

American Journal of Software Engineering and Applications
2013; 2(2) : 68-79

Published online April 2, 2013 (http://www.sciencepublishinggroup.com/j/ajsea)

doi: 10.11648/j.ajsea.20130202.16

A metric based approach for analysis of software
development processes in open source environment

Parminder Kaur, Hardeep Singh

Department of Computer Science and Engineering, Guru Nanak Dev University, Amritsar-143005, India

Email address:
parminderkaur@yahoo.com (P. Kaur), hardeep_gndu@rediffmail.com (H. Singh)

To cite this article:
Parminder Kaur, Hardeep Singh. A Metric Based Approach for Analysis of Software Development Processes in Open Source Environment,

American Journal of Software Engineering and Applications. Vol. 2, No. 2, 2013, pp. 68-79. doi: 10.11648/j.ajsea.20130202.16

Abstract: Open source software (OSS) is a software program whose source code is available to anyone under a license

which gives them freedom to run the program, to study, modify and redistribute the copies of original or modified program.

Its objective is to encourage the involvement in the form of improvement, modification and distribution of the licensed work.

OSS proved itself highly suited, both as a software product and as a development methodology. The main challenge in the

open source software development (OSSD) is to collect and extract data. This paper presents various aspects of open source

software community, role of different types of users as well as developers. A metric-based approach for analysis of software

development processes in open source environment is suggested and validated through a case study by studying the various

development processes undertaken by developers for about fifty different open – source software’s.

Keywords: Free Software, Freedom, Open Source Software (Oss), Propriety Software, Oss Developer Community, Oss

Metrics

1. Introduction

Free software (Stallman, 1983) provides users the

freedom to run, copy, distribute, study, change and improve

the software. Four essential freedoms are provided to user’s

i.e.

• The freedom to run any of the programs for any

purpose (freedom 0) i.e. the freedom for any kind of person

or organization to use it on any kind of computer system, for

any kind of purpose, without communicating the developer

or any other specific entity..

• The freedom to study how the program works, and how

it does computing according to users wish (freedom 1).

Access to the source code is a precondition for this.

• The freedom to redistribute copies so user can help

their neighbors (freedom 2) i.e. it must include binary or

executable forms of the programs as well as source code, for

both modified and unmodified versions.

• The freedom to distribute copies of modified versions

to others (freedom 3). By doing this, user can give a chance

to benefit from his/her changes to whole community.

In order for these freedoms to be real, they must be

permanent and irrevocable as long as nothing does wrong. If

the developer of the software has the power to revoke the

license, or retroactively change its terms, software is not

free.

Open source software (Raymond, 1998) is software for

which the source code is available to everyone for

modification and inspection. This is in contrast with

propriety software which cannot be inspected and modified

by anyone. In the last ten years, open source software (OSS)

has attracted the attention of not only the practitioner, but

also the business and the research communities. OSS has

proven to produce software of high quality, functionality and

wide development. Open Source Definition include the

GNU Public License (GPL), the BSD license used with

Berkeley Unix derivatives, the X Consortium license for the

X Window System, and the Mozilla Public License. Open

source software definition includes the following terms

listed as:

• Free Redistribution: -Anyone who received the

software legally can share all of it with anyone without

additional payments.

• Source Code: -The program must include source code,

and must allow distribution in source code as well as

compiled form. Intermediate forms such as the output of a

preprocessor or translator are not allowed. The source code

of the software must be distributed as well or be available at

reasonable reproduction cost.

• Derived Works:-The modification of the software and

the distribution of this derived work must be allowed.

 American Journal of Software Engineering and Applications 2013, 2(2): 68-79 69

• Integrity of the Author's Source Code:-The distribution

of modified source code must be allowed although

restrictions to ensure the possibility to distinguish the

original source code from the derived work are tolerated, e.g.

requirement of different names.

• No Discrimination against Persons or Groups: -The

license must not discriminate against any person or group of

persons.

• No Discrimination against Fields of Endeavor: -The

license must not forbid the usage of the software in specific

field of endeavor, e.g. business or genetic research.

• Distribution of License:-The rights attached to the

program must apply to all to whom the program is

redistributed without the need for execution of an additional

license by those parties.

