

American Journal of Software Engineering and Applications
2019; 8(1): 8-17
http://www.sciencepublishinggroup.com/j/ajsea
doi: 10.11648/j.ajsea.20190801.12
ISSN: 2327-2473 (Print); ISSN: 2327-249X (Online)

Completing Information Technology Projects as Scheduled
and on Time

Charles William Butler
1
, Gary Lowell Richardson

2

1College of Business, Colorado State University, Fort Collins, United States of America
2College of Technology, University of Houston, Houston, United States of America

Email address:

To cite this article:
Charles William Butler, Gary Lowell Richardson. Completing Information Technology Projects as Scheduled and on Time. American

Journal of Software Engineering and Applications. Vol. 8, No. 1, 2019, pp. 8-17. doi: 10.11648/j.ajsea.20190801.12

Received: January 28, 2019; Accepted: April 8, 2019; Published: July 26, 2019

Abstract: Even though Information Technology (IT) software development projects exhibit a checkered history of poor

scheduling and late delivery, emerging project traits are promoting successful implementation and reduced risk of failure. IT

project management, requirements gathering and management, user involvement, organizational alignment, development

methodology, quality assurance and testing process maturity are integrating together to create a culture of rising success and

efficient project implementation. Organization alignment, project management, business and technology architectures, and

organizational change management domains are integrated into a successful software development framework.

Keywords: Organizational Alignment, IT Project Management, Software Development Methodology, Artifact Repository,

Controlled Processes

1. Introduction

When candy giant Hershey Foods former CEO and

Chairman Kenneth L. Wolfe told Wall Street analysts during

a conference call in September 1999 that the company was

having problems with its new order-taking and distribution

computer system—a $112 million combination of software

from ERP maker SAP, CRM provider Siebel and supply

chain software from Manugistics—he didn't offer any details.

He did say, however, that the problems were going to keep

Hershey from delivering $100 million worth of Kisses and

Jolly Ranchers for Halloween that year. —Hershey Foods VP

and CIO George David in an Aug. 29, 2002, news release

Is the Hershey story newsworthy? Absolutely, but hardly

unusual! Missed deadlines, cost overruns, and/or failure to

meet requirements are the rule rather than the exception for

information technology (IT) project development efforts.

Computerworld detailed ten large project disasters totaling

in the 100’s of millions of dollars in lost revenues, cost over

runs and so on. [1] One firm, FoxMyer Drugs, reportedly

went into bankruptcy because of the implementation failure

of its enterprise resource planning system. For both FoxMyer

and Hershey, the culprits were a large third-party software

package. History suggests that system risks further escalate

when custom design and coding is added to the equation.

In 2001, the Standish Group, who sponsored a project

measurement survey for IT development projects, reported:

[6].

i. Average schedule overrun was 163%

ii. Average cost overrun was 145%

iii. Actual functionality compared to plan was 67%

Only 26% of projects surveyed were judged to be a

success; the lost value from marginal and failed projects was

estimated at $75 billion. These outcomes are a dismal report

on the state of project management. The failures are rarely

attributable to the underlying technology but rather to other

factors. Recent research has identified a pattern of

manageable factors that lead to both project success and

failure. The bottom line is that effective management is

usually the predominant missing element in systems

development.

In 2014, the Standish Group, who sponsored another

project measurement survey for software development

projects, reported: [4]

i. $250B expenditure on IT application development of

175,000 projects

ii. Average project cost for:

iii. A large company of $2,322,000

 American Journal of Software Engineering and Applications 2019; 8(1): 8-17 9

iv. A medium company of $1,331,000

v. A small company of $434,000

vi. 31.1% were cancelled before they are completed

vii. 52.7% cost 189% of their original cost

viii. Failure to delivery originally proposed features and

functions:

a) For large companies, approximately 42% of

proposed requirements were implemented

b) For small companies, 78% of projects delivered 74%

of proposed features and functions

The facts are that project execution from 2001 to 2014 has

not come a long way. As shown in Table 1, failed projects

decreased by 30% from 23% to 16.2%. As the same time, the

percent of challenged projects increased by 7% from 49% to

52.7%. The percent of succeeded projects increased by 11%

from 28% to 31.1%.

Table 1. Distribution of Project Resolution.

Resolution 2001 2014

Failed 23% 16.2%

Challenged 49% 52.7%

Succeeded 28% 31.1%

Total 100% 100%

To better understand some of the technical and managerial

issues surrounding effective project management, it seems

worthy to explore how the current state was realized and to

examine a general roadmap for the future. With that in mind,

the section below describes the evolutionary path that has

established today’s IT project culture (1960s to current).

From this base strategies are introduced that can lead to

improved project success.

2. Evolution of IT Project Management

Systems development during the 1960s and the 1970s was

a simplified and informal process. Manually drawn

flowcharts were often used to define user requirements,

though even less rigorous approaches were common.

Programmers, working with little formal management

oversight, translated system requirements to code. Schedules

and cost estimates were created using informal methods. The

results, as measured in missed budgets, slipped schedules,

and failed systems reflected a lack of rigorous management.

