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Abstract: Vehicle Routing Problem (VRP) with time windows is a generalization of the classic VRP. Specifically, every 
customer must be met in a certain time window. Sometimes in the real life, it is not possible to carry different products 
simultaneously. In other words, these products are non-adjacent. This paper presents a comprehensive model for the vehicle 
routing problem with time windows and the possibility of delivery split of non-adjacent products. The proposed model is an 
extension of VRP considering the profit in a bi-objective optimization model. 
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1. Introduction 

Today, transportation planning is one of the important 
fields in operations research, industrial engineering, and civil 
engineering. The main objective of this field is to minimize 
the cost of transportation of goods and materials from the 
producers to the consumers. 

1.1. Vehicle Routing Problem 

VRP is one of the important problems has been raised in 
the field of logistics management and transportation systems. 
VRP is a generalization of traveling salesman problem 
(TSP), which is considered as a vehicle. VRP is aimed at 
determining the optimum route of the vehicle so that to meet 
the demands of all customers where all constraints are 
satisfied and transportation cost is minimized. In classic 
VRP, the start and the end of all routes is a specific 
warehouse or a central depot. 

The VRP is generally defined on a complete graph G=(V, 
A, D). Where V={V0, V1, V2, …, Vn} is the set of nodes 
(vertices) and A={(Vi, Vj): i≠j} is set of arcs that connect 
node i to j. V0 indicates central depot and Vn represents the 
customer n. dij represents distance or cost between node i and 
node j. qi is demand in node i. Typically, the objective is to 
minimize the total travel cost. 

Dantzig and Ramser [1] proposed the VRP for the first 
time. After that, many variants of VRP have been considered: 
VRP with time windows (VRPTW), pickup and delivery 
(VRPPD), multi depot VRP (MDVRP), and so on. 

1.2. Vehicle Routing Problem with Time Window 

If each customer must be visited during a specific time 
window, we face with VRPTW. In fact, time window is a 
time interval with earliest time (bi) and the latest time (ei) 
that a customer permits to start receiving service. Some of 
applications of the VRPTW include postal deliveries, refuse 
collection, bank deliveries, school bus routing, etc. 

Over the past 25 years, many researchers have worked on 
VRP with time windows. VRPTW belongs to NP-Hard 
problem [2], the same as the classic VRP, so many meta-
heuristics have been used to solve it, e.g. Simulated 
Annealing (SA) [3, 4], Genetic Algorithms (GA) [5, 6], Tabu 
Search (TS) [7, 8] and Ant colony Optimization (ACO) [9]. 
Some authors like Yu et al. [10] presented a hybrid approach 
to solve VRPTW, a mixture of ACO and TS. Küçükoglu and 
Öztürk [11] presented a hybrid algorithm which includes tabu 
search and simulated annealing. 

In the last three decades, researchers have mixed VRPTW 
with other modes that are close to real-word problems, for 
instance VRPTW with Split Delivery (VRPTWSD) [12, 13]. 
Dror and Trudeau [14] presented split delivery problem for 
the first time. In VRPSD, unlike the classic VRP, more than 
one vehicle can supply demand of each node [15]. El-
Sherbeny [16] has reviewed literatures in VRPTW and its 
combination to other VRP modes. He studied various 
methods of solving VRPTW. 
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1.3. Vehicle Routing Problem with Profit 

In classic VRP and TSP each node should meet once and it 
will fulfill the demand of all nodes, but in TSP with profit 
(TSPP) and VRP with profit (VRPP), there is not any 
obligation to serve all nodes and customers are served in 
accordance with the profit of meeting. In this problem, each 
node gets a reward after meeting and a trade-off between cost 
and profit in each node will indicate which nodes must been 
met [17]. In TSPP and VRPP there are two objectives having 
obviously conflict: 

� Maximizing profit through meeting the maximum 
number of customers, which cause increase in distances 
and travel costs. 

� Minimizing travel distances that cause decrease in profit 
of customer’s meeting. 

If two objectives were homogenous, for example both be 
currency, we can solve them via converting to the single-
objective problem. As keller and Goodchild [18] mentioned, 
in many cases these two objectives are not commensurable 
and we should consider them as a bi-objective problem. 

Feillet et al. [19] describe three classes of single-objective 
problems that have proposed in TSPP: 

� PTP (Profitable Tour Problem): their objective function 
is a combination of two objectives, i.e. minimizing 
travel cost minus profit of customers’ meeting [17]. 

� OP (Orienteering Problem) or STSP (Selective TSP): 
their objective function is maximizing collected profit 
such that travel costs do not exceed a predetermined 
value Cmax [20]. 

� QTSP (Quota TSP) or PCTSP (Prize Collecting TSP): 
their objective function is minimizing the total traveling 
distance such that profit of customers’ meeting which 
should not be less than a fixed amount of Pmin [21, 22]. 

