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Abstract: NDVI is often used to investigate how vegetation contributes to the surface urban heat islands (SUHI) effect. 

Generally, NDVIs obtained for partially vegetated or built-up areas have been found to be less than 0.4. However, anomalous 

NDVIs that are inconsistent with established concepts and relationships are frequently obtained for non-vegetated urban land 

cover. It is possible that these anomalous NDVIs have been distorted by the surface colors and patterns of rooftops. Therefore, we 

obtained NDVIs for an urban industrial area of Gumi, South Korea, and investigated how these NDVIs were affected by such 

surface colors and patterns. By assessing 148 factory rooftops, obtained NDVIs indeed showed a tendency to be affected by the 

surface colors and patterns of rooftops. A color classification of white, blue, purple, and red revealed that blue- and 

purple-colored rooftops resulted in higher NDVIs than other rooftops. Moreover, these rooftops were sometimes misidentified as 

forest and vegetation. The color tone, affected by brightness intensity, also contributed to the NDVIs obtained for blue- and 

purple-colored rooftops. Extreme cases showed that NDVIs obtained for rooftop surfaces could attain values indicative of dense 

vegetation (i.e., NDVIs ≥ 0.6), when blue-colored rooftops were combined with complex surface patterns that generated more 

shadow. From these results, we concluded that the established relationship between LST and NDVI is likely to be invalid for 

non-vegetated urban industrial areas, and that NDVIs obtained for such areas should be used with caution, particularly in studies 

of the SUHI effect. 
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1. Introduction 

The normalized difference vegetation index (NDVI) has 

been widely used in many environmental monitoring 

applications such as surface urban heat island (SUHI) with 

satellite-derived images. Because SUHI is caused by the 

transformation from vegetation to other man-made structures, 

measuring the surface temperatures from urban areas has been 

one of the important issues in the UHI study. In UHI studies, 

NDVI has been frequently employed since it is very useful and 

informative in estimating land surface greenness by 

vegetation as well as simple to be calculated. Due these 

reasons, many environmental related issues took advantage of 

NDVI so that the NDVI-related studies provided us a critical 

insight on the importance of land cover change from 

vegetation to urban structures in many environmental issues.  

For instance, the land surface temperature (LST) is a 

function of surface soil moisture content and vegetation cover 

[1]. Also, the amount of vegetation is strongly associated to 

LST [2] [3]. Also, NDVI contributed to the LST calculations 

for the single-channel thermal infrared (TIR) imagery such as 

Landsat by providing surface material emissivity values to 

calculate LST. [4] found that thermal emissivity was 

logarithmically correlated with NDVI for natural surface and 

pointed out its potential use in energy balance with satellite 

thermal images. This was further studied by [5] that land 

surface emissivity was retrieved from NDVI to investigate the 

coupling of surface temperature and emissivity for soil and 

vegetation type covers. [6] and [7] developed a simplified 

approach to calculate surface temperature with surface 

emissivity derived from NDVI and analyzed the accuracy. The 

surface emissivity was measured using combination of NDVI, 

soil, and vegetation emissivity values. [8] attempted to 

retrieve energy balance estimations for agricultural regions by 

land surface emissivity driven from ASTER thermal images.  

However, these studies with NDVI and surface temperature 

was problematic in urban areas since surface emissivity 

essential for calculating surface temperature primarily with 
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soil and vegetation combination. Therefore, there are natural 

limitations due to the characteristics inherent to the simple 

combination of the red and near-infrared bands, especially in 

urban areas. For example, many studies showed that LST and 

NDVI are negatively correlated and this has been globally 

accepted in SUHI studies typically came with NDVI [9]. 

However, recent findings showed that the NDVI did not 

effectively portray the surface condition typically in urban 

areas [10]. Also, NDVI-LST correlation was dependent on 

both the season and the time of day rather than negatively 

associated. Strong negative correlations were found only in 

the warm seasons (i.e., during May–October), indicating that 

caution should be taken when relying on this well-known 

negative relationship during cold seasons [11].  

In addition, we have often found that vegetation-like 

spectral properties of certain types of artificial land cover 

correspond to high NDVIs. In other words, NDVIs obtained 

for some types of urban cover are often greater than 0.4~0.5, 

which is considered as the typical lower limit of pure 

vegetation. These anomalously high NDVIs have been used 

without notice or identification so that they may cause 

misinterpretation in the relationship between LST and 

vegetation or misidentification of land cover analyses for 

vegetation and urban land covers, typically in urban areas.  

