

American Journal of Software Engineering and Applications
2016; 5(3-1): 10-14

http://www.sciencepublishinggroup.com/j/ajsea

doi: 10.11648/j.ajsea.s.2016050301.13

ISSN: 2327-2473 (Print); ISSN: 2327-249X (Online)

Evaluation of GPU Performance Compared to CPU for
Implementing Algorithms with High Time Complexity

Neda Mohammadi

Department of Computer Engineering, Shiraz University of Technology, Shiraz, Iran

Email address:
N.Mohammadi@sutech.ac.ir

To cite this article:
Neda Mohammadi. Evaluation of GPU Performance Compared to CPU for Implementing Algorithms with High Time Complexity. American

Journal of Software Engineering and Applications. Special Issue: Advances in Computer Science and Information Technology in Developing

Countries. Vol. 5, No. 3-1, 2016, pp. 10-14. doi: 10.11648/j.ajsea.s.2016050301.13

Received: February 2, 2016; Accepted: February 6, 2016; Published: June 24, 2016

Abstract: Nowadays a number of applications with high volume of calculations are constantly increasing. Central Processing

Unit (CPU) consists of finite number of cores. Degree of parallelism and implementation speed are issues that data high volume

on CPU is low. Using the thread concept in programming, algorithms which have the parallelism capabilities, can be executed in

parallel. There are many issues which in order to solving them, finding similar items in a metric space and grouping them in these

issues is necessary. Computational complexity finding nearest neighbors is a challenge for run time. To evaluate the performance

of GPUs speed in searching nearest neighbors, GPGPU and CUDA are used and compared with CPU usage. In this paper parallel

implementation of the algorithm on GPU with access to its shared memory, is compared with parallel implementation of the

algorithm on CPU through threads. It is understood that threads use graphics card's shared memory for communications, storing

temporary data and retrieving data. Therefore, the parallelism on GPU is more useful than parallelism on CPU in

High-Dimensional spaces. Finally, it is discussed that GPU reduces complexity to a considerable amount and is scalable.

Keywords: Nearest Neighbor, CUDA, GPU, Shared Memory, Parallelism

1. Introduction

Nowadays, there are many algorithms with high

computational and time complexity. Also, there are many

issues in computer science, which in order to be solved, in

these issues, finding similar items in a metric space and

grouping them is necessary. When dataset is small and its

dimension is low, finding similar items is easy. But in many

issues, such as image processing, data mining, machine

learning etc. [1-2]. Finding similar items is required. In these

issues, usually dimension and data volume is high. In this case,

finding the nearest neighbors to each item has high time

complexity. Therefore, the main and important issue, for

searching nearest neighbor is presentation of a solution to

decrease time complexity, when data dimension and volume is

high. Searching the nearest neighbor algorithm, finds nearest

neighbor to an item in a metric space. Parallel processing

methods are an efficient solution to decrease complexity in

implementation of nearest neighbor search. There are

hundreds of cores in the architecture of the graphics

processing unit, any core alone is able to carry out simple

tasks. A series of multi-core constitute a multi-processor. Each

multi-processor has an exclusive memory, such as shared

memory, local memory and registers. Also any

multi-processor has a controller and a dynamic ram. They are

used as input and output functions, which run on the GPU [1].

NVIDIA has provided the conditions that can run algorithms

with high complexity by using your system's graphics

processing units. These algorithms have the ability of

parallelism. For this purpose, NVIDIA introduced CUDA

technology [3-4-5]. Using CUDA can be written programs

with both C and C++ language and run in parallel on the

graphics processing unit. Therefore, GPU provides a scalable

solution for nearest neighbor algorithm when data volume is

high [2].

Another way for parallel implementation of the nearest

neighbor search algorithm is utilization of thread in java

programing. In this way, it can run algorithm in parallel on

cores of central processing unit.