• License must not be specific to a Product:-The rights

given by the license must not be different for the original

distribution and any other one even when it takes place in a

totally different context.

• License must not contaminate other software:- The

license must not demand any condition on the software

distributed along with the licensed software.

2. Related Work

Open source software is now the demand of era.

Literature survey includes various aspects of different

researchers. Open source is a term that has recently gained

currency as a way to describe the tradition of open standards,

shared source code, and collaborative development behind

software such as the Linux and FreeBSD operating systems,

the Apache Web server, the Perl, Tool Command Language

(Tcl), and Python languages, and much of the Internet

infrastructure, including Bind (the Berkeley Internet Name

Daemon servers that run the Domain Name System), the

Sendmail mail server (sendmail.org), and many other

programs.

(John, 1998) has viewed that qualitative data analysis

(QDA) is a symphony based on three notes: Noticing,

Collecting, and Thinking about interesting things. The

process has characteristics such as Iterative and Progressive,

Recursive. QDA has simple foundation but the process of

doing qualitative data analysis is complex. (Katherine and

Tony, 2002) has viewed as open source has been most

successful in back-end types of applications such as

operating systems. They analyzed the projects listed on the

www.freshmeat.net developer forum on the basis of two

indicators i.e. vitality on the project and the popularity of the

project. Vitality has been calculated using the number of

announcements about a project and the time since its last

release. Popularity is based on the number of people who

subscribe to the project.

(Fredrik, 2002) has asked that open source development

model is not only producing software but also produces the

interacting system of knowing, learning and doing, which

organizes the community and its relations with other

communities. Users are allowed to download the software

from the Internet and use it without charge and granted the

right to study the software’s source code, to modify the

software, and to distribute modified or unmodified versions

to others.

(Jin and Madey, 2004) has told that OSS community as a

complex, self-organizing system. Developers are main

components in the network. An OSS developer community

is composed of a group of loosely-connected contributors.

An OSS community can be classified as different roles:

active and passive users, peripheral developer, central

developer, core developer, project leader. Data is gathered

from the 2003 data dump provided by SourceForge.

(Jin Xu et al, 2005) has included users and developers in

research paper. Passive users download code and use it for

their needs. Active users discover and report bugs, suggest

new features. The Peripheral developers irregularly and

Central developers regularly fix bugs, add features, submit

patches, provide support, write documents and exchange

other information. Core developers manage CVS releases

and coordinate peripheral developers and central developers.

Project leaders guide the vision and direction of a project.

Many difficulties exist in collecting, cleaning, screening and

interpreting data. (Chris, 2005) has used models for Apache,

Mozilla, and Net-Beans to show the relationships between

tools, agents, their nonfunctional requirements and

functional requirements. The quality assurance (QA)

process can be modeled in Mozilla Web browser as a rich

hypermedia, Apache release process with flow graph, and

Net-Beans requirements and release process, can be

modeled formally and reenact. The approaches to modeling

software development processes within and across these

communities, as well as issues and trade-offs that arise along

the way are described.

(David et al, 2006) has suggested that essential

characteristics of the software like reliability,

maintainability or sustainability cannot be identified by

source code inspection alone, but have to include the

environment in which it has been created. The requirements

are structured into the aspects of various functional, non

functional, technical, organizational, legal, economical and

political.

(Ismail et al, 2007) has given information about open

projects that can be obtained from two main sources, either

the source code or the document produced. This is a static

source that enables analysis on the quality of the product.

Dynamic information is needed to go through the stages of

development and the communication between the peers.

Various metrics are used to quantify the roles of core

developers, release stability are used.

(Henrike et al, 2009) has proved that data collection is

time consuming process and requires some effort. To solve

this problem, tools are developed for metrics analysis of a

large number of software projects. Measurement and data

collection is performed in three phases, two automated and

one manual phase.

(David, 2011) tells us about the recent analysis of

companies contributing code to the Linux kernel. It shows

 American Journal of Software Engineering and Applications 2013, 2(2): 68-79 70

that large companies including Novell, IBM, Intel, Nokia

and Texas Instruments are getting serious about engaging in

community development. Organisations such as the Linux

Mobile (LiMo) Foundation are encouraging their members

to work with community projects “upstream”, that is, with

the community rather than in isolation, to avoid missing out

on millions of dollars worth of “unleveraged potential”

(PDF link). Sun Microsystems and AOL are prominent

examples of companies which went full speed into

community development, but were challenged (to say the

least) in cultivating a mutually beneficial relationship with

community developers.