It seems that VRPP has been less considered in the 
literature of VRP [23]. Team OP (or TOP) is an extension of 
OP that has been studied by Chao et al. [24]. They presented 
a five-steps metaheuristic approach based on simulated 
annealing to solve this problem. Lin and Yu [25] used a 
simulated annealing heuristic for TOP. Boussier et al. [26] 
used an exact method to solve this problem. Aráoz et al. [27] 
solved a Prize Collecting Rural Postman in which the 
objective is minimizing the residuum of collected profit and 
traveling costs. 

2. Proposed Model 

This paper presents a bi-objective model for VRP with 
time windows and split deliveries. The considered objectives 
are: 

� To maximize the profit of customers’ meeting: it 
considers specific profit for each unit of product which 
has been met. 

� To minimize the costs, e.g. traveling cost, waiting time 
cost, or vehicle cost. 

In fact, presented model is a kind of developed VRPP. 
As mentioned before, the considered two objectives are 

not homogenous. In real life, various routes are not the same 
in view of transportation complexity. For instance, distance 
between customers 2 and 8 is similar to distance between 
costumers 4 and 6, but traveling time of these two routes are 
not the same due to their path conditions, like speed 
constraint, traffic, etc. Therefore, for each arc between two 
nodes we consider a difficulty factor and a rest time 
depending on the traveling time. The time that each vehicle 
services a node depends on type and amount of its demand. 

2.1. Assumptions and Characteristics of Model 

� All vehicles start from central depot and traverse a 
subset of customers in a specified sequence. Then they 
return to the central depot. 

� Each vehicle meets a customer for once. 
� Delivery split is possible so that demand of each 

customer (node) can be met by several vehicles. 
� Each customer has a time window to receive services. 
� If the vehicle arrives earlier than the lower bound of 

time window, it should wait until starting of service 
time. 

� A penalty is considered for vehicle tardiness in each 
node. 

� The number of available vehicles is given and vehicle 
costs are assumed to be zero if they are not in use. 

� The time that each vehicle serves a node (customer) 
depends on type and amount of demand which is met by 
the vehicle. 

� All vehicles have a constant speed and fixed cost per 
distance (kilometer or mile). 

� Difficulty factor of route is defined between 1 and 3. 
� The proposed model is designed for non-adjacent 

products and each customer has determined demand. 
� Each vehicle transports only predetermined product and 

it does not allow transporting any other product. 
� A defined award is considered for every unit of 

customer’s demand which has been met. 
� It is not obligatory to meet all the demands. 
� Each vehicle should rest when it receives to a node and 

the rest time depends on distance passed from the 
previous node to the current one. 

2.2. Notations 

The notation we used in our model is presented below: 
Sets: 

Q= {1, 2,…, i, …., N} demanding nodes (points) where 
point 1 denotes central depot. 

{( , ) | , , }A i j i j Q i j= ∈ ≠  arcs or connection between 

nodes 
V= {1, 2, …, v, …., U} vehicles 
K= {1, 2, …, r, …., O} products 
Parameters: 

Pir Profit of r-type product in node i 
TC Traveling cost 
dij Length of arc A where 11 0d = , ,ij jid d i j= ∀  and 
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1
ii

d i>> ∞ ∀ >  

bij Difficulty factor for route i→j, so that bij=bji 
tij Traveling time of arc A where ( , )A i j∈  

pei Penalty for tardiness per each unit of time in node i 
arv Binary variable which is equal to 1 if vehicle v is 

allowed to transport r-type product, and 0 otherwise. 
qir Demand of node of i for product of type r. 
gr Necessary time to serve each product of type r. 
e Rest time that depends on passed distance 
lbi Earliest possible time to start traveling from node i 

(lower bound of time window) 
ubi Latest possible time to arrive in node i (upper bound of 

time window) 
R Fixed cost of using each vehicle 
Ve Average speed of each vehicle 
M An enough huge number (M>>∞) 
Decision variables: 

xijv Binary variable which is equal to 1 if vehicle v goes 
from node i to j, 0 otherwise. 

firv Shortage of demand of r-type product in node i that will 
be met by vehicle v. 

wiv Waiting time of vehicle v in node i 
hiv The time that vehicle v spends to serve in node i 
reiv The time that vehicle v rests in node i 
siv The time that vehicle v start to serve in node i 

2.3. Mathematical Model 

The proposed mathematical model is a bi-objective 
optimization model represented by equations (1)-(15). 

The first objective function maximizes the profit of 
meeting of nodes (customers): 

ir irv

v V i Q r K

Maximize p f
∈ ∈ ∈
∑∑∑                         (1) 

The second objective function minimizes sum of three 
elements: 1) total passed distance, 2) fixed cost of using 
vehicles, and 3) total tardiness penalties in nodes: 

1
\{1}

\{1}

ij ijv

v V i Q j Q

jv

v V j Q

i iv

v V j Q

Mininmize TC d x

R x

pe w

∈ ∈ ∈

∈ ∈

∈ ∈

+

+

∑∑∑

∑ ∑

∑ ∑

                   (2) 

Equation (3) expresses each vehicle cannot visit a node 
more than once. 

1 ,
ijv

j Q

x v V i Q
∈

≤ ∀ ∈ ∀ ∈∑                 (3) 

Equation (4) guaranties each vehicle exit after arriving in a 
node. 