The number of cores in CPU is much fewer than GPU. GPU

is composed of hundreds of small cores that are able to

perform simple calculations. In this paper, the aim is

 American Journal of Software Engineering and Applications 2016; 5(3-1): 10-14 11

evaluation of GPU performance compared to CPU, in order to

implement algorithms with high complexity. For this purpose,

two parallel implementation of nearest neighbor search (NNS)

algorithm is performed [6-7]. In the first implementation, to

parallel execution of this algorithm on GPU, CUDA

technology is used. In the second implementation, the concept

of threads in the java is used to parallelize the algorithms on

the central processing unit (CPU). It is expected,

implementation of NNS algorithm on GPU increases the

speed of running and it is more efficient than parallel

execution on the CPU.

The remainder of the article is structured as follow. In

section 2, the related previous works is considered. In section

3 the nearest neighbor search algorithm is described. Proposed

method for parallel implementation of NNS algorithm with

accessing shared memory on GPU is presented and also,

parallel implementation of this algorithm on CPU is expressed

in section 4. The implementation results and comparison of

two methods of implementing parallel algorithm is discussed

in section 5. Finally, Section 6 draws the conclusion.

2. Related Studies

There have been several research studies in this field. In

2008, a method was introduced to improve efficiency in the

running time for the serial algorithm on CPU. A parallel

algorithm is to find k nearest neighbor to each item. This

algorithm by using CUDA technology that creates trees with k

degree. This method has low scalability [8].

In another study [9], NNS (Nearest Neighbor Search)

algorithm is implemented on GPU, when GPU's shared

memory is utilized; Parallelization of the algorithm on GPU

using CUDA increases execution speed compared to serial

implementation and also it is implemented on GPU without

accessing shared memory.

In [10] 'brute force' method is introduced. Author has

reported, this method for implementing KNNS algorithm is

more efficient than serial implementation. Also it is suggested

that this method is faster than kd trees (trees with k degree).

Furthermore others [11] use a random algorithm called LSH

(Locality Sensitive Hashing) for this purpose. This algorithm

can find the nearest neighbors to a special point. This method

decreases complexity. However with a low probability, it is

not accurate in finding neighbors and does not guarantee the

correct answer.

In this paper, serial KNN algorithm in [8] is used as a

starting point. In the following [9], complexity of parallel

implementation NNS algorithm on GPU and CPU is

computed, then for both method, performance is measured.

3. Nearest Neighbor Search Algorithm

To implement nearest neighbor search algorithm, a set of

points (p) in 3-dimensional space is introduced. p= {p1,

p2,...,pn}. Here, the purpose is to find nearest neighbor for any

point, such as 'q' in set of 'p' points. Different formula exists to

calculate distance between points in metric spaces. In this

paper, to compute distance between points, Euclidean distance

formula is used. Figure1 shows k nearest neighbor issue where

k is equal to 1.

Figure 1. Black points are all points in set. Plus sign shows a point which

should be found nearest point to it. Circle finds nearest neighbor to querying

point.

Code 1. shows serial pseudo code for nearest neighbor

search algorithm.

// curPoint is queryPoint

For(int curPoint=0;curPoint<count;curPoint++)

For(int i=0;i<count;i++)

Compute all distance between query curpoint and rj ,

j€[1,count]

Code 1. serial pseudo code for nearest neighbor search

algorithm[1]

In this pseudo code, curpoint is a query point that must be

found nearest neighbor to it. The total number of points set is

assigned in 'count' variable. High complexity is a key issue in

the nearest neighbor search algorithm. Due to the pseudo-code

in Code 1, finding nearest neighbor for a special point is order

of O(n). So, finding the nearest neighbor for any point of this

set of points is of degree O(n^2). When the total number of

points in the set is high, complexity for this algorithm also is

high. Equation 1 shows, how the distance between two points

in three-dimentional space is calculated.

Distance=Sqrt((x1-x2)2+(y1-y2)2+(z1-z2)2) (1)

All implementation is done on a system with the properties

provided in Table 1.

