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Abstract: In this paper, the possibility of predicting values apparent activation energy for viscous flow in five-membered 

naphthenes by the calculation method, namely, using the two-parameter dependence of structural descriptors, is investigated. 

We explore structural descriptors of the molecular graph, namely, a topological index and the sum of eigenvalues squares of 

the topological matrix. Interchangeability checking of topological descriptors was performed. We performed regression 

analysis, and constructed dependences of apparent activation energy on the sum of squares of eigenvalues and topological 

indices. This paper presents data for calculating apparent activation energy of viscous flow from the experimental data and 

from the dependence on the Wiener topological index and the squares sum of eigenvalues. It is shown that for compounds 

under consideration there is a kinetic compensation effect. Based on the studies carried out for compounds considered, it can 

be assumed that, the apparent activation energy of viscous flow and the associated Arrhenius constant (frequency factor) is 

determined by the topological characteristics of the molecules.  
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1. Introduction 

Naphthenes (e.g., cycloalkanes) are an important class of 

organic compounds, as they are part of all oils and 

hydrocarbon fuels without exception. Naphthenes of a series 

of cyclopentane with long branched side chains are 

components of lubricating oils, diesel and jet fuels, and cause 

their operational properties. Five-membered naphthenes play 

an important role as reaction intermediates in the 

dehydrocyclization of paraffins into aromatic hydrocarbons 

[1]. This paper describes the viscosity characteristics of 

monocyclic hydrocarbons representing a number of 

naphthenes with a five-membered ring and alkyl side chains 

(Table 1). One of the main characteristics of molecules, 

which largely determine the nature of intermolecular 

interactions, is the chemical structure of molecules [2, 3]. 

According to A.M. Butlerov's theory, the nature of the 

molecule is determined by the chemical structure, which 

implies the existence of molecular structures and the energy 

inherent in these structures. To obtain these parameters, the 

classical structural formula of the molecule, which can be 

considered as a labeled graph, is used as the basis. Note that 

in QSPR models of the structure-property communication 

models, the use of the calculated parameters of molecules, on 

which their properties (descriptors) depends, makes it 

possible to predict the properties and carry out organic 

synthesis in a given direction. 

A small number of studies are known concerning the 

QSPR prediction of kinetic properties of molecules, such as 

viscosity [4]. According to the classical Eyring’s theory 

fluids, the viscous flow is an activation process [5]. If 

temperature dependence is included, it is expressed through 
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the zero shear viscosity which is calculated from an 

Arrhenius expression, specifically known as the Arrhenius-

Frenkel-Eyring formula [6] 

exp aE
A

RT
η  =  

 
                                 (1) 

Where η - dynamic viscosity, Pa·s; aE  – apparent 

activation energy of viscous flow, J/mol; R – universal gas 

constant, J/mol ·К; A is a constant which does not depend on 

the temperature T in very first approximation, Pa·s and 

calculated by the formula 

Nh
A

V
=                                      (2) 

Where N is Avogadro’s number, 23 16.022 10N mol− −= ⋅ ; V 

is molar volume, m
3
/mol; h is Planck constant, J·s; N is 

numbers of molecules. 

Therefore, the task of further research is to apply the 

quantitative structure-property relationship (QSPR) method 

to five-membered naphthenes. 

The aim of the work is to study and use the relationship of 

the energy parameter (apparent activation energy of viscous 

flow) of five-membered naphthenes with structural 

descriptors (topological indices and the eigenvalues squares 

sum of the molecular graph) to predict the values of the 

apparent activation energy of viscous flow.  

2. Method 

We consider the relationship between the activation energy 

of a viscous flow and topological descriptors for molecular 

graphs. It is known [7] that the energy of intermolecular 

interactions is significantly influenced by correct estimates of 

the size of the molecule and the degree of their branching. 

