
 
American Journal of Science, Engineering and Technology 
2019; 4(3): 48-54 

http://www.sciencepublishinggroup.com/j/ajset 

doi: 10.11648/j.ajset.20190403.12 

ISSN: 2578-8345 (Print); ISSN: 2578-8353 (Online)  

 

Magnetic Properties of Diluted Spinels MgxNi1−xFe2O4 
Systems: Are Studied by Green’s Functions and Mean Field 
Theories 

Abdellah El Grini
1
, Said Salmi

1
, Abdelouahid Azouaoui

1
, Ahmed Hourmatallah

2
,  

Khalid Bouslykhane
1
, Mohamed Hamedoun

3
, Najib Benzakour

1
 
 

1Laboratoire de Physique du Solide, Faculté des Siences DharMahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco 
2Equipe de Physique du Solide, Laboratoire LIPI, Ecole Normale Supérieure, Bensouda, Fès, Morocco 
3MAScIR, Institute of Nanomaterials and Nanotechnologies, Rabat, Morocco 

Email address: 

 

To cite this article: 
Abdellah El Grini, Said Salmi, Abdelouahid Azouaoui, Ahmed Hourmatallah, Khalid Bouslykhane, Mohamed Hamedoun, Najib Benzakour. 

Magnetic Properties of Diluted Spinels MgxNi1−xFe2O4 Systems: Are Studied by Green’s Functions and Mean Field Theories. American 

Journal of Science, Engineering and Technology. Vol. 4, No. 3, 2019, pp. 48-54. doi: 10.11648/j.ajset.20190403.12 

Received: March 6, 2019; Accepted: May 5, 2019; Published: October 29, 2019 

 

Abstract: Many-body Green's function, and mean field theories have been developed for magnetic systems MgxNi1−xFe2O4. 

We apply this theory to evaluate thermal magnetization and magnetic susceptibility for different values of magnetic field and 

dilution x, by considering all components of the magnetisation when an external magnetic field is applied in (x-z)-plane. The 

critical temperatures of MgxNi1−xFe2O4 systems in the range 0 ≤ x ≤ 1 have been deduced. The Green's function results are 

compared with the results of high temperature series expansion technique, and experimental magnetic measurements. 

Keywords: Spinels, Heisenberg Model, Exchange Interaction, Green’s Function, Random-Phase Approximation (RPA) 

 

1. Introduction 

Materials in the pure spinel structure (AB2O4) are still the 

subject of extensive experimental and theoretical studies due 

to their wide variety of physical properties and potential 

applications in nanoscience and technology. The oxy-spinel 

ferrites solid solutions MgxNi1−xFe2O4 with x ranging from 0 

to 1 provide an additional degree of freedom to tune their 

magnetic and electronic properties, which opens new 

opportunities for fabricating hybrid systems. Thanks to the 

existence of tetrahedral (A) and octahedral (B) 

crystallographic sublattices available for the metal ions, this 

structure has large flexibility in hosting various metal ions 

that are differently distributed between the two sublattices. 

In this paper, we present theoretical approaches to study 

the magnetic behaviour of MgxNi1−xFe2O4, in particular the 

Green’s function theory (GFT) [1, 2]. This technique makes 

use of the spectral theorem to connect correlation functions 

to the Green’s functions. This contribution deals with the 

reorientation of the magnetization of thin ferromagnetic 

(FM) Heisenberg films as a function of the temperature or an 

external magnetic field. It is of particular importance to take 

into account collective excitations (magnons), which 

influence the magnetic properties of films more strongly than 

those of bulk magnet. Fröbrich et al. [3, 4] developed, for the 

first time, an improved method which enabled to calculate 

numerically more than one component of magnetization for a 

ferromagnetic system under random-phase approximation 

(RPA). With this method, they investigated the magnetization 

reorientation of (FM) films caused by dipole interaction and 

external field. 