Information technologists survived because enterprise

management did not understand that the process could be

better executed. In fact, a basic vision for a proven process

did not exist. System building was viewed as a “black art”

and IT professionals were usually excused as doing the best

they could in difficult circumstances. Developers survived,

not because of their efficiency or effectiveness, but because

their products were important to the business and they were

often the only source for IT-enabled solutions.

In the 1980s, islands of success began to emerge for

structuring elements of the system development process.

Tools and techniques evolved for eliciting requirements,

estimating tasks, designing code and databases, and for

testing modules and systems. Unfortunately, rapid changes in

technology, particularly the migration of hardware platforms,

first to minicomputers and then to desktops, lessened the

impact of these advances. New architectural models coupled

with changes in development tools and methodologies aided

in creating a chaotic development environment. Development

productivity tools were oversold to management, their impact

on productivity largely unproven. The value of the resulting

new systems, ones increasingly viewed as strategic

necessities, continued to capture management’s attention.

Progressively, attention turned to development costs, cost

overruns, and the associated business costs of systems that

failed to meet objectives.

In the 1990s organizations continued down the path of

piecemeal project management approaches, with some

organizations now differentiating themselves by their ability

to consistently develop successful systems. For most firms,

the normal result of a system development project continued

to be cost and schedule overruns and less than planned

functionality. At this point the recognition of project failures

had expanded to greater public visibility as exemplified by

the Standish Group study. Also, the underlying technology

platforms, both for development and production platforms,

continued to churn. The first half of the decade was largely

devoted to migrating to the newly fashionable client-server

architectures. Emergence of the internet and Y2K

conversions are the most noticeable activities in the latter

half of the decade. Collectively, these events overshadowed

the recognition of underlying project management issues. At

this point some firms, burned by project disasters or losing

confidence in their development units, turned to third party

outsourcing as an easy, if sometimes shortsighted, solution.

As the 21st century was entered, the stage was set to explore

what can be called the contemporary view of information

technology projects.

3. Contemporary Views

In the early 2000s, management became very sensitive to

the failure rate of projects and demanded that IT produce

solutions. IT often reacted by pushing new coding

technologies and buying some vendors canned development

methodology. Today, neither of these approaches has

generated meaningful answers to the problem and recent

project statistics show little improvement in success rates

industry-wide. Still, some companies have made successful

inroads and this paper focuses on these new critical success

factors.

The first issue to deal with is a development process. It is

true that every system evolves through the basic life cycle

steps, but the mechanics of this evolution are not generally

agreed upon. The variety of system types and dynamic

technical nature of solutions suggests that more must be

understood about how to modify the process to fit the

particular development situation. However, that does not

mean a lack of process control. Regardless of the process,

there are some management issues that need to be enforced.

The following short list represents the most common

10 Charles William Butler and Gary Lowell Richardson: Completing Information Technology Projects as Scheduled and on Time

shortcomings of the modern IT organization and is not just a

duplicate historical failure list:

1) Prior to project initiation there needs to be a process

dedicated to matching the project proposal to

organizational objectives. This mapping is often called

aligning IT with the business.

2) A more formal effort is needed to document project

scope early in the process. Establishing project scope

goes against those who believe this activity cannot be

done other than by building prototypes or using agile

techniques to drive the project.

3) System function validation is a process that needs to

occur throughout the cycle and not as a testing activity

at the end. More effort is needed to assess the match of

requirements versus current state from logical design

through coding and on into the implementation activity.

The earlier in the cycle deviations can be defined and

corrected the less that these will have to be dealt with

later.

4) Test plans need to be produced early and these plans

need to be matched to the requirements.

5) Stakeholders need to be actively involved in the project

throughout the life cycle. System development is not

just an IT activity. This item is a known, historic

problem but still not being corrected in most

organizations today.

6) New system design should be based on a defined

process, which has been carefully thought out and

communicated to the participants.

7) In parallel with the system development process

recognize that the user communities will be

significantly impacted by that system. Increase focus

supplies appropriate resources for the activities

required to deploy the new system into that

environment. Change management is essential and the

needed focus is on the user side of the equation rather

than the system side.

One of the most noticeable contemporary characteristic of

the modern system is that it has to deal more directly with the

user self-service than was required in traditional development

environments. Self-service user requirements raise a host of

human ergonomic considerations that have not previously

been a part of system design. Items such as screen color,

layout of the user graphical interface, and user navigation

were not traditional computer technical issues but are now a

critical system success factor. Also, the components used in

many new systems often needs to be duplicated or connected

across many interconnected processors, which in turn

increases testing and debugging system complexity. Twenty

years ago all of the application generally ran in one

mainframe with little code or vendor variety, and the network

was dedicated to limited connectivity.

A second significant complicating management issue in

the contemporary environment is third party coordination,

often across broad geographical and cultural boundaries.