We attempted to reveal what causes these anomalous 

NDVIs and to understand how NDVIs and LSTs change with 

urban surface cover conditions. Specifically, we investigated 

how NDVIs, and their relationships with LSTs, were affected 

by surface colors and patterns triggered from [12]. One 

concern might be that NDVI is limited in its applicability to 

urban areas, because its primary purpose is to detect 

vegetation rather than to classify urban land cover. 

Furthermore, it may be necessary to obtain supplementary or 

secondary information to facilitate urban land cover analyses, 

because NDVI alone provides neither an adequate nor a 

complete measure of land cover properties within urban areas. 

Nonetheless, a sound understanding of basic NDVI properties 

is highly important because the NDVI is widely used, not only 

in analyses of vegetation but also urban land cover in 

environmental monitoring applications. 

2. Data Processing 

The study is focused on the largest industrial area packed 

with industrial facilities in Gumi, Korea. The center of the city 

is at 128
o
23’20.3”N, 36

o
06’20”E and the city is bisected by 

the Nakdong River from the north to the south. Datasets are 

two images of Landsat 5 TM obtained on June 15, 2009, and 

June 22, 2010, and a series of digital aerial photographs taken 

in October, 2011.  

As shown in Figure 1, data processing can be divided into 

three image processing categories; (1) atmospheric correction, 

(2) primary component extraction, (3) NDVI and brightness 

temperature extraction, (4) and rooftop color and pattern 

identification.  

 

Figure 1. Data processing 

2.1. Atmospheric Correction and Classification 

We followed the typical atmospheric correction method 

using the FLAASH module in the ENVI software package for 

band 1 through 5 and 7 of the two Landsat images. The input 

parameters of the atmospheric conditions for humidity, cloud, 

visibility, etc. were retrieved from the meteorological database 

from Korea Meteorological Administration based on 

mid-latitude summer model with water absorption feature of 

1,135 nm and 2-band (K-T) aerosol retrieval with the actual 

approximate visibility of 40 km. 

2.2. Primary Component Extraction 

The pure land covers of soil, vegetation, and water were 

then segmented using a scatterplot with band 3 and 4 [13]. In 

Figure 2, pure soil pixels (green dots) were packed at the 

lowest part of the plot in a small area but pure vegetation (red 

dots) was rather distributed along the vertical axis of band 4. 

Water was located at a highly concentrated area of the 

diagonal end near the horizontal axis.  

 

Figure 2. Primary component extraction for soil, water, and vegetation. 
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2.3. NDVI and Brightness Temperature 

The atmospherically corrected Landsat images of the red 

and near-IR bands were used to calculate NDVI with the 

following equation. 

                 (1) 

where ρ3 and ρ4 are reflectance of TM band 3 and 4, 

respectively. 

The calculation of LST with the TIR band of Landsat 5 TM 

requires surface emissivity which must be determined before 

the LST calculation. We used brightness temperature instead 

to simplify the processing as described in [14]. The brightness 

temperature (or the effective at-satellite temperature) in 

Kelvin can be expressed as the following. 

               (2) 

where K1 = 607.76 and K2 = 1260.56 for Landsat 5 TM, and L 

is the spectral radiance. 

2.4. Rooftop Color and Pattern Identification 

The most important data processing is to separate urban 

land covers by their specific characteristics. Unlike soil, water, 

and vegetation, man-made materials were complex due to the 

mixture of various materials in each individual pixel and they 

hindered characterizing the condition of each pure material. 

Therefore, we selected most frequently appearing covers in 

the study area such as large building rooftops and asphalt 

enough to be covered by Landsat image spatial resolution of 

30 m. 

Aerial photographs with 50 cm spatial resolution were 

manually digitized for the Landsat image pixel extraction of 

asphalt and buildings with areas greater than 3,600 m
2
, such 

that they included at least one rooftop pixel in Landsat images 

with 30 m resolution. The 148 digitized rooftops in total were 

then identified by the surface color and pattern.  

The Landsat rooftop pixels were then divided into subsets 

of gray, blue, green, and red color families based on designed 

color groups in which the digitally assigned pixel values (DNs) 

of Landsat bands 3, 2, and 1 were divided into 8 classes for 

each RGB color band, respectively. Since the Landsat images 

(the 8 bit TIFF image format) carry 256 levels of radiometric 

intensity for each band, total 32 classes for each band 

produced total 512 color groups by mixing the RGB values for 

the rooftop pixels. However, the rooftops in the study area 

could be typically characterized by blue, purple, and red 

colors with various brightness intensity. Therefore, only the 

three color groups with 6 levels of brightness intensity were 

taken into account as identified rooftop colors. Also, the 

digitized rooftops were categorized by the number of ridges, 

allowing for identification of rooftop patterns. The land covers 

of soil, water, vegetation, asphalt and rooftop were finally 

used to extract pixel values of NDVI and LST for each land 

cover. 

