid driven cavity 
flows at different aspect ratios”, Computers & Fluids, Vol. 
45(1) (2011), 233-240. 

[15] Chen, S., Martinez, D., Mei, R., “On boundary conditions in 
lattice Boltzmann methods”, Phys. Fluids, Vol. 8(9) 
(1996),2527-2537. 

[16] JN Reddy : Applied functional analysis and variational 
methods in Engineering, Mc Graw Hill Book Company 
New York 1986. 

[17] P Fischer, LW; Ho, GE; Karniadakis, EMR and 
Patera:Recent advanced in parellal spectral element 
simulation of unsteady incompressible fluid flows, computer 
and structures, 30, 217-231, 1988. 

[18] D. Arumuga Perumal, Anoop K. Dass “Application of lattice 
Boltzmann method for incompressible viscous flows, 
Applied Mathematical Modeling vol. 14, 23-39, 2013. 

[19] Reyad Omari “CFD simulation of Lid Driven cavity flow at 
moderate Reynolds Number, European Scientific Journal 
May 2013 edition vol.9 (15) 45-60. 

[20] Anil Kumar , CL Varshney and Sajjan Lal “ Analytical study 
of effect of disorder on dispersionin steady inertial flows in 
porous effect, Scientific Research and Essays vol. 4(11) 
1392-1402. 2009.

 