Coordination greatly complicates the communication process

compared to having a contiguous internal, collocated

development team work. In this situation the internal

communication that was already recognized as being difficult

is now compounded not only by the geographical dispersion

of the team but also by the language and culture. Where

requirements definition was one of the top failures in the

traditional project effort, it is now multiplied exponentially in

the global model.

Earlier discussion highlighted the fact that management

has a decreased tolerance for a runaway project. There is a

need to produce more accurate estimates prior to formal

approval and then execute according to that plan. Also, it is

more important to provide better tracking of actual project

status. This requirement increases the complexity of

processes related to estimating, measurement and status

reporting. The attempt to deal with measurement of the

overall process has highlighted the deficiency of support

tools and techniques for activities such as estimating,

reporting, and communication.

So, there are valuable lessons in project management that

are now beginning to be broadly recognized. Organizations,

who understand these basic ideas, can be observed. There is a

fairly clear pattern emerging as to what it takes to emulate

success. One important conclusion is that project success is

linked to a more controlled task process and active external

user/stakeholder involvement rather than through the use of a

particular technology or canned development methodology.

New technologies can improve segments of the overall

process but cannot overcome the lack of these essential

success variables. Far too often today technical system

builders continue to focus on technical tools rather than on

effectively managing the development process. Careful

predefinition and management of three essential project

variables — functionality, cost, and schedule – are still not

high on the agenda of project managers, who have often been

selected because of their technical acumen rather than their

project management skills. This fact also suggests a needed

strategy modification. Universities and professional

organizations such as PMI are working to move this

knowledge into the work force. Several university

educational sources are beginning to formulate project

focused programs. As a sample, programs at Stanford

University, George Washington University, and the author’s

program at the University of Houston offer high quality

exposure to project management. Expansion of these

offerings is yet another example that the topic has been

recognized and organizations are working to improve the

situation.

Dr. William Ibbs researched the effect of process maturity

on project success and offers some compelling evidence that

improved success is a definable goal. [3] As a result of his

research, a correlation was shown between project maturity

levels and ability to manage cost and schedule outcomes for

projects. Using this model a project management maturity

level can be quantified on a five point scale, with one being

the lowest and five the highest. Within high maturity

environments the average cost and schedule deviation from

initial plan averaged less than 8% of original prediction as

 American Journal of Software Engineering and Applications 2019; 8(1): 8-17 11

compared to the typical 200% variances reported from the

Standish studies.

Another well-known research source, the Software

Engineering Institute at Carnegie-Mellon University, has

similarly defined models to measure operational maturity in

IT organizations [see www.sei.cmu.edu]. Its pioneering

research also supports the conclusion that firms with higher

levels of process maturity correlate with lower costs of

development (e.g., higher development productivity).

Given the obvious need and the compelling, achievable

benefits, why do many organizations refuse to fund and

implement standard processes? Two common explanations

are offered:

1) Increasing the project maturity level requires a

significantly commitment to more formalization and

documentation with greater front-end costs.

Management is often unconvinced that these certain

near-term investments will produce what they perceive

as uncertain long-term benefits.

2) Technically oriented managers continue to search for

the silver bullet technology or process model that will

solve the development problem. Unfortunately the

latter changes can include what many incorrectly view

as “extraneous” steps such as documentation, planning,

status reporting, or post implementation review.

Largely due to these two philosophical dilemmas, IT

project management implementation remains adrift. If left

unaddressed, senior management will become increasingly

frustrated by the failures of its development organization.

Eventually this dilemma can, and often has, contributed to

the decision to outsource the development function, creating

a new set of problems focused not on efficiency of

development but the overall effectiveness of the IT

investment.

To resolve common project performance failures,

management must recognize the basic causes of failure and

attack these issues in a rational and prioritized manner.

Projects must be formulated to solve business problems and

they must be actively tracked to ensure the desired objective

is sustained through development and implementation. An IT

project must be viewed as a business activity, not a technical

one. Users and senior management must take ownership of

this activity - even lead it in many cases. Technicians must

recognize that a project is not a technology proving ground;

rather they must work to predict economic as well as

technical outcomes, meet user expectations, communicate

status in a timely manner, and complete the activity as

formally planned. These premises sound trivial but are not

the normal project mode in many organizations. Consider the

actual work activity and let’s explore how its components

affect success of project outcome.

4. System Development Framework

As shown in figure 1, at the aggregate level the system

development life cycle consists of four interacting processes.

These include 1) an organizational alignment process for

ensuring IT project compatibility with the organization and

its objectives, 2) a technical work process for carrying out the

necessary technical work required to construct the new

systems, 3) a project management process to oversee the

management and administrative tasks required to ensure

proper coordination through the various stages of the project,

and 4) organizational change management for implementing

the new system into the business model.

Figure 1. Interlinking Aggregate Processes.

Proper execution and coordination of each of these

interlocking domains affect the ultimate success of a project.

Project managers, if they are to succeed, must recognize the

importance of each of these domains and be skilled in

orchestrating the decision threads that weave through the

intertwining process components. It is also important to

recognize that these processes involve broad segments of the

enterprise and there are varying success criteria that must be

negotiated across the user community. After a quick

examination of the first two processes to ensure that the

reader gets the right perspective on the overall structure, the

latter two processes will be digested and more thoroughly

discussed.