Table 1. System properties.

RAM OS Graphics card CPU

3GB Windows 7 GeForce 9300 MG Intel 2.40 GHZ

3.1. Parallelism Nearest Neighbor Search, Using Threads in

Java Programing

The purpose of parallelizing an algorithm is for the better

use of the system resources and increasing the speed and

efficiency. In this type of programming, part of the program

that have parallelism capability, have been divided into several

sub-programs. Then, they are running on multi-core processor

by multi-threading. The most important reason to use parallel

12 Neda Mohammadi: Evaluation of GPU Performance Compared to CPU for Implementing Algorithms with High Time Complexity

programming is, speed increasing in execution of the program.

Threads, during execution of program, make overlap between

execution of processors and input/output operations. Unlike

CPU, GPU has a parallel architecture. It uses multiple threads

simultaneously, thus general problem on graphic cards (called

GPGPU) [12] is solved.

3.2. Parallelism Using CUDA Technology on GPU

GPU is used to solve issues with high complexity. This is a

main difference between utilization of GPU and CPU. In GPU

compared to CPU, more transistors assigned for calculations.

Using CUDA technology, NVIDIA's graphics cards are used

to execute the computational algorithms. The Number of cores

in GPU is much more than CPU. It causes the speed of GPU

be higher than CPU [13].

3.3. Parallelism of the Nearest Neighbor Search Algorithm

The purpose is to increase the runtime speed runtime in

execution of nearest neighbor search algorithm. For this

purpose, two methods are used. In the first method, algorithm

runs on GPU with access to GPU's shared memory and use of

CUDA technology. The second method, execution of the

algorithm in parallel on CPU's cores using thread in java

programming. In both methods, for any point in a

three-dimensional space, response time is measured. Finally,

the performance for both methods is evaluated.

In this paper, definition of response time is elapsed time

between start and end finding operation. To reach to this

purpose, many factors exist such as processor type, number of

processor, type of graphic card and most important is

presentation of a method for parallelism [12]. Considering

pseudo code in Code 1, to find nearest neighbor to any point,

there are two loops. So complexity of algorithm is degree of

O(n^2). Due to the pseudo code, it can be understand, which

NNS algorithm has the good capability for parallelism.

Parallelism of NNS algorithm should be done, in a manner

that overhead associated to thread connections with global

memory as much as possible be reduced and dose not

overcome on runtime. This is not possible to parallelize the

inner loop. Because calculation to find nearest neighbor is

depending on calculation of distance for other points. There

are many ways to break issue and give it to threads. Here, the

issue is broken and given to threads. Number of threads is

equal to number of points in set of points. Any thread is

assigned to any point. Therefore any thread finds nearest point

to itself.

4. Parallelism

4.1. Parallelism Using GPU's Shared Memory

One of the possibilities of GPU is shared memory for each

block. Size of this memory is small, but it has high speed.

Shared memory is used to communicate between threads in a

block or save and retrieve data that frequently has been

accessed by the threads.

If shared memory does not exist, threads to communicate

with each other or to save and retrieve data, must be access to

GPU's global memory. Speed of GPU's global memory is very

low. Therefore, it greatly reduces the speed of execution. To

do phases in Figure 2, at first it must be defined "shared-point"

array (including threads in a block). Every time, kernel

transmits a block from global memory to shared memory, each

thread in block, is corresponding to a point from set of points.

So it finds nearest neighbor to itself between all threads in

shared memory's block.

Figure 2. Implementation of parallelism algorithms using shared memory.

Figure 3. Run time in implementation of both method in parallel.

 American Journal of Software Engineering and Applications 2016; 5(3-1): 10-14 13

In this procedure, all blocks, one after another are copied in

shared memory and the current thread computes its distance

with all threads in the set. This procedure continues until, any

thread finds its nearest neighbor. During parallelism, shared

memory is shared between threads in a block [9]. In the first

step, for any thread, its index is computed. Second step, it is

checked, that the current thread's index be less than the total

number of set points. Because the number of defined threads

in the set is equal to the total number of points in all categories,

each point is assigned to a thread (thread with index Id). Then

threads compute nearest point to themselves (p[Id]). In the

third step, exclusive thread (current thread), reads a block

from among blocks within a grid and copies it in shared block.