3. Open Source Software Community

Open source software community (figure 1) can be

classified into two groups as: User group and Developer

group.

User group further categorizes in Passive users and Active

users. Passive users have no contribution in the development

of the software projects. They are attracted to OSS mainly

due to its high quality and potential of being changed when

needed. Active users not only use the system, but also try to

understand how the system works by reading the source

code. They can suggest new features, discover and report

bugs and exchange other useful information by posting

messages to forums and mailing lists.

Peripheral Developers contribute occasionally new

functionality or features to the existing system. They

irregularly fix bugs, provide support, write documents and

exchange information. Their period of involvement is short

and sporadic. Central Developers are the major development

force of OSS systems. They regularly fix bugs, add new

features, submit patches, provide support, write documents

and exchange information. Core Developers are responsible

for guiding and coordinating the development of an OSS

project. Core Developers are those people who have been

involved with the project for a relative long time and have

made significant contributions to the development and

evolution of the system. OSS projects in which single

Project Leader no longer exists and the Core Developers

form a council to take the responsibility of guiding the

development, such as the Apache Group and the

PostgreSQL core group.

Figure 1. Open source software community [5].

Project Leader is often the person who has initiated the

project. He or she is responsible for the vision and overall

direction of the project. Bug Fixers fix bugs that either they

discover by themselves or are reported by other members.

Bug Reporters discover and report bugs. They do not fix the

bugs themselves, and may not read source code either. They

assume the same role as testers of the traditional software

development model. The existence of many Bug Reporters

assures the high quality of OSS.

Contributors communicate with each other through online

tools and platforms. OSS development process is open

involving a large number of developers submitting

contributions that may have significant variations in quality.

The communication tools are Concurrent Version System

CVS), mailing list, bug tracking systems, online discussions

forums.

4. Sourceforge.Net: an Open Source

Software Community

SourceForge.net is the world's largest Open Source

software development web site. On July 2011, the

SourceForge repository hosts more than 300,000 projects

and has more than 2 million registered users. The aim of

SourceForge.net is to enrich the Open Source community by

providing a centralized place for Open Source developers to

control and manage Open Source software development. To

fulfill this mission goal, it offers a variety of services to

projects that are hosted, and to the Open Source community.

SourceForge.net stores a set of common attributes for all

projects. These attributes are divided into two groups, the

first contains static information about the project such as the

license, and the second contains information such as the

number of code changes committed to Concurrent Version

System Active users. Passive Users have no direct

contribution in the development of the software projects.

They are attracted to OSS mainly due to its high quality and

the potential of being changed when needed. Active users

not only use the system, but also try to understand how the

system works by (CVS).

SourceForge.net uses relational databases to store project

management activity and statistics (sourceforge.net

Research Data available at www.nd.edu). There are over 100

relations (tables) in the data dumps provided to university of

Notre Dame. Some of the data have been removed for

security and privacy reasons. SourceForge.net cleanses the

data of personal information and strips out all OSTG (Open

Source Technology Group) specific and site functionality

specific information. On a monthly basis, a complete dump

of the databases (minus the data dropped for privacy and

security reasons) is shared with Notre Dame. The Notre

Dame Researchers have built a data warehouse comprised of

these monthly dumps, with each stored in a separate schema.

Thus, each monthly dump is a snapshot of the status of all

the SourceForge.net projects at that point in time. As of

March 2007, the data warehouse was almost 500 GBytes in

 American Journal of Software Engineering and Applications 2013, 2(2): 68-79 71

size, and is growing at about 25 GBytes per month. Much of

the data is duplicated among the monthly dumps but changes

in project activity and structure can be discovered by

comparing data from the monthly dumps. To help

researchers determine what data is available, an ER-diagram

and the definitions of tables and views in the data warehouse

are provided. However, SourceForge.net site provide hints

as to what types of data might be available in the

SourceForge.net data warehouse to support research into the

Free/Open Source Software.