4.1. Organizational Alignment Domain

It must be recognized that a flawed project vision will

always, by definition, produce a flawed output. Obvious?

Yes, but then why is this result often observed? It is seen

when projects bubble up from lower levels in the

organization and serve a local need that is not congruent with

higher-level business goals. This origin can sometimes be

major sources of innovation and, in itself, is not the problem.

However, it is important to recognize that an organization

operates with finite resources just like it has a limited amount

of funds for capital investment. The appropriate process for

approving a project is one which matches the project with the

highest organizational payoff. For a more detailed overview

of this subject refer to Benko and McFarland’s excellent

overview of this subject in Connecting the Dots [5].

12 Charles William Butler and Gary Lowell Richardson: Completing Information Technology Projects as Scheduled and on Time

The decision challenge of the allocation exercise is to

establish a project slate that extends along a broad front

encompassing both strategic and tactical objectives. Some

projects are designed to keep the company moving in

fighting trim; others target more strategic objectives, such as

customer-facing applications or strategic alliances often

related to external items such as customers or partners. The

chosen mix for such efforts needs to be guided by the

corporate objectives and with heavy involvement throughout

the organization. Moreover, it is a dynamic process with both

system costs and potential benefits estimates fluctuating as

the project development process continues. Project alignment

must be revisited as conditions change and as new

information emerges. Project alignment falls outside this

paper’s scope, but it is important to recognize that a result of

the alignment activity should be to define an appropriate

project scope definition. The optimum solution to the wrong

problem is still the wrong solution! The output goal is to seek

and approve proper project targets prior to approving

significant resources to produce an outcome.

4.2. Technical Work Domain

There are basically five birth to finish stages in an IT

development project life cycle. A typical list of such stages

includes: 1) requirements definition, 2) technical design, 3)

construction, 4) testing and validation, and 5) implementation

and closeout. Professionals who have been involved in

actually identifying, structuring, and executing these

activities for a complex IT project recognize that it is far

easier to discuss stage development to actually manage and

deliver a successful outcome. Human interactions within the

organization, a dynamic technological environment for both

development and system operation, and the complexity

inherent in creating the desired functionality combine to

make software development one of the most complex

undertakings of humanity. Yet, the final solution, perhaps

consisting of millions of lines of code, can with only a few

keystrokes and in a few seconds be loaded into a computer

with all of its complexity buried away. Unlike a large petro-

chemical refinery, the complexity of a computer system is

nearly invisible, its encoded intellectual logic and subsequent

maintenance costs likely unrecognized by the user.

Viewed abstractly, systems development involves turning a

set of user logic process requirements into a complex set of

mechanical code and technical components. If the system is

straightforward, the extraction process for this translation

should be highly successful. As the complexity of the logic

increases and the number of users expands, this process can

become a world-class challenge in many dimensions. Though

there are certain fundamental steps that must be

accomplished, the most appropriate tools and processes for

achieving these steps can vary depending upon several

factors. Among the more obvious are the size of the project,

the degree of risk, involvement of other parties, depth of

understanding of the environment in which the system will

operate, and acceptance by the intended user population. A

contemporary development model needs not only to keep the

required process functions in perspective but also to allow

flexibility in the task sequence and means for producing the

required functions. Publishing a lockstep development

process will not produce quality results, even if you could

enforce such a requirement. IT developers are particularly

resistant to perceived inefficient bureaucratic activities.

The greatest current controversy among the technical

development group involves techniques for collecting user

requirements and validating those requirements. The

traditional method of user requirement definition is to do that

first and then start the system design and coding activities.

There is an increasingly common view that users are not

capable of a precise level of definition and therefore some

level of system prototyping must be employed to show what

the final system will be. Taken to the extreme this school of

thought would suggest that this process be continued

throughout the whole cycle and terminate when the user is

satisfied. Likewise, there is a lack of agreement regarding the

timing and approach to system validation and testing. Great

merit is earned when test plans are completed prior to coding

as opposed to after the fact activity. In reality, this activity is

“validation” rather than “testing.” The semantics are meant to

focus on requirements matching rather than disjointed ad hoc

testing late in the cycle. Regardless of individual opinions on

these two topics, today’s management requires that some

outcome forecast be made prior to project approval. A

forecast dictates a requirement for producing a level of early

scope definition before significant resources are approved.

More discussion on these issues can be found in Radical

Project Management by Rob Thomsett or Information

Technology Project Management by Kathy Schwalbe. Also,

the quick build philosophy can be reviewed further from

various sources discussing the Agile or Extreme development

process. [7, 13].

The key to achieving an appropriate development process

is to define a common, repeatable approach and train the staff

on its merits. The process should have the following traits:

1) Management should be involved in the project

portfolio decision process.

2) Formal external review events should occur at selected

points in the development cycle with the decision being

to continue or abort the effort.