3. Results 

3.1. NDVI Characteristics in Urban Areas 

 
Figure 3. Box plots indicating medians and quartiles for (a) NDVI and (b) 

brightness temperature for the land cover types asphalt, rooftop, soil, water, 

and vegetation from June 15, 2009 and June 22, 2010. 

The distributions and averages of NDVIs and LSTs for the 

five land cover categories in the present study are presented as 

box plots in Figure 3. The average NDVIs obtained for forest 

vegetation on the Landsat 5 TM images obtained on June 15, 

2009, and June 22, 2010, were 0.78 and 0.81 with very narrow 

distributions, respectively (Table 1 and Figure 3). Because of 

these high NDVIs (Figure 3a), forest vegetation could be more 

easily differentiated than the other land cover types. Obtained 

NDVIs were below zero for water, even though the averages 

for the two images were very different. This is because the 

Nakdong River running through the study area was under 

rehabilitation from early 2009 to increase its width and depth, 

which made the corresponding pixels darker in the 2010 

image. The NDVIs obtained for vegetation and water were 

positive and negative, respectively, for both images although 

LSTs found for these covers were in a similar range (Figure 

3b). The average NDVI values obtained for both soil and 

rooftops were 0.11 and 0.26 for 2009 images, respectively and 

0.1 and 0.22 for 2010 images, respectively. The soil in the 

study area was homogeneous, causing a tightly packed NDVI 

distribution. However, building rooftops had various surface 

properties, resulting in a wide NDVI distribution. LSTs were 

higher for urban covers than for natural covers, such that LST 

was highest for rooftops, followed by asphalt, and lowest for 

soil. 

3.2. High NDVIs for Rooftops and Asphalt 

Many NDVIs obtained for the rooftop pixels in the Landsat 
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5 TM images from June 15, 2009, and June 22, 2010, appeared 

to be indicative of vegetation (i.e., NDVI > 0.5). The basic 

mechanism of NDVI is based on the spectral capability of the 

near-infrared channel detecting chlorophyll in vegetation. In 

this respect, high NDVI values for the natural land covers such 

as soil, water, and vegetation, should include NIR-responsive 

materials, in natural, typically vegetation. Therefore, many 

UHI studies have claimed that LST has a negative relationship 

with existing vegetation cover, which was assumed to be 

correctly reflected by obtained NDVIs. Although this is 

certainly true for natural land covers with soil and vegetation, 

it may not be for urban areas. Figure 4, which shows NDVIs 

and LSTs with aerial photographs that covered part of the 

study area, illustrates this issue. The rooftop in the red circle at 

the upper left corner in Figure 4a demonstrates high NDVIs, 

i.e., 0.75 and 0.71 for June 15, 2009, and June 22, 2010, 

respectively. Various NDVIs were obtained for other blue 

rooftops, such as the rectangular boxes showing NDVIs of 

0.32, 0.15, 0.56, and 0.4 (Figure 4a). Rooftops exhibiting high 

NDVIs had relatively high LSTs (i.e., in the range 

308.5–310.3 K; average of 303.1 K); however, rooftops 

exhibiting low NDVIs also had relatively high LSTs. In other 

words, LSTs were high regardless of NVDI values, implying 

that the NDVI–LST relationship did not exhibit the typical 

negative correlation between NDVI (i.e., the amount of 

vegetation) and LST. 

 

Figure 4. Factory rooftops illustrating the various surface pattern in the 

study area. (a) circles and squares denote rooftop samples for which high 

and low NDVIs were obtained, respectively; (b) rooftop samples in the upper 

left circle for the maximum and minimum NDVIs; (c), (d) NDVI maps; and 

(e), (f)  temperature maps for 2009 and 2010 Landsat 5 TM image.  

Through inspection of blue rooftops, we were able to 

identify certain NDVI trends over the NDVI range obtained 

for blue rooftops (i.e., from 0.0 to approximately 0.8). 

Identifiable causes of these trends were the color and color 

tone of rooftops and the geometric patterns of rooftop surfaces 

(Figure 4a–4b). 