,
ijv ijv

i Q j Q

x x v V j Q
∈ ∈

= ∀ ∈ ∀ ∈∑ ∑                (4) 

Equation (5) assures if vehicle v supplies a portion of 

demand of type r in node i, it definitely will meet node i. 

, ,
ijv irv

j N

x f v V i Q r K
∈

≥ ∀ ∈ ∀ ∈ ∀ ∈∑            (5) 

The following equation shows vehicle v can supply 
demand of type r in node i. 

, ,irv rvf a v V i Q r K≤ ∀ ∈ ∀ ∈ ∀ ∈               (6) 

Each vehicle cannot serve more than its capacity: 

irv ir

i N r K

f q C v V
∈ ∈

≤ ∀ ∈∑∑                    (7) 

The following equation calculates the time which vehicle v 
serves node i. 

,
iv r ir irv

r K

h g q f v V i Q
∈

= ∀ ∈ ∀ ∈∑              (8) 

Equation (9) calculates the rest time of vehicle v in node j 

,ijij d

jv ijv

i N

b
re e x v V j Q

ve∈

= ∀ ∈ ∀ ∈∑            (9) 

The necessary time to traverse the arc of  is calculates by 
equation (10). 

,ij ij

ij

b d
t i Q j Q

ve
= ∀ ∈ ∀ ∈                (10) 

Equations (11)-(13) are related to time window. Moreover, 
equations (11) and (12) prevent forming any subset tours. 

(1 )

, , \{1}
iv iv iv ij jv ijv jvs h re t w x M S

v V i Q j Q

+ + + + + − ≥
∀ ∈ ∀ ∈ ∀ ∈

          (11) 

(1 )

, , \{1}
iv iv iv ij jv ijv jvs h re t w x M S

v V i Q j Q

+ + + + − − ≤
∀ ∈ ∀ ∈ ∀ ∈

       (12) 

,i iv ilb s ub v V i Q≤ ≤ ∀ ∈ ∀ ∈              (13) 

Equations (14) and (15) declare the variable types and 
their signs. 

{0,1} , ,ijvx v V i Q j Q∈ ∀ ∈ ∀ ∈ ∀ ∈             (14) 

0, 0, 0, 0, 0

, ,
irv iv iv iv ivf w h re s

v V i Q r K

≥ ≥ ≥ ≥ ≥
∀ ∈ ∀ ∈ ∀ ∈

      (15) 

3. Solving the Proposed Model with 

Augmecon Approach 

A brief explanation of AUGMECON approach is presented 
here, an augmented version of the ε -constraint method. 

First, consider the following multi-objective problem: 
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1 2( ( ), ( ),..., ( ))

. .

p
Max f x f x f x

s t

x S∈
               (16) 

Where S is the feasible region. In the ε -constraint method, 
one of the objective functions gets optimized while other 
objective functions are considered as constraints: 

1

2 2

3 2

( ( ))

. .

( )

( )

.

.

( )
p p

Max f x

s t

f x e

f x e

f x e

x S

≥
≥

≥

∈

                           (17) 

We obtain different solution via changing the value of ei. 
In AUGMECON, a developed version of ε -constraint 

method, lexicographic optimization is used to determine ei. 
After calculation of ei, difference between upper and lower 
bound is divided into several parts. The calculated values 

indicate allowable ei. Pareto-optimal solutions increase as the 
number of iterations increases. Then, the below function is 
solved using obtained values of ei. 

1 2 3

2 2 2

( ( ) ( ... ))

. .

( )

.

.

( )

0

p

p p p

i

Max f x eps s s s

s t

f x s e

f x s e

x S and s

+ × + + +

− =

− =

∈ >

          (18) 

Where Si are slack variables and eps is a very small 
number (roughly between 10-3 and 10-6). For more 
information about AUGMECON approach we refer the 
interested readers to [28] and [29]. 

4. Computational Results 

We used GAMS software to solve the presented model for 
8 different randomly-generated instances. The results are 
shown in table 1. 

Table 1. Computational results. 

Instance 
Instance characteristics 

Number of points on the Pareto-optimal frontier Computational time (seconds) 
Number of nodes Number of product types 

1 4 2 10 111 
2 4 3 10 244 
3 5 2 10 412 
4 5 3 10 921 
5 6 2 55 1090 
6 6 3 47 1909 
7 7 2 45 7409 
8 7 3 46 11208 

 
Whereas the VRP belongs to NP-Hard problems, if the 

problem size (the number of parameters, variables and 
constrains) increases, the computational time will increase 
exponentially. So, it is not possible to solve large-dimension 
problems by GAMS software and heuristic or Meta-heuristic 
methods should be applied to solve these problems. 

5. Conclusion 

In this paper, a bi-objective optimization model is presented 
for VRPTW with split delivery to transport non-adjacent 
products. Moreover, several real-world issues are considered, 
i.e. difficulty of route, rest time (depending on passed distance) 
and serve time (depending on type and amount of demand). 
Finally, the presented model is solved using AUGMECON 
method in several instances and the results are discussed. 
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