3) Defined artifacts should result from the effort. Artifacts

should include such items as a project charter, business

case, technical documentation, user documentation,

and other items as defined by the governance entity.

4) Status metrics related to the activity need to be

captured and used in the review and improvement

process.

5) Appropriate project status should be readily available

to the stakeholders and management.

Failure to achieve these traits leaves a void in one aspect

of the overall process. Technicians do not agree with the

importance of these items as much as outside parties do. It is

important to focus the project activity on satisfying

customers at the approved price and not just playing with the

technology. Visibility and communication are vital

 American Journal of Software Engineering and Applications 2019; 8(1): 8-17 13

responsibilities. For those wanting to look deeper into this

subject a more detailed listing of “critical software practices

can be found at the Integrated Computer Engineering web

site. [8]

Earlier the basic development life cycle was identified.

The basic life cycle phases offer reasonable check points for

project technical and management review. There are two

important support elements. A formal artifact repository and

a defect tracking system should be implemented. These two

repositories are added as communication integrators between

the development stages and are vital to the technical work

and management processes. One of the most vital

components of the technical work process and the associated

management process is the artifact repository. Basically, it is

a formal data store of project information that can be used to

supply appropriate stakeholders with technical or

management information. It should contain the working data

from the various project activities including the following:

1) System requirements

2) Technical design models

3) Test plans and scripts

4) Code libraries

5) Change management documents

6) Test data

7) Operational documents (user, technical, operations,

etc.)

8) Project plans, status, and other related documents

Most projects teams file artifacts of this sort in various

electronic document folders. It is recommended that this

information be available to a broader group and be stored in a

standard repository with access controls. As a project moves

from the development to the maintenance mode, this

repository should be accessible by the maintenance team for

care and feeding over the remainder of the life cycle. Also,

much of the development history is archived for review by

future development teams or audit sources. A formal project

repository strategy is a key strategy for long term process

improvement given it contains the best source to examine

lessons learned.

The second repository source contains data regarding

defects identification and problem resolution during the

development and operation of the system. The traditional

concept of defect tracking is normally thought of as

identifying detects in a working program. A defect can mean

“a variation from requirement” which can occur at any point

along the development process. For instance, in reviewing a

narrative requirements statement or schematic design model,

it is feasible to discover that the translation does not match its

corresponding operational requirement. This contradiction

should be captured at the point of identification and then

managed to resolution. In some cases a defect may be left,

while in others, it will be assigned to someone to review or

repair. Tracking detects first ensures that they get resolved

early (a good development strategy) and secondly provides

insight into the ongoing quality of the process. Defects

should converge to near zero as the project evolves and this

data provides the analytical keys. Through defect tracking it

is possible to identify confusing requirements and

excessively complex code which are project quality

objectives. The underlying philosophy for both of these

repositories is that the project cannot be effectively manage

unless it is measured or documented.

These two repository groups represent the primary raw

data source describing project performance. Through these

sources it is possible to create status reporting and a myriad

other analysis activities with minimal effort. Long term, the

development goal should be to automate relevant status data

as a by-product of the activity itself, but that will not be

accomplished initially. Nevertheless, having the data

available in one central place is a major communication

advantage. In each case, the filing structure for these

repositories should be standardized and use of a content

management system be implemented to facilitate archiving

and retrieving.

What is not so obvious is that the technical development

productivity tools are evolving in a positive way. The

industry is slowly adopting modeling (blueprinting) standards

that can be shared across the various stakeholder groups—

similar to what was described for the construction industry.

Much of the IT industry is following system documentation

as outlined by the Unified Modeling Language (UML),

originally produced by Rational. [10] Also, various

development tools are now entering the marketplace that are

capable of producing code from these models. Utopia would

be that the whole system could be automatically produced

from the original system requirements specifications. This

capability is not on the near term horizon. IT organizations

have searched for viable code generation utilities for years,

but the continuing change in technology and changing

favored languages has made the previous efforts only

marginally successful. It appears that broader acceptance of

UML and improved compatibility of coding languages is

moving this goal closer to a reality. Today’s vendors

advertise that they can generate 80% of the code from design

models. Envision the flow process of design models being

stored in the artifact repository and then fetched into the code

creation. Both humans and machine created code would

complete the coding effort. The repository would hold a full

working definition of requirements, design, code, and

validation documentation. This level of maturity is not

achievable for today’s development projects. If it is achieved,

future maintenance of the system will be accelerated by

having a work flow from user logic to final code structure. In

the current development culture, there is no traceable link

and, as a result, the subsequent maintenance process is often

labor intensive.

In a similar fashion, testing objects will be produced from

graphic-generated requirements and design models. At both

the design and code stages, there are several supporting

technologies that are entering maturity stage and promise to

aid in the streamlining future projects. The future challenge

with these tools is to interconnect across the life cycle stages

in order to integrate workflow. The current vision for tools is

each will generate partial system definition into a common

14 Charles William Butler and Gary Lowell Richardson: Completing Information Technology Projects as Scheduled and on Time

data repository. Code generator tools will then use stored

system modeling specifications (blueprints) to create code

units. Validation tools will look at both requirements and

system models and generate appropriate test scenarios. A

general technical view of the future repository environment is

encouraging. A key factor is the market availability of

emerging products. In order for an organization to make

productive use of an enabling tool suite, it should move to

create consistent, repeatable processes and continue to evolve

those processes as the technology roadmap becomes clearer.