The field-induced reorientation of the magnetization is 

treated for all temperatures of interest. Since expectation 

values of all three components of the spin operator are 

considered, a corresponding set of Green’s functions must be 

defined. The method used for the calculation of the 

expectation values, does not utilize only the eigenvalues but 

also the eigenvectors of the (non-symmetric) matrix 

governing the equations of motion for the Green’s functions 

with the random-phase approximation (RPA) [5, 6]. The 

thermal magnetization and magnetic susceptibility are given 

for different values of magnetic field and dilution x. The 
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critical temperatures have been deduced. On the other hand, 

The values of exchange integrals �����  and �����  for each 

dilution x of MgxNi1−xFe2O4 is deduced by using mean field 

theory. The obtained values are given in Table 1. The Green's 

function results are compared with the results of high 

temperature series expansion technique (HTSE) [7], and 

experimental magnetic measurements [8]. 

2. Theories 

2.1. Green’s Functions Theory (GFT) 

The Hamiltonian of the spin-S Heisenberg exchange 

interaction �	 between nearest neighbour lattice sites and 

under an external magnetic field B(Bx, By, Bz) is 

( ) ( )      
y y yx x x x y z z

kl k l k kk l k

kl k

H J S S S S B S B S B S=− + − + +∑ ∑  (1) 

The z-axis is perpendicular to the (x-y) plane. The external 

field component in the z-direction enhances the effect of the 

transverse field components B±
. 

The transformations   x y
i i iS S iS± = ±  and   x yB B iB± = ±  

1 1
       

2 2

z z z z
k l k l k l k k k

kl k

H S S S S S S B S B S B S+ − − + + − − +      =− + + − + +         
∑ ∑  (2) 

Where k and l denote the lattice sites and <kl> indicates 

summation over the nearest neighbours only. 

As in reference [9], we introduce the set of thermal 

Green’s functions in the spectral representation 

( ) ( ) ( ) ( )   ;
m n

mn z
i j jij

G S S Sα α
η ω

ω −=                 (3) 

Where ω  denotes the energy. and i, j the lattice sites and 

, ,

1

  0

1

z

m

n

α
η
= + −

 = ±
 ≥
 ≥

 

In order to treat the problem, one needs the following 

Green’s functions 

( ) ( ) ( ) ( );
m n

mn z
i j jij

G S S Sα α
η ω

ω −= ;   , , zα = + −      (4) 

where  1η = ± refer to the commutator ( 1η = − ) or anti-

commutator ( 1η = ) Green’sfunctions, respectively, n≥1 and 

m≥ 0 are positive integers, i and j denote lattice sites. 

The ( )  mn
ij

Gα
η  are determined from the equations of motion 

in the spectral representation. 

( ) ( ) ( ) ( )
1

, ;
m n

mn
i j jij

G S H S Sα α α
η ω

ω ω −
−

 =  
            (5) 

With the inhomogeneities term is: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( );
m n m nm nmn z

i j j i j j j j iij
A S S S S S S S S Sα α α α α

η ω η− − = = +  
 

The knowledge of the Green’s functions allows the 

determination of the respective 

Correlation functions by the spectral theorem [6, 9, 10]. 

( ) ( ) ( ) ( ) ( )m n n
mn z

j j iij
C S S Sα α

η ω −=  

( ) ( ) ( ) ( )    lim
2

mn mn
ij ij

O

i d
G i G i

e

α α
η ηβωδ

ω ω δ ω δ
π η

+∞

→
−∞

 = + +
 +∫  (6) 

Calculation of the commutators 
1

,iS H
α

−
 
 

 yields the 

following set of equations of motion for the Green’s 

functions 

( ) ( ) ( ) ( ) ( ) ( ); ;
m n m n

mn mn z z z z
i k j j k i j jij ij

k

G A J S S S S S S S Sα α
η ηω ± − ± − = ± − 

 
∑  

( ) ( )
zmn z mn
ij ij

B G B Gη η
± ±± ±  

( ) ( ) ( ) ( ) ( ) ( )
1 1

;
2 2 2

m n
mn mn z mn mn

i k k i j jij ij ij ij

k

J
G A S S S S S S B G B G

α α
η η η ηω − + − + − − + + − = ± − − + 

 
∑  

( ) ( )
zmn z mn
ij ij

B G B Gη η
± ±± ±                       (7) 

The higher-order Green’s functions, occurring on the right-

hand sides, have to be decoupled in order to obtain a closed 

set of equations. For the exchange coupling terms, we apply 

a generalized Tyablikov (or RPA) [11, 12] decoupling, allows 

also for a finite value of the x, y(or	±) components of the 

magnetization (	, � = +,−, �; � ≠ �). 