A. Types of Data that Can be Extracted from the

SourceForge.net Research Data Archive

The following are types of data that have been extracted

from the SourceForge.net Research Data Archive:

• Project sizes over time (number of developers as a

function of time presented as a frequency distribution)

• Development participation on projects (number of

projects individual developers participate on presented as a

frequency distribution).

• The extended- community size around each project

including project developers plus registered members who

participated in any way on a project (discussion forum

posting, bug report, patch submission, etc.)

• Date of project creation (at SourceForge.net)

• Date of first software release for a project

• SourceForge.net ranking of projects at various times

• Activity statistics on projects at various times

• Number of projects in various software categories, e.g.,

games, communications, database, security, etc.

Since all of the archived data is stored in a relational

database, data to support F/OSS investigations will be

extracted using SQL queries against the data warehouse.

5. Open Source Software Metrics

Metrics are used for measurement, comparison or to track

performance or production. Metrics helps to compare the

performance of software at various levels. Metrics helps in

good decision making or improvements in the project.

Metrics should be accurate, timely and actionable. Metrics

are derived from the earlier data. These must be

understandable, economical and must be useful at the

various levels of the development of the project (Pinker S.,

2009), (David et al, 2003), (Kaur and Singh, 2011), (Kaur &

Kaur, 2012). Metrics used in this research work are:-

A. Total Number of Contributions

A large number of users contribute towards the

development of the project but developers appear to become

more influential contributors to their open source.

Developers play more roles in open source projects. The

contributors can contribute either to a single project or

multiple projects. This metric is related to the number of

contributors for a given project irrespective of their

affiliations to other projects.

B. Average Domain Experience of Contributors

Contributors participating in the software development

have some expertise and experience in that domain area

contribute to the project. This metric helps in evaluating the

average experience of all the contributors taken together and

can be represented as

Cumulative Experience of Contributor i.e.

 � � � ��

�

��	

[Where ei is the experience of an individual contributor in

that domain.]

Average Experience of Contributors i.e. �
�� � �
⁄

[Where N is total number of contributors.]

C. Average Time for a Completion of a version of

Project

The average time for a completion of a version of project

can be calculated as:

Average Time i.e. Tavg = ����
� /
�������

Where ������ is total time taken to develop all the

versions and ������� is the total number of versions

generated. Greater average would indicate software

development processes resulting from various factors like

low number of contributors, their lack in experience or

complexity of the project etc.

D. Bugs Track per Version

The detected bugs could be allocated to various

development processes like requirement specification,

design, coding and testing. This metric helps in measuring

the total number of bugs located and repoted per version.

Greater the number of bugs detected/tracked more is the

inefficiency of various development processes.

E. Patch Accept Ratio

Patches are change sets that can be applied to the software

using a specific tool: the patch tool. Patches may introduce

new features, fix bugs, translate strings to a different

language, or re-structure parts of the software. Every

contributor sends a patch to the developer mailing list for the

enhancement of the product. Patch tool takes a patch file that

contains the details of the modifications and applies them to

the original version of some code in order to create a new,

updated version.

Patch Accept Ratio i.e. total no of patches accepted /total

no of patches sent

A high Patch Accept Ratio indicates high competence of

contributors and reverse is true for the less patch ratios.

F. Total Number of Weekly Downloads

Weekly downloads of a particular software can be

obtained from sourceforge.net website.

6. Automation of Open-Source Software

Metrics

To automate the open-source software metrics, suggested

in section VI, a case study deals with 50 open source

software’s (obtained from www.sourceforge.net) is taken

(Annexure 1). A tool named as Software Metric calculation

Tool, is developed using Asp.Net Framework with

MS-Access as database storage. This study is performed on

 American Journal of Software Engineering and Applications 2013, 2(2): 68-79 72

the basis of following parameters to critically analyze the

behavior of open-source software community:

• No. of Contributors

• Average domain experience of Contributors

• Weekly downloads

• Patch submitted

• Patch accepted

• Time to generate first version

• Time to generate last update

• Total number of versions

• Total number of bugs/fixations/updations w.r.t. a

particular version

• Weekly downloads

A. Working of Software Metrics Calculation Tool

The working of Software Metrics Calculation tool is

shown as below:

• Figure 2 shows that details of software such as project

name, weekly downloads, total versions, patch submitted,

patch accepted, start date and last update date of the project.