An often misunderstood factor within the traditional

development cycle, the coding process, causes effort to focus

on the wrong targets. In many development projects, this is

the only visible artifact – code. Surprisingly, resource

consumption of system development is only 20% code

writing. Even more surprisingly, the testing/validation

activity consumes at least 20% and sometimes as much as

50% of the project’s resources. Testing and validation

requires so much work because there was very little other

than code as a basis for building and executing tests.

Sometimes, software developers and testers struggle to find

documented requirements to ensure they are being covered.

The creation of test data is equally haphazard and often

involves using a large volume of replicated production data

to generate code coverage and observe the actual results.

Such approaches are inefficient, ineffective, and leave

validation with a great potential for productivity gains.

Improvement cannot occur without the earlier steps being

more disciplined in their approach. Nevertheless,

requirements validation is fertile ground for major

productivity improvement.

If one examines the current resource consumption in the

various development steps, it is possible to make rough

estimates regarding productivity improvements from the

implementation of integrated automated tools. A savings of

10-25% is estimated for the traditional development cycle

just in the validation/testing phase. Certainly, this potential

saving alone is enough to attract management attention.

Similar improvement is anticipated in the other development

tasks and savings could be further amplified as the concept of

reusable code modules becomes more available.

Organizations should be focused on these potential savings as

they re-engineer their existing development processes. In

order to move an organization towards the model

environment outlined here, there must be high level

recognition that the described factors are, in fact, accurate

and relevant. There must be an ongoing improvement effort

to choose tools that fit the model. An initial look at UML as a

specification strategy and the associated tool suite is a

reasonable starting point. [13] After any initial tool scoping

review, examination of other vendor products should be

completed and a phased implementation strategy formulate.

It is not intuitive why adding process structure and control

to a process can save time and money. For example,

managing scope creep, finding errors earlier in the

development cycle, improving the cost of code development,

maintaining artifacts in a structured repository, and

decreasing the system validation/testing cost have significant

productivity implications. There is research evidence

compiled from the Software Engineering Institute Capability

Maturity Model (CMM) program that showed orders of

magnitude productivity improvement resulting from an

organization going from an initial maturity (level one) to

higher levels of process rigor (maturity levels three to five).

[14] A project management model environment, outlined in

previous sections, has the same characteristics and should

yield the similar positive results when properly implemented.

What is most important from a management view is that an

appropriate work process must be properly defined and used

by the development project teams. An improved

understanding of project management theory and an

enterprise project management model will help the

organization develop a culture that is appropriate for their

specific needs. In this regard, various universities offer

programs that will aid in this cultural migration. It is essential

in the change management process to recognize that, in order

to gain acceptance for any new approach to a highly technical

and complex problem area, some positive and tangible

motivation must be presented. Making that first move will be

a management challenge. Technical teams love technical

challenges but do not relish increased formalization of work

process placed on them. The key is making this transition

more transparent through both a theoretical education of

research evidence in the field and an increase in use of

automated tools for the various steps. If those strategies are

productive and create positive benefits, then further

acceptance will be embraced—a win-win strategy.

4.3. Project Management Domain

In figure 1, lying above the technical work and

organizational processes is the project management activity.

There are many documented prescriptions for effective

project management, but the one that likely has the broadest

following comes from the Project Management Institute

(PMI) in the Project Management Body of Knowledge, more

commonly called the PMBOK. This publication divides the

basic activities of project management into ten knowledge

areas: [11]

1) Integration: ensure that the various elements of the

project are properly coordinated. This includes plan

development, execution, and integrated change control

activities.

2) Scope: identify what the product or service will be.

3) Schedule: ensure timely completion of the project.

4) Cost: determine the financial requirements of project

and build an approved budget.

5) Quality: establish quality standards and output

monitoring.

6) Resource: make the most effective use of people and

materials.

7) Communication: complete timely generation,

collection, dissemination and disposition of project

information.

8) Risk: identify, analyze, and respond to project risk.

 American Journal of Software Engineering and Applications 2019; 8(1): 8-17 15

9) Procurement: acquire goods and services from outside

the organization.

10) Stakeholder: identify stakeholders and manage their

project involvement, requirements and expectations.

Taken together these ten knowledge areas constitute PMI’s

recommendation regarding processes and input/tool and

techniques/outputs (ITO) that need management for

successful project completion.