Shared block is defined by programmer. (In the GPU, a grid is

composed of several blocks. A block is composed of a certain

number of threads. Threads within a block can be in parallel

performed and shared resources between themselves)

Each thread

1. Calculates its distance with all points within the shared

memory

2. Finds nearest point to itself

3. Keeps its nearest neighbor distance in 'IndexOfNearest'

variable. The number of read operations from grid and

copy at shared memory is equal to the number of blocks

at the grid.

Finally, every thread will find nearest point to itself. In this

implementation, each block within the grid is consisting of

320 threads [9], which are determined by programmer. To

implement operations in Fig 3 just a loop is needed and

complexity is O(n).

At CUDA, like other parallelism technologies, when

threads are used, they use the shared memory, thus

competitive conditions will be created which leads to the

hazard. To avoid hazard, syncthreads() function is used

instead semaphores [14-15]. This function is as a barrier and

no thread at a block will not pass of barrier, until, all threads

into block reach to this point.

4.2. Parallelism Using Threads in Java on CPU

In this implementation, NNS algorithm in parallel is

performed on CPU. pseudo code is presented in Code 2.

In main method, the numbers in the 'p' array is generated by

Random function in range [-5000, +5000]. 'array' method creates

an array of threads by Thread class in java. Number of threads is

equal to the number of points at set. That part of the code which

can be parallelized, should be implemented by 'run' method.

5. The Implementation Results

To evaluate the efficacy of parallelism, the number of points

in set 100,700,1000,1500,2000,2500,3000 is considered,

because these numbers often are used in real applications. For

each of these sets, the program is run 20 times. As previously

mentioned, the numbers into array are generated randomly in

the range [-5000, +5000].

Finally, for each of this set of points which has been

implemented 20 times, an arithmetic mean has been

considered as a run time factor. Figure 3 shows, the execution

time for different number of points in implemented of two

algorithm.

Public class FindClosest

{

Class PiThread extends Thread{

Public void run(){

//Parallel Compute nearest distance for any thread}}

Public void array{

//create a object array of thread

//number of threads is equal number of points

//assign any thread to a point for Compute nearest neighbor

own

//Start thread}

Public static void main(String [] args){

//initial array of points with random number in range

[-5000,+5000]

//Show Elapsed time

//Show nearest neighbor for any points}}

Code 2. pseudo code for parallelism of algorithm on cpu

using thread in java programming

As can be seen in Figure 3, implementation on GPU, for

data high volume has very high performance compared to

implementation of same algorithms on CPU.

In parallelism method with CUDA on GPU, threads use

GPU's shared memory to communicate between another and

store and retrieve its temporary data. Therefore, number of

access by threads to global memory is reduced and also

increased the execution speed of algorithm. But in parallelism

method with threads on CPU, all threads are doing their work

independently. Due to lack of shared memory in this way, any

thread to access to its needed data and store its temporary data

uses the global memory. Access to global memory is very time

consuming and it is a bottleneck for speed. Thus it leads to a

sharp reduction in performance. If the number of points at set

be high, due to the relations between threads and the global

memory, runtime overhead overcomes to the advantage of

parallel algorithm on CPU and CPU's parallel execution time

become more than the runtime in the serial algorithm.

6. Discussion and Conclusion

According to the results that were achieved, it can be clearly

seen that the parallel algorithm on GPU especially when data

volume is high has a significant impact in reducing execution

time. As previously mentioned, when data volume is small,

solving the nearest neighbor search issue is easy. However,

when the data volume is large, time complexity of algorithm is

high. Therefore the suggested method has the best

implementation in terms of execution cost, efficient use of

hardware and scalability and unlike the mentioned method in

[11], returns a definitive answer as the nearest neighbor.