( ) ( );
m n

z mn mn
i j j i ij j ijkS S S S S G S Gα β α β β α− ≈ +         (8) 

The terms resulting from the single-ion anisotropy (� = �) 

have to be decoupled differently. An RPA-decoupling, as was 

proposed by Narath [12], is reasonable for exchange 

anisotropy ( ).z z
i kS S∞  

In reference [4] the proper inclusion of the single-ion 

anisotropy with Green’s function techniques was thoroughly 

discussed in connection with the magnetic reorientation. 

Accordingly, we choose the Anderson-Callen [4, 13] 

decoupling for the treatment of the anisotropy terms: 

( )1
2 1 1

2

z z z z z mn
i i i i i i i ijS S S S S S S S S G

S

± ± ±  + ≈ − + −   
  (9) 

Because we are interested in laterally periodic systems, we 

perform a Fourier transformation to the two-wave vector 

space k, introducing vectors for the Green’s functions 

�����; ��, and for the inhomogeneities, ��
�� . For spinels 

systems the Green’s function vector ���reads. 

( )Ι Γ
mn mn

G Aη ηω − =                              (10) 
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Where 

      

mn mn

mn mn mn mn

zmn zmn

G A

G G A A

G A

η η

η η η η

η η

+ +

− −

   
   
   = =
   
   
   

;               (11) 

And I is the unit matrix (3X3). 

After applying the decoupling procedures (8) and (9), the 

Γ matrix obtained is: 

( )
( )
( )

( )
( )

( )

11

13

22

23

1
31 2

1
32 2

12 21 33

Γ

Γ

Γ

Γ

Γ

Γ

Γ Γ Γ 0

z z
k

k

z z
k

z
k

z
k

z
k

B S J q

B S J q

B S J q

B S J q

B S J q

B S J q

γ

γ

γ

γ

γ

γ

+ +

−

−

+

 = + −

  = − + − 
  = − + −  
Γ = + −


 = − + −  


  = + − 
 = = =


 

Now we introduce a transformation which diagonalizes the 

matrix Γ. 

0 0 0

Γ Ω 0 0

0 0

R R

ω
ω

ω

−
+

−

 
 = =  
 
   

Where 

  

  

1 1 1

z z z
k k

z z z
k k

H H H

H H E H E

H H H
R

H H E H E

+ + +

− − −

 
 

− + 
 
 =
 + −
 
 
 
 

 

Where R is the passage matrix from Γ	 to Ω	 diagonal 

matrix. The three eigenvalues are. 

0 0

 

    

k

k

E

E

ω
ω
ω

+

−

=
 =
 =−

 

Where   z z
kE H H H H+ −= + is the magnons dispersion 

relation �� and �� are given by. 

( )
( )

2

2

k

z z z
k

H B J q S

H B J q S

γ
γ

± ± ± = + −


= + −
 

Where in reference [14], q is considered as the number of 

the nearest neighbours and. 

4
2 2 2 2 2 2

y yx xz z
k

k kk kk k
cos cos cos cos cos cosγ
 

= + +  
 

 

for an fcc lattice. 

Multiplying the equation of motion (10) from the left by L 

and inserting 1 = RL one finds. 

( )Ι Ω
mn mn

L G LAη ηω − =                          (12) 

Defining    

mn mn

mn mn

G LG

A LA

η η

η η

 =


=

 We obtained 

( )Ι Ω
mn mn

G Aη ηω − =                           (13) 

Where 
mn

Gη is a new vector of Green’s functions, each 

component � of which has only a single pole 

mn

mn
A

G

τ
ητ

η
τω ω

=
−

                          (14) 

With 

      

mn mn mn mn

mn mn mn mn

G LG RG G

A LA RA A

η η η η

η η η η

 = = 
⇒ 

= = 

       (15) 