Average time and patch accept ratio are calculated

automatically by clicking on the calculate button.

Information about the new software is added in the database

by selecting add new option. Average time is calculated by

taking the diff between start date and last update divided by

number of versions.

Figure 2. Software Details Form.

• Figure 3 show that user first selects the name of the

software and then specify the number of contributors

involved in the software.

Figure 3. Number of Contributors form

 American Journal of Software Engineering and Applications 2013, 2(2): 68-79 73

• Figure 4 shows average domain experience, which is

calculated in days. If more than one contributor is involved

in particular software then experience of each contributor is

calculated in number of days and sum is divided by the total

number of contributors.

Figure 4. Average Domain Experience Form

• Figure 5 represents the way how details of each version

are stored in database. These details includes software name,

version name, number of bug fixes, number of existing

features updated, number of new features added and number

of existing features dropped.

Figure 5. Versions Details Form

• Five types of graphs are generated to show the

development process of all the versions, total number of

bugs fixed, total number of features update, total number of

features added and deleted. Figure 6 represents shows

development graph of all the softwares.

 American Journal of Software Engineering and Applications 2013, 2(2): 68-79 74

Figure 6.- Development Graph Form

• Around 50 softwares have been taken for validating the

proposed set of metrics. Every ach software is evaluated on

the basis of total number of bug’s fixed, total number of

features update, total number of features added and deleted.

All details with respect to softwares are manually collected

from www.sourceforge.net data dump. A We obtained

password is obtained in order to access their data dump.

However, the proposed metrics are being calculated

automatically by the Software Metric Calculation Tool.

Figures 7, 8, 9, 10 show all these activities simultaneously

with respect to software WinMerge (a Windows-based tool

for visual difference display and merging, for both files and

directories), having weekly downloads numbering 34126,

with 72 total number of versions in 2011 having first version

on 2000. The total number of patches submitted for this

product is 3016, out of this; only 2182 are utilized for

generating next versions (Annexure 1).

Figure 7. -This shows graph of bug fixes performed in WinMerge. Maximum bugs are fixed in older versions.

 American Journal of Software Engineering and Applications 2013, 2(2): 68-79 75

Figure 8.- This figure represents updates performed in WinMerge.

Figure 9.- This figure shows graph of new features added to WinMerge.

7. Conclusions

This paper makes an effort to explore some concepts

related to free software, open source software and open

source software community. Open source software

community is a combination of active users as well as

passive users which consists of developers, project leaders,

bug fixers & reporters. A great data is available with respect

to open source software community through which one can

make the comparative analysis between different above said

issues and concerns. A metric-based approach is explained

 American Journal of Software Engineering and Applications 2013, 2(2): 68-79 76

to check the evolution of open source software development

processes. Future work will include the automation of

collection of raw data from various resources.

Annexure - 1

S No.
Project

Name

Weekly

Downloads

Contributors

 Name

Staring

time in

the domain

Patch

Submitted

Patch

Accepted

Time

to

generate

 first

versions

(Start)

Time

till last

version

complete

(last update)

Total

number

of

versions

1 Warkeys 27423 Warkeys 19-2-2006 - - 20-2-2006 12-1-2012 42(124)

2
Calmwin free

antivirus
80268

Alch,

gianlivigi tiesi

22-3-2004,

5-6-2000
10 - 25-3-2004 3-4-2012 62

3 Celestia 10511 Ajtribick , chris laurel
5-1-2008,

23-2-2001
7 - 23-2-2001 29-12-2011 4

4 7-zip 1315667 Igor paul 17-8-2000 459 20 10-11-2000 30-6-2011 62

5 Winprint 206

Mieczyslaw

nalewaj, przemek

czerkas

12-11-2001,

12-4-2004
- - 12-4-2004 22-5-2012 2(9)

6 Winmerge 34126
Christian list,

dean grimm

11-9-2002,

28-8-2003
3016 2182 20-10-2000 14-11-2011 72

7
The ASN.1

compiler
49 Lev walkin 11-11-2000 14 - 6-3-2004 16-6-2011 9(54)