14 Neda Mohammadi: Evaluation of GPU Performance Compared to CPU for Implementing Algorithms with High Time Complexity

References

[1] M., Guevara, G., Chris, K., Hazelwood, and K., Skadron.
"Enabling task parallelism in the cuda scheduler." In Workshop
on Programming Models for Emerging Architectures, 2009, pp.
69-76.

[2] V., Garcia,, E., Debreuve, F., Nielsen, and M., Barlaud,.
“K-nearest neighbor search: Fast GPU-based implementations
and application to high-dimensional feature matching”. In
Image Processing (ICIP), 2010, September. 17th IEEE
International Conference on (pp. 3757-3760).

[3] CUDA C Programming Guide: CUDA Toolkit Documentation,
http://docs.nvidia.com/cuda/,cuda-c-programming-guide/index
.html.

[4] S., Liang, Y., Liu, C. Wang, and L., Jian,. “Design and
evaluation of a parallel k-nearest neighbor algorithm on
CUDA-enabled GPU”. In Web Society (SWS), 2010 IEEE 2nd
Symposium on (pp. 53-60). IEEE, 2010, August.

[5] Hawick, Kenneth A., Arno Leist, and Daniel P. Playne.
"Parallel graph component labelling with GPUs and CUDA".
Parallel Computing (2010) 36, no. 12 655-678.

[6] S., Liang, Y., Liu, C., Wang, and L., Jian, 2009, October. “A
CUDA-based parallel implementation of K-nearest neighbor
algorithm”. In Cyber-Enabled Distributed Computing and
Knowledge Discovery, 2009. CyberC'09. International
Conference on (pp. 291-296). IEEE

[7] D., Qiu, S., May, & A., Nüchter. “GPU-accelerated nearest
neighbor search for 3D registration”. In Computer Vision
Systems, 2009. (pp. 194-203). Springer Berlin Heidelberg.

[8] V., Garcia, E., Debreuve, & M. Barlaud, "Fast k nearest
neighbor search using GPU". In Computer Vision and Pattern
Recognition Workshops, 2008. CVPRW'08. 2008, June. IEEE
Computer Society Conference on (pp. 1-6). IEEE.

[9] N. Mohammadi. "Presentation of a Parallel Algorithm for
Nearest Neighbor Search on GPU Using CUDA". Current
Trends in Technology and Sciences (CTTS) 2015.

[10] J., Nickolls, I., Buck, M., Garland, & K.Skadron, "Scalable
parallel programming with CUDA". Queue, 6(2), 2008. 40-53.

[11] Nourzad. "The introduction of context-sensitive hashing
algorithm for finding nearest neighbors in high-dimensional
spaces". Amirkabir University of Technology, (2010).

[12] X., Wu, V., Kumar, J. R., Quinlan, J., Ghosh, Q., Yang, H.,
Motoda, & D. Steinberg. "Top 10 algorithms in data mining.
Knowledge and Information Systems", 2008.14(1), 1-37.

[13] S., Liang, C., Wang, Y., Liu, and L., Jian,. “CUKNN: A parallel
implementation of K-nearest neighbor on CUDA-enabled
GPU”. In Information, Computing and Telecommunication,
2009. YC-ICT'09. 2009, September. IEEE Youth Conference
on (pp. 415-418).

[14] A. Neumann, " Parallel reduction of multidimensional arrays
for supporting online analytical processing (olap) on a graphics
processing unit (gpu)". The University of Western Australia,
2008.

[15] S. Ryoo, C. I Rodrigues, S. S Baghsorkhi, S. S Stone, D. B.
Kirk,, & W. M. W. Hwu, "Optimization principles and
application performance evaluation of a multithreaded GPU
using CUDA".. (2008, February) In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice of
parallel programming. (pp. 73-82). ACM.