The regular condition of Green’s functions for 0ω =  is 

0
lim 0

mn
G

α
ηω

ω
→

=                             (16) 

The regular condition of Green’s functions ( )1 ,
zmn

G kω−  for 

� = 0 with 0zH ≠  is 

1 12 0mn mn z zmnH A H A H A− + + −
− −+ + =        (17) 

Evaluating the expression (17) for m =0 and n =1, we find 

together with the definitions in Equation (16). 

z z

H B

H B

± ±
=                                    (18) 

Introducing the equation (18) in equation (17) we obtained  

01 01 01
1 1 12 z zB A A B A B+ − − +

− − −− = +                     (19) 

With  

01
1

01
1

01
1

2
z

z z

A S

A

A S

+
−
+
−

−

 =


 = −

 

Introducing these expressions in equation (19) we 

obtained: 
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z

z

B
S S

B

±
± =                                    (20) 

The equations determining the correlation functions are: 

( ) ( )m n
mn z

ij j j iC S S S
α α−=                           (21) 

The application of the spectral theorem [15, 11] to the t 

component of the single-pole 

Green’s function of Equation (15) then yields 

( ) ( )1 1lim
2 1

mn zmn zmn zmn
ij k

O

i d
C G i k G i k D

e

α
βωδ

ω ω δ ω δ
π

+∞

− −→
−∞

 = + + − + −∫  (22) 

Here  zmn
kD  is the corrective term of correlation function 

obtained from Green’s anti-commutator function. 

( )
0

lim ,
2

zmn zmn
kD G k

ω

ω ω+→
=  

Using the relation between anticommutators and 

commutator correlation functions. 

1 1 12mn mn mnA A Cα α α
+ − −= +  

We find together with regularity condition: 

( )2

22

mn z mn z zmn z
k k kzmn

k

k

C H H C H H C H
D

E

+ − − ++ +
=    (23) 

By using the expression of the equations determining the 

correlation functions. 

( ) ( )( )

2
1

1 1

2 2,

mn mn zmn

mn

k k

A H A H A

G k
E E

ω ω ω
ω

ω ω ω

+ − − +
− −+

−

+ +
=

− +
 

and introducing (23) in Equation (22), we obtained [8, 9]  

1
2

2 2

mn z mn z mn mn k k
k k k k z

E E
H H C H H C H H C A E H coth

H

β+ − − − + + − + −   − − = −  
  

 

 +
1

 
2 2

mn k k
k z

E E
A E coth

H

β−   + +  
  

            (24) 

Evaluating the expression (17) for m =0 and n =2, we find 

together with the definitions in equation (12). 

4 4
x

z x z z

z

B
B S S B S S S

B

− − −= +                 (25) 

Evaluating the expression (18) for m =1 and n =1, we find 

together with the definitions in equation (13) 

( )( )2 3z z z z z x xB S S S S S S S S B S S B− − −= − − + +  (26) 

Evaluating the expression (24) for m =0 and n =1, and 

introducing the equation (25) and (26) we obtained for S =1 

( )

2

2 2

2

2
Φ 0

2
1 1

x

z
z

z z

x x

z z

B

B
S

S S T

B B

B B

  
 −      − + =

   +   +        

     (27) 

where 

 ( )
2

0 0

1
Φ  

2

k
x y

E
T dk dk coth

π π β
π

 =  
 ∫ ∫                  (28) 

Evaluating the expression (24) for m =1 and n =1 and S 

=1, and introducing the regular conditions of Green’s 

functions for � = 0, we obtained 

2 2 2

1 2 2 1 4
x x x

z z z

z z z

B B B
S S S

B B B

         
    = − − + + −                       

 

 ( )
2 2 2

6 1 2 1 Φ 0
x x x

z z z

z z z

B B B
S S S T

B B B

         − − − − − + =                    

   (29) 

In reference [16], Callen also derives a closed form 

expression for the magnetization for general spin S from the 

solution of a differential equation. The result is 

( )( )( ) ( )
( )

2 1 2 1

2 1 2 1

1 1 1

1

S S
k k k k kz

S S
k k

S S
S

φ φ φ φ φ

φ φ

+ +

+ +

− + + + + +
=

+ −
 (30) 

With 

1 1
1

2 21k

k
k E

E
coth

e
β

βφ  = = − −  
 

In the following, we restrict ourselves to an external 

magnetic field B connected to the (x-z)-plane. Because of the 

azimuthal symmetry in the case of uniaxial anisotropy, it 

issucient to deal with the z and x components of the 

magnetization ( 0yS =  for 0yB = ). 