8 T38 modem 149

Jordan

kojouharov,

vyacheslav frolov

2-11-2005,

27-11-2003
4 1 2-11-2005 5-7-2011 6(19)

9 Out2Gcal 4 Thisita 14-7-2010 - - 14-7-2010 29-9-2010 7

10 Oreka 268
Bruce kingsland,

henrih, Ralph atallah

2-4-2004,

17-10-2005,

11-11-2008

3 - 17-10-2005 18-10-2011 8

11 OptiPNG 1086 Cosmintruta, rctruta 4-4-2000, 4 1 23-10-2005 20-3-2012 15(30)

12

NIF file

format library

and tools

4606
Alphex, amorilia,

pacific morrowind

9-11-2006,

 8-9-2005,

6-6-2009

32 7 25-5-2009 20-2-2012 179

13 LMS desktop 4

Gianni ven

hoecke, marten,

Patrick law werts

23-12-2009,

18-12-2009,

6-5-2010

6 - 5-6-2010 14-10-2011 18

14 Libusb-win32 8279

Stephan meyer,

 travis robinson,

xiaofan chen

26-2-2003,

22-7-2007,

18-2-2006

15 1 5-4-2003 23-1-2012 30

15 Libjpej turbo 958 D.R.commander 13-8-2004 34 1 4-2-2010 10-2-2012 10

16 Lame 23189

Alexen

Derliedinge,

Gabriel bouvigne,

Robert

hagemem,takehiro

tomingo

16-10-2000,

27-11-1999,

29-11-1999,

28-11-1999

60 14 17-11-1999 28-2-2012 21

17
Keepass

password safe
131359 Dominik reichl 28-8-2003 77 62 15-11-2003 14-5-2012 73

18
Jaris

FLVPlayer
132 JGM, YLM

27-6-2007,

6-3-2010
1 - 18-5-2008 29-8-2011 11

19 Hylafax 3 Stavan jardine 31-1-2001 - - 17-2-2006 6-4-2011 20

20 Hava Fun 5 Elfman 21-8-2009 1 - 22-8-2009 28-11-2011 3

21 Grsync 121 Piero clrsoni 3-2-2010 3 1 3-2-2010 13-1-2012 5

22
Graphics

magick
757 Bob friesenhaHn 30-12-2000 27 - 7-2-2003 28-4-2012 15(46)

 American Journal of Software Engineering and Applications 2013, 2(2): 68-79 77

23 Googsystray 68 Jim duchek 11-1-2000 3 1 8-9-2009 6-6-2011 15(24)

24
Gnuplot

development
8364

Hons-bernhard

broeker, clark

gaylord, lars

hecking, ethan merritt

20-4-2000,

31-1-2000,

27-4-2000,

2-6-2001

607 344 31-1-2000 12-3-2012 18

25
Gallon tivo

media server
71 John kohl, leon nicholls

31-7-2004,

7-8-2003
11 7 11-12-2004 24-3-2011 8

26 Frhed 1086 Kimmo varies 18-10-2002 38 4 10-8-2008 6-6-2011 14(15)

27 Folder RAID 2 Liran 1-7-2010 - - 31-8-2010 3-12-2011 9

28
Dropbox

plugin
402 July ighor 5-11-2009 - - 5-11-2009 2-10-2011 8

29 DeSmuME 4732
Guillaume

duhamel, zeromus

11-9-2003,

18-3-2002
138 46 23-12-2006 26-4-2012 16

30 Dban 22379 Darik horn 10-6-2002 2 2 6-9-2002 29-6-2011 16

31

WCD- change

directory for

DOS and Unix

6 Erwin waterland 9-9-2001 58 41 9-9-2001 29-2-2012 31(68)

32 libreCad 2576 Ries van twisk, dongxi li
20-1-2001,

10-3-2011
35 2 13-8-2010 24-4-2012 6

33 Vantage 7
Mchansy, raoul

van bugen

23-7-2009,

15-5-2011
- - 27-4-2009 5-9-2011 5

34 Ultradefrag 15580

Dmitri

arbhangelski,

gearspec, justin

dearin, zsolt nagy,

Stefan pendl

25-6-2007,

28-12-2008,

8-7-2001,

11-3-2008,

28-4-2009

- - 25-6-2007 22-4-2012 57(58)