 

Figure 5. Relationships between color and (a) NDVI and (b) brightness 

temperature of the urban surface. Numbers in front of each color name on the 

x-axis indicate color code for the first digit and color intensity for the second 

digit encoded for classification. 

To quantify these influences for NDVIs, rooftop pixel 

coloring was encoded with the four colors found most 

frequently within the study area based on the color 

identification as described in the methodology: 1 corresponds 

to grey or white, 2 corresponds to blue, 3 corresponds to 

purple, and 4 corresponds to red. Furthermore, the tone (or 

brightness intensity) was also encoded as follows: 1 

corresponds to light, 2 corresponds to mid-light, 3 corresponds 

to original, 4 corresponds to mid-dark, and 5 corresponds to 

dark. This scheme of encoding was based on the digital color 

table using RGB values, by segmenting 256 values into five 

groups for the RGB bands (i.e., bands 3, 2, and 1, respectively). 

The fact that rooftop surface shapes were also characterized 

by the number of ridges for each of the 148 digitized rooftops 

was also taken into account by encoding them such that 0, 1, 2, 

and 3 corresponded to a flat rooftop, a rooftop with one ridge, 

a rooftop with two ridges, and a rooftop with three or more 

ridges, respectively. 

Figure 5a shows that an increasing trend of NDVI was 

found in relation to colors and color tone of rooftops, 

illustrating that NDVIs obtained for grey and red rooftops 

were typically low compared to those for purple and blue 

rooftops. The highest NDVIs occurred for blue rooftops, 

followed by purple, red, and grey rooftops. Furthermore, it 
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was found that strong brightness intensity and light color tone 

were commensurate with low NDVIs, except in the case of red 

rooftops (Figure 5b). In other words, the temperature appeared 

to have trends depending on colors and color tones so that blue 

and purple rooftops exhibited decreasing trends as color tone 

decreased, whereas LSTs tended to increase with decreasing 

color tone for the red rooftops (Figure 5b). 

Table 1. Statistical values for NDVI and Temperature. Average NDVI 

especially for forest vegetation is distinguishable with 0.78 and 0.81. 

 Vegetation Water Soil Asphalt Rooftop 

 2009 2010 2009 2010 2009 2010 2009 2010 2009 2010 

 NDVI 

Mean 0.78 0.81 -0.03 -0.44 0.11 0.10 0.14 0.10 0.26 0.22 

RMSE 0.02 0.04 0.06 0.05 0.01 0.01 0.09 0.09 0.23 0.22 

 Temperature (K) 

Mean 298.4 298.8 310.0 298.8 309.7 308.5 310.1 309.3 312.1 310.9 

RMSE 0.4 0.8 1.3 1.4 1.4 1.2 0.9 0.7 2.1 2.2 
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Figure 6. Relationships between (a) NDVI and number of ridges and (b) 

surface brightness temperature and number of ridges 

Figure 6 illustrates the effect of surface patterns on NDVIs 

and LSTs for blue rooftops. The NDVIs were found to 

increase as the number of ridges increases, although 

fluctuations in LSTs did not seem to affect rooftop surface 

patterns. It is apparent that the complex washboard rooftop 

pattern suggests a greater risk of colors being affected by 

shadow, resulting in darker coloring overall compared to a 

simple or flat rooftop pattern. This may cause higher NDVIs 

and lower LSTs for some cases, although there may be no 

association between the NDVIs and LSTs themselves. 

4. Conclusion 

NDVIs have often been used to investigate how vegetation 

contributes to the SUHI effect. Generally, NDVIs obtained for 

partially vegetated or built-up areas have been found to be less 

than 0.4. However, anomalous NDVIs that are inconsistent 

with established concepts and relationships are frequently 

obtained for non-vegetated urban land cover. Because it is 

possible that these anomalous NDVIs were distorted by the 

surface colors and patterns of rooftops, we investigated how 

these NDVIs were affected by these factors. By assessing 148 

factory rooftops, each with a surface area greater than 3,600 

m
2
, it was revealed that obtained NDVIs indeed showed a 

tendency to be affected by surface colors and patterns of 

rooftops. A color classification of white, blue, purple, and red 

revealed that blue- and purple-colored rooftops resulted in 

higher NDVIs compared to other rooftops. Moreover, these 

rooftops were sometimes misidentified as forest vegetation. 