The equations (27), (28), (29) and (30) have to be solved 

numerically in order to obtain 
zS  and 

z zS S .  

We have used equations (20) to (30) to calculate the 

thermal magnetization. 

( )
2 2

x zM T S S= +              (31) 

Introducing equation (21) in this expression we obtained. 
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( )
2

  1
x

z

zB
M T S

B

 
  = +   

  
 

               (32) 

The equilibrium polar angle of the magnetization is 

determined. 

( )0θ
x

z

S
T Arctg

S

 
=   

 
                     (33) 

The knowledge of M(T) and !" enables a non perturbative 

determination of the temperature dependence of the 

anisotropy coefficient. 

Introducing the equation (20) in this expression we 

obtained 

 ( )0θ
x

z

B
T Arctg

B

 
=   

 
                      (34) 

The components of magnetic susceptibility are defined by 

( ) ( )

( ) ( )

0

0
x

z z z

zz

xx x

x x

z

S B S

B

S B S

B

χ

χ

 −
 =

 −
 =


           (35) 

2.2. Mean Field Theory (MFT) and Probability Law  

The method of Holland and Brown [17], leads to simple 

relations between the paramagnetic Curie-temperature θp and 

the Néel temperature TN respectively by:  

( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

5
[ 4 2 ]

2

5
[6 12 ]

2

C
B

p
B

T K J K J K
k

K J K J K
k

θ

= − +

= +








               (36) 

where Bk  is the Boltzmann’s constant. 

In the antiferromagnetic region, we have used the Néel 

temperature NT  formula given by: 

( ) ( )2
1

3
NT S S λ φ= +                               (37) 

Where ( )λ φ  is the eigenvalue of the matrix formed by the 

Fourier transform of the exchange integral. 

We have used the experimental results of TN = 719 K [8] 

and Ɵp = −45 K [18] for MgFe2O4, and TN = 860 K [8], Ɵp = 

−31 K [18] for NiFe2O4. The values of the exchange integrals 

of MgFe2O4 and NiFe2O4 are (J1 = -6.4 K and J2 = -9.8 K) 

and (J1 = −14.67 K and J2 = -14.33 K), respectively. 

We have used the probability law [19] to determine the 

exchange integrals J1(x) and J2(x) in the whole range of 

concentration x=0 to 1: 

( )( ) ( ) ( ) ( ) ( )1 1 1
2 36 6 66 5 5 4 4 2 3 3 3 6 1 15 1 20 1( )AA A A A A A A AJ x J x x J J x x J J xx x J J′ ′ ′ ′+ − + −= + −  

( ) ( ) ( ) ( ) ( )
1 1

4 5 66 62 2 4 515 1 6 1 1A A A A Ax x J J x x J J x J′ ′ ′+ − + − + −  (38) 

If �#��#$� corresponds to the nn interactions of the opposite 

pure systems ( )2 4 2 4AB O A B O′  respectively. ( )AA 1 J J x′ = . 

If ( )A AJ J ′  corresponds to the nnn super-exchanges 

interactions of the opposite pure systems ( )2 4 2 4AB X A B X′  

respectively ( )AA 2J J x′ = . The obtained values of J1 and J2 

for different dilution x are given in Table 1. 

3. Results and Discussion 

In this work, by employing the results of experiments and 

(HTSE) and GFT) theories, for a randomly diluted 

Heisenberg magnet, we have deduced the magnetic phase 

diagram of MgxNi1−xFe2O4 in the range 0 ≤ x ≤ 1. The 

obtained result in table 1 is presented in Figure 1. A single 

thermodynamic phase may appear, including the transition on 

paramagnetic order (PM) to the ferrimagnetic order (FerriM) 

in the range 0 ≤ �	 ≤ 1 for the MgxNi1−xFe2O4 systems. In this 

figure, we have included, for comparison, the experimental 

results obtained by magnetic measurement. The passage from 

a phase to another is caused by the variation of exchange 

interactions [19]. 