The PMI structure is good in that it points out critical

issues with which to deal. However, the process is general in

nature and it does not help so much with execution in an IT

environment. In other words, it describes the “what,” but not

so much the “how” to carry out the needed tasks. It is

important to point out that most IT projects do not give

sufficient consideration to these activities, but often pay later

for ignoring issues such as scope control, risk, quality and

communications. [11]

Part of successfully managing a project is to gain insight

into what can go wrong and anticipating it in a timely

manner. In an earlier section, a list of shortcomings

associated with project failure was provided. Let’s look at

additional reasons for failure. The following five reasons are

often cited as contributing to a lack of project success:

1) Incomplete user requirements

2) Inadequate management involvement

3) Ineffective communication

4) Immature work processes

5) Technicians unwillingness to be constrained by formal

standards

Surveys related to project failure identify many more

items, but the root causes generally are linked to these five.

To illustrate this point, functional scope creep is a typical

item often identified as a cause for failure. However, scope

creep spawns primarily from incomplete initial requirement

statements by the system definers and lack of proper

management control oversight during execution. Thus, it is a

secondary tier event engendered from the root causes.

Likewise, schedule and budget issues most often arise from

similar underlying causes. So, the point is that the primary

root causes must be effectively managed and from that the

other identified failure factors will improve. From a

management standpoint it is important to recognize that

project scope control is probably management’s singular

most powerful technique for keeping a project on track. With

project scope under control, management will face far less

daunting issues. Proper scope definition requires a set of

requirements that fit both the business and user needs.

Unfortunately, there is little agreement among professionals

regarding how those requirements should be captured and

documented. An analogy for this disagreement can be drawn

to building a house. Constructing a new house utilizes

blueprints (models) that have been approved by the future

owner and a defined work (construction) process that follows

this design. In the construction industry, there are

documented standards that are adhered to by the work force

(and inspectors that confirm that status). Contrast the

construction industry’s accepted discipline to the information

technology industry which still struggles with fundamental

definitions for blueprinting standards, coding standards, and

other activities involved in the formalization of a

development process. IT would profit from following the

lessons learned from the construction and the aerospace

industries. Bridges and airplanes seldom fall down from poor

work process, but computers systems do. This process

maturity could be improved through adherence to improved

technical work and management practices.

At least two factors have led to the IT industry’s lack of

process standardization. First, the rapid change of

technology, coupled with the too common “magic bullet”

mindset, clouds the implementation of a commonly

accepted approach. Each year newly enhanced and more

advanced development tools enter the market. So, it is hard

to settle on a single one for an extended period of time.

Second, the work force is by nature highly intelligent,

creative, and technically literate. They do not like to be

shackled with a formal process that is viewed as out of date

by the time it is published. Instead, a dynamic software

development tool set is preferred which undermines the

acceptance of a standardized formal process. This tension

might not abate soon, but management must force greater

structure into the process in order to improve this situation.

An appropriate management process is not significantly

affected by technology changes. Technology can be an

accelerator of a good process, but probably will not do

much to improve a flawed process. Viable stable processes

can be installed and technology enhancers added to these as

they become mature products.

4.4. Implementation Domain

Extending the actual development effort is the process of

migrating a finished system into a production environment.

As systems grow in scope, the mechanics to successfully

deploy a system into the production environment also grows.

In many cases the deployment tasks will require changes to

central servers, remote hardware, networks, data bases, and,

often most critical, user business processes. In most cases the

purpose of the new system is to implement new business

processes and to modify existing ones. Project teams often

lose sight of these impacts and are often disappointed when

users are not excited to see the new system. In fact, users

often respond apathetically to, or even resist, what the

developers saw new opportunities. The mechanics related to

the new system are sometimes not timely communicated to

users. In order to be successful, these implementation issues

must be dealt with in a similar manner in which internal

project work tasks are analyzed and dealt. Invariably,

resources are allocated to accomplish the business process

change created by a new system.

The key message with implementation is the project plan

must address the essential organizational, behavioral and

process requirements as well as technical ones. It is important

for higher level and project managers recognize that the

knowledge and skills for organizational change are quite

different from the technical skills. IT staff has often not been

16 Charles William Butler and Gary Lowell Richardson: Completing Information Technology Projects as Scheduled and on Time

trained in organizational change and personalities are not

acclimated toward cultural and social change management

processes. Changing business processes is often more

difficult than it appears given the business users may not

share a common vision, may want to learn something new, or

may fear negative consequences. These potential stumbling

blocks might be avoided by selecting a manager from the

impacted user community as the project leader or project

team liaison.

5. Costs and Benefits

A major hurdle for an organization moving toward

development process improvement is allocating resources

with low likelihood of short-term benefits. Two or more

years may be required to see visible results. In the short term

a rigorous project management model will add about 10%

above the base costs of the technical work tasks. These

economics might be a tough sale, particularly in a company

culture driven by quarterly earnings reports. Attitudes

towards project activities are now shifting away from the

technical bias toward an increased management focus. Senior

management no longer tolerates the historical levels of

project failures and the corresponding lack of visibility in

regard to ongoing project status. Project stakeholders are

looking for visibility and predictability. When one reviews

some of the meteoric cost and schedule overruns resulting

from attempts to install ERP systems (e.g., SAP, Oracle,

Lawson, etc.) over the past years, it is little wonder that the

need for more control has become so widespread. If

management does not care how much is being spent, when a

project will be finished, and what the system will do, project

management is not needed. Rationally, not many companies

are so tolerable.