35 Pstoedit 1424 Wolfgang glunz 25-9-2000 2 2

36 Im4java 158 Bernhard bablok 1-1-2001 - - 23-1-2009 4-4-2012 11

37 DAR 175 Denis corbin 23-10-2002 30 3 25-10-2002 15-4-2012 47

38 Butt 580 Daniel nothen 20-9-2007 - - 21-9-2007 14-10-2011 16

39
Open video

player
713

AdamGreen

Baren, Charles

newman, dan

sparacice, james

mutton,

Nicholas

brooking,

 pankaj , tommy

petrovic

19-10-2009,

22-10-2008,

2-7-2010,

 22-10-2008,

11-11-2008,

24-5-2010,

4-6-2010

3 - 21-8-2008 29-6-2011 23

40 Atunes 6670 Fleax 27-6-2006 42 18 7-3-2006 30-4-2012 49

41 Cafesip 19
Amit chatterjee,

 becky Mc

16-6-2004,

23-6-2004
- - 14-5-2005 26-4-2012 16

42

FreeRTOS

Real Time

Kernel

1586
Richard

4-6-2004 59 2 9-6-2004 14-5-2012 65

43 SynKron 2592 Matus tomlein 4-5-2007 - - 7-5-2007 25-6-2011 13

44 Py2exe 3479

Jimmy retzlaff,

Mark

hammOnd,

Thomas heller

7-11-2000,

16-2-2000,

 3-2-2000

27 5 29-11-2000 3-10-2011 17

45 Kdiff3 3994 Joachim eibl 25-7-2002 13 1 25-7-2002 14-10-2011 11(32)

 American Journal of Software Engineering and Applications 2013, 2(2): 68-79 78

46 Nbuexplorer 3847 Petrusek 23-8-2007 - - 2-10-2009 26-5-2012 26(27)

47 Jconvert 636 Eds 10-7-2007 - - 17-7-2008 8-5-2011 11

48
Brain

workshop
11512 Paul hoskison 8-8-2008 1 - 8-8-2008 5-4-2012 12

49 ScummVM 19912
Eugene

Sandulenke, Strangerke

5-3-2001,

10-6-2004
1536 1282 5-3-2001 21-2-2012 37

50 iramuteq 123 Pierre 4-1-2010 - - 4-1-2010 16-1-2012 9

References

[1] Anas Tawileh, Omer Rana, and Steve McIntosh (2008), “ A
social networking approach to F/OSS quality assessment”,
In Proceedings of the First international conference on
Computer-Mediated Social Networking (ICCMSN'08),
Maryam Purvis and Bastin Roy Savarimuthu (Eds.).
Springer-Verlag, Berlin, Heidelberg, 157-170.
DOI=10.1007/978-3-642-02276-0_16
http://dx.doi.org/10.1007/978-3-642-02276-0_16

[2] C. Jensen and W. Scacchi (2005), “Process Modeling
Across the Web Information Infrastructure”, Wiley
InterScience, available at
http://www.ics.uci.edu/~wscacchi/Papers/New/Jensen-Sca
cchi-SPIP-ProSim04.pdf

[3] Cruz, T.Wieland and A. Ziegler (2006),” Evaluation
Criteria for Free/Open Source SoftwareProducts Based on
Project Analysis”, Wiley InterScience. available
athttp://www.idi.ntnu.no/grupper/su/courses/tdt10/curricul
a2010/P5-1-Cruz06.pdf

[4] David P., Waterman A., Arora S. (2003),” The free/ libre &
open source software survey for 2003”, STANFORD
UNIVERSITY, CALIFORNIA, USA, available at
http://www-siepr.stanford.edu/programs/OpenSoftware_D
avid/FLOSS-US-Report.pdf

[5] David Neary, (2011), “ Open Source Community Building:
A Guide to getting it Right”, available at
http://www.visionmobile.com/blog/2011/01/open-source-c
ommunity-building-a-guide-to-getting-it-right/

[6] Fredrik Hallberg (2002), “The use of the open source
development model in other than software industries.
http://www.opensource-marketing.net/OSD.pdf