The color tone, which is affected by brightness intensity, also 

contributed to the NDVIs obtained for the blue- and 

purple-colored rooftops. Extreme cases showed that NDVIs 

obtained for rooftop surfaces could attain values indicative of 

dense vegetation (i.e., NDVI ≥ 0.6), when blue-colored 

rooftops were combined with complex surface patterns that 

generated more shadow. LST and NDVI did not exhibit 

negative correlation, deviating from the well-established 

negative relationship on which the majority of monitoring 

applications relies. We concluded that the established 

relationship between LST and NDVI is likely invalid for 

non-vegetated urban industrial areas, and that NDVIs obtained 

for such areas should be used with caution, particularly in 

studies of the SUHI effect. 

Acknowledgement 

This paper was supported by Research Fund, Kumoh 

National Institute of Technology. 

 

References 

[1] T.W. Owen, T.N. Carlson, and R.R. Gillies. An assessment of 
satellite remotely-sensed land cover parameters in 
quantitatively describing the climatic effect of urbanization. Int. 
J. Remote Sens., vol. 19, no. 9, pp. 1663-1681, Jan. 1998. 

[2] C.P. Lo, D.A. Quattrochi, and J.C. Luvall. Application of high 
resolution thermal infrared remote sensing and GIS to assess 
the urban heat island effect. Int. J. Remote Sens., vol. 19, no. 2, 
pp. 287-304, Feb. 1997. 

[3] J.S. Wilson, M. Glay, E. Martin, D. Stuckey, and K. 
Vedder-Risch. Evaluating environmental influences of zoning 
in urban ecosystems with remote sensing. Remote Sens. 
Environ., 86, no. 3, pp. 303-321, Aug. 2003. 

[4] A.A. Van De Griend and M. Owe. On the relationship between 
thermal emissivity and the normalized difference vegetation 
index for natural surfaces. Int. J. Remote Sens., vol. 14, no. 6, 
pp. 1119-1131, May 1993.  

[5] E. Valor and V. Caselles., Mapping land surface emissivity 
from NDVI: Application to European, African, and South 
American areas. Remote Sens. Environ., vol. 57, no. 3, pp. 
167-184, Sep. 1996. 

[6] J.A. Sobrino, N. Raissouni, and Z.L, Li. A comparative study of 
land surface emissivity retrieval from NOAA data. Remote 
Sens. Environ., vol. 75, no. 75, pp. 256-266, Feb. 2001. 

[7] J.A. Sobrino, J.C. Jiménez-Muñoz, G. Soria, M. Romaguera, L. 
Guanter, J. Moreno, A. Plaza, and P. Martinez. Land surface 
emissivity retrieval from different VNIR and TIR sensors. 
IEEE Trans. Geosci. Remote Sens., vol. 46, no. 2, pp. 316-327, 
Feb. 2008. 



American Journal of Remote Sensing 2014; 2(6): 44-49  49 

 

[8] J.C. Jiménez-Muñoz, J.A. Sobrino, A. Gillespie, D. Sabol, and 
W.T. Gustafson. Improved land surface emissivities over 
agricultural areas using ASTER NDVI, Remote Sens. Environ., 
vol. 103, no. 4, pp. 474-487, Aug. 2006. 

[9] K.P. Gallo, and J.D. Tarpley. The comparison of vegetation 
index and surface temperature composites for urban heat-island 
analysis. Int. J. Remote Sens., vol. 17, no. 15, pp. 3071-3076, 
Oct. 1996. 

[10] F. Yuan and M.E. Bauer. Comparison of impervious surface 
area and normalized difference vegetation index as indicators 
of surface urban heat island effects in Landsat imagery. Remote 
Sens. Environ., vol. 106, no. 3, pp. 375-376, Feb. 2007. 

[11] D. Sun and M. Kafatos. Note on the NDVI-LST relationship 
and the use of temperature-related drought indices over North 

America. Geophys. Res. Lett., vol. 34, no. 24, pp. 
L24406-L24500, Jan. 2007. 

[12] K.J. Bhang and S.S. Park. Evaluation of the surface 
temperature variation with surface settings on the urban heat 
island in Seoul, Korea, using Landsat-7 and SPOT. IEEE 
Geosci. Remote Sens. Lett., vol. 6, no. 4, pp. 708-712, Oct. 
2009. 

[13] D.A. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer, and 
R.O. Green, R.O. Mapping chaparral in the Santa Monica 
Mountains using multiple endmember spectral mixture models. 
Remote Sens. Environ., vol. 65, no. 3, pp. 267-279, Sep. 1998. 

[14] NASA. Chapter 11 3.3. Band 6 Conversion to Temperature, 
Landsat 7 Science Data Users Handbook, 2011.  

 
 