In the other hand, we display results of our calculations for 

a Heisenberg Hamiltonian under an external magnetic field 

in the plane (x-z), with spin S =5/2 for a diluted normal 

spinel MgxNi1−xFe2O4 system having an fcc structure. we 

have presented in the figure 2 and figure 3 the thermal 

normalized magnetization 	〈
&'

&
〉	 and magnetic susceptibility 

)**	 respectively for diluted spinel system MgxNi1−xFe2O4 for 

	+,= 0, and	+*= 0,1T with values of dilution x = 0 to 1 and 

calculated by Green’s function theory. The dependence of the 

thermal magnetization at the field	+*= 0.1 T for the different 

values of dilution x are observed. We see that the typical 

ferromagnetic behaviour is noticed only at T < TN. The 

curves do not drop at TC as may be expected for a pure 

ferromagnetic system but have only an inflexion at TN. The 

values of Néel temperatures found in this work are roughly 

similar to the values found in reference [7] and [8]. We have 

compared the results obtained by different theory’s. 

Table 1. Néel temperature: (K)(exp)[13], -	.	(K)(GFT), -	.	(K)(HTSE)), and 

the exchange integrals: �����  and �����  of MgxNi1−xF2O4. as function of 

dilution �	. 

x TN(K)(Exp) [8] J1(x) J2(x) TN(K)(GFT) TN(K)(HTSE).[7] 

0 860 -14.67 -14.33 862 866 

0.2 831 -12.54 -13.30 833 838 

0.4 809 -10.67 -12.34 811 815 

0.6 786 -9.04 -11.44 788 793 

0.8 759 -7.62 -10.59 761 763 

1 719 -6.4 -9.8 721 725 
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Figure 1. agnetic phase diagram of MgxNi1−xFe2O4. A single phase is the transition of paramagnetic phase (PM) to ferrimagnetic (FerriM) phase in the range 

0 ≤�	≤1. The solid squares are the results of (H.T.S.E) [7] theory. The open circles are the results of (G.F.T) theory. The solid circles represent the experimental 

points deduced by magnetic measurements [8]. 

 
Figure 2. mperature dependencies of the magnetic susceptibilities XZZ in spinel system MgxNi1−xFe2O4 for Bx=0, and Bz =0.1T, and with The values of dilution x 

= 0 to 1. 

 
Figure 3. ermal normalized magnetization 〈

&'

&
〉 in spinel system MgxNi1−xFe2O4 for Bx=0, and Bz = 0.1T, and with the values of dilution x = 0 to 1. 

We find significant differences between results in the 

Green’s function theory (GFT) and the high temperature 

series expansion (HTSE). We attribute this difference to the 

quantum fluctuations taken into account in the first theory 

but neglected in second treatment respectively, which are 

known to have a much greater influence on the magnetic 
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properties of spinel MgxNi1−xFe2O4. 

4. Conclusion 

The theoretical approach presented in this paper 

successfully captures the characteristic rapid reduction in 

magnetization near the Néel temperature. The thermal 

magnetization and the magnetic susceptibility are 

calculated with the help of many-body Green’s function 

theory. The analysis of the magnetization evolution shows 

the existence of exchanges interaction effects on the 

magnetic order. 

By applying the Green’s function theory to the magnetic 

susceptibility )�-�  we have estimated the critical 

temperature -	.	 for each dilution �	. The obtained magnetic 

phase diagram of spinels MgxNi1−xF2O4 systems is presented 

in Figure 1. A single phase is the transition of paramagnetic 

phase (PM) to ferrimagnetic (FerriM) phase in the range 0 

≤�	≤1. In this figure, we have included, for comparison, the 

theoretical results obtained by (HTSE) theory [7], and the 

experimental results obtained by magnetic measurement 

[8], The obtained values of the critical temperature by 

Green’s function theory (GFT), show some significant 

differences. 
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