[7] H. Barkmann, R. Lincke and W. Lowe (2009),
“Quantitative Evaluation of Software Quality Metrics in
Open-Source Projects”, advanced Information Networking
and Applications Workshops.
http://www.arisa.se/files/BLL-09.pdf

[8] Ismail Ari (2007), “Quantitative Analysis of Open Source
Software Projects”, the Handbook of Computer Networks,
Volume 2, http://users.soe.ucsc.edu/~ari/ari-quan-OSS.pdf

[9] J. Seidel (1998),” Qualitative Data Analysis”, SAGE
Publications., available at
http://www.quarc.de/fileadmin/downloads/Qualitative%20
Data%20Analysis_the%20N-C-T%20Modell.pdf

[10] J Xu and G. Madey (2004),” Exploration of the Open
Source Software Community”, Available
athttp://www.cse.nd.edu/~oss/Papers/naacsos04Xu.pdf

[11] J. Xu, Y. Gao, S. Christley and G. Madey (2005), “A
topological analysis of the open source software
development community”, In proceedings of 38th Hawaii
International Conference on Systems Science,
Hawaii,http://www.nd.edu/~oss/Papers/7_11_07.PDF

[12] K. Stewart and T. Ammeter (2002), “An exploratory study
of factors influencing the level of vitalityand popularity of
open source projects”, In proceedings of international
conference on information systems, available at:
http://www.rhsmith.umd.edu/faculty/kstewart/ResearchInf
o/StewartAmmeter.pdf

[13] Kaur P. and Singh H. (2011),” Measurement of Processes in
Open Source Software Development”,in proceedings of
Journal , Trends In Information Management, (TRIM)
University of Kashmir, Srinagar, ISSN-0973-4163, Volume
7, Issue 2, pp 198-207, available
athttp://www.inflibnet.ac.in/ojs/index.php/TRIM/article/vi
ewFile/1254/1135

[14] Kaur M. and Kaur P. (2012), “A Review of an Open Source
Software Community”, In proceedings of National
Conference in Emerging Computer Technologies (CECT
2012), vol. 2, page 107-110.

[15] Nicolas Ducheneaut(2005), “Socialization in an Open
Source Software

[16] Community: A Socio-Technical Analysis”, Palo Alto
Research Center, 3333 Coyote Hill Road, Palo Alto, CA,
94304, USA, available at
http://www2.parc.com/csl/members/nicolas/documents/JCS
CW-OSS.pdf

[17] Pinker S. (2009),“Software Estimation, Measurement, and
Metrics”, GSAM Version 3.0, available
athttp://www.stsc.hill.af.mil/resources/tech_docs/gsam3/c
hap13.pdf

[18] Raj Agnihotri, Murali Shanker and Prabakar Kothandaraman,
“Theorization of the open source software phenomenon: a
complex adaptive system approach”, Journal of Management
and Marketing Research, available at
https://docs.google.com/viewer?a=v&pid=gmail&attid=0.2
&thid=1354765351e41826&mt=application/pdf

[19] Stallman, Richard M (2010), “Free Software, Free
Society”,Selected Essays of Richard M. Stallman, Second
Edition. Boston, Massachusetts: GNU Press. ISBN
978-0-9831592-0-9.

[20] Scott Christley, Jin Xu, Yongqin Gao, Greg Madey, (2006),
“Public goods theory of the open source development
community using agent-based simulation”, Computer
Science and Engineering, University of Notre Dame.,
available at
https://docs.google.com/viewer?a=v&pid=gmail&attid=0.
5&thid=1354765351e41826&mt=application

 American Journal of Software Engineering and Applications 2013, 2(2): 68-79 79

[21] Vinay Tiwari (2011), “Software Engineering Issues in
Development Models of Open Source
Software”,International Journal of Computer Science and
Technology, Vol. 2. http://www.ijcst.com/vol22/1/vinay.pdf

[22] Walt Scacchi (2011),” Understanding the Requirements for
Developing Open SourceSoftware Systems”, publication
with
revisions.http://www.ics.uci.edu/~wscacchi/Papers/New/U
nderstanding-OS-Requirements.pdf