On the surface there are convenient excuses to not add the

project management overhead. What is it worth to

management to know the actual status of the project

including schedule, budget and functionality? What is it

worth to know your software development organization can

reliably meet its responsibilities? Too often poorly organized

projects operate long after the organizational value for the

project has gone. Effective project management dictates

corrective action be initiated in a appropriate time frame, not

after damage is done. As organizations learn to effectively

use formalized project management processes, the overhead

level declines to the 5% range. [3] The real benefits derived

from effective project management are the potential for lower

project costs and future operational benefits. Some examples

are improved estimating techniques, well-defined operational

processes, early detection of missed requirements, and

lessons learned. Four-fold productivity increases have been

measured by organizations who have successfully

accomplished improved level of task and management

maturity. [12] The alternative is to leave the situation in

limbo and to pay a far larger price in future cost overruns and

failed projects.

There are two final items surrounding the core discussion

regarding project management benefits. First, over the past

few years, IT has become increasingly embedded into the

business process fabric of the firm. Major business processes

cease to operate when the associated system is not working.

The airline reservation system is high profile example, but

more and more companies are operating business architecture

enabled by technology architecture. These highly interactive

architectures have global scope and complex functionality

requiring 24/7/365 availability. Such business functionality

and technology cannot be thrown together necessitating more

careful planning, design, and integration than the systems of

just ten years ago.

Second, a system lives in a community of other systems

each competing for scarce resources. In order for project

management to be successful in an enterprise, there must be a

rational allocation of resources scheme across the investment

portfolio. In many organizations, the enterprise investment

process is handled by an organization entity, usually the

Project Management Office (PMO). This organization is

critical to keep the overall organization moving in the right

direction, not only from a process functional view but also

from a technical and financial standpoint. Properly

constituted, the PMO aids in implementing the concepts

discussed in this paper and is the best current tactic for

keeping the organization aligned with business goals and

information systems.

6. Conclusion

The risks and costs associated with an ineffective

software development projects are well documented. In this

paper, the broad waterfront of traits required for project

success in software development were explored. At this

point in the evolution of project management knowledge,

there is contemporary research and practice indicating that

defined, formalized project management processes have a

positive effect on the short and long term project execution.

Moving an organization to a mature system development

environment is a multiple-year challenge that requires

tenacious senior executive leadership and commitment and,

probably, the transfusion of a new project management

culture. Successful implementation of a more mature

project management state will herald measurable

improvements in future deliverables and outcomes.

Conversely, failure to change the status quo will likely

exacerbate the current trends and eventually trigger

credibility loss of in-house software development capability

when compared to third party providers who achieved the

goal. Hopefully, this discussion regarding project

management and software development concepts, processes,

tools, and repositories stimulated motivation to pursue

organizational and cultural renaissance. The general

roadmap and key outlined points should aid in formulating

an organizational strategy to achieve successful

development projects.

 American Journal of Software Engineering and Applications 2019; 8(1): 8-17 17

References

[1] “The Best and the Worst: Top 10 Corporate IT Failures in the
1990s”, September 30, Computerworld, 2002,
ttp://www.computerworld.com/news/2002/story/0,11280,7462
0,00.html.

[2] Information Technology Project Management, RMC
Publications, Inc., Schwalbe, Kathy. Ninth Edition, 2018.

[3] “Searching for the $$$ Value of Project Management,” Ibbs,
William P. presented at the PMI Houston 2003 Conference,
Houston, Texas, November 7, 2003.

[4] “Chaos,” 2014 Project Smart. The Standish Group Report,
2014.

[5] “Connecting the Dots”, Benko, C. and McFarlan, Warren F.
HBS Press, 2003.

[6] “Extreme Chaos,” The Standish Group Report. 2001.

[7] “Manifesto for Agile Software Development,”
www.agilemanifesto.org.

[8] Integrated Computer Engineering, www.ICEINCUSA.com.

[9] UML Distilled: A Brief Guide to the Standard Object
Modeling Language, Edition 2, Fowler, Martin and Scott,
Kendall. Addison-Wesley, 1999.

[10] “New to Rational,”
https://www.ibm.com/developerworks/rational/newto/.

[11] A Guide to the Project Management Body of Knowledge
PMBOK® Guide, 2017 Sixth Edition, Project Management
Institute, Newtown Square, PA.

[12] ”How Mature is Your IT Organization?” Curtis, Bill.
Presented at the Information Systems Research Council,
University of Houston, Houston, Texas, January 16, 2003.

[13] Radical Project Management, Thomsett, Rob. Yourdon Press,
2002.

[14] Software Engineering Institute. The Software Engineering
Institute (SEI) is a federally funded research and development
center sponsored by the U.S. Department of Defense and
Operated by Carnegie Mellon University (www.sei.cmu.edu).