Consider the structure of a molecule as a physical quantity, 

which we characterize numerically using topological indices 

from graph theory [8]. To obtain these parameters, the 

classical structural formula of the molecule is used as the 

basis, which can be regarded as a labeled graph. As a 

topological descriptors the Wiener index, the Balaban centric 

index, the Randic index (the index of molecular 

connectivity), Gutman (Szeged) index, Platt index and the 

Harary index were considered. The formulas for calculating 

these indices are given below. 

For a graph G, let ( ),Gd u v  be the number of edges on any 

shortest path joining vertex u to vertex v. The Wiener index is 

defined as: 

( )
( ),

1
,

2

n

G

u v V G

W d u v

∈

= ⋅ ∑                        (3) 

Where the sum runs over all ordered pairs of vertices.  

The Harary index of a simple connected graph G is defined 

as follows: 

( ) ( )( ),

1

,

n

Gu v V G

H G
d u v∈

= ∑                           (4) 

Where the summation goes over all pairs of vertices {u, v} 

of G.  

Hyper-Wiener Descriptor:  

( )
( )

( )( )
( )

2*

, ,

1 1
, ,

2 2

n n

G G

u v V G u v V G

W d u v d u v

∈ ∈

= ⋅ + ⋅∑ ∑       (5) 

Where the summation goes over all pairs of vertices u and 

ν. 

The Platt number F(G) of a graph G is defined as the total 

sum of degrees of edges in a graph,  

1

deg

n

f

f

F e

=

=∑                             (6) 

Where deg fe  denotes degree of the if , i.e., number of 

edges adjacent to fe  and n denotes the number of edges. 

Balaban distance connectivity descriptor (also called 

distance connectivity descriptor or average distance sum 

connectivity):  

1

1 1

1

1

n n

i ji j i

N
J

D Dµ

−

= = +

= ⋅
+ ∑∑                     (7) 

Where the summation runs over all the molecular bonds, 

iD  and jD  are the vertex 

Distance degrees of the adjoining atoms, µ is cyclomatic 

number representing number of rings in the graph and N is 

the number of bonds in the molecular graph G.  

The Randic connectivity index was defined as:  

1

1

1
n

i jk

χ
ν ν=

=
⋅∑                                    (8) 

Where iν  and jν  represent the degrees of the vertices i 

and j; the term i jν ν⋅  for each pair of adjacent vertices is 

called edge connectivity.  

Let e=(u, ν) be an edge of the graph G. The number of 

vertices of G whose distance to the vertex u is smaller than 

the distance to the vertex ν is denoted by ( )un e
 

Analogously, ( )vn e is the number of vertices of G whose 

distance to the vertex ν is smaller than the distance to the 

vertex u.  

 Szeged descriptor:  

( ) ( )e u

e u

Sz n e n eν
ν=

= ⋅∑                            (9) 

If there are no side branches in the molecular graph, then 

for n even we have  
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( ) ( )
2

u v

n
n e n e= =  

If n is odd, then we can express n as ( ) ( ) 1

2
u v

n
n e n e

−= =  

Accordingly, the formula for calculating the Szeged 

(Gutman) index will take the form 
3

2 2 4

n n n
Sz n

 = ⋅ ⋅ = 
 

 n is an even number 

( )2
11 1

2 2 4

n nn n
Sz n

⋅ −− − = ⋅ ⋅ = 
 

 n is an odd number 

Early studies [9, 10] showed the dependence of molecular 

properties on the spectral characteristics of molecular graphs, 

which were determined by the adjacency matrix. We 

construct an adjacency matrix A for molecular graph, i.e. we 

will convert the graph of the molecule into a matrix form. 

Then we write the characteristic polynomial as: 

( ) ( ) ( ) 1
1 11 det ...

n n n
n nP A E a a aλ λ λ λ λ−

−= − − = + + + +   (10) 

Where E is the n-by-n unit matrix, the coefficients 

, 1,...,ia i n=  are to be computed by evaluating the 

determinant, iλ  are the eigenvalues (the roots of the 

polynomial) 

The roots of the characteristic polynomial are the eigenvalues 

of the adjacency matrix, which are interpreted as the energy 

levels of the electrons in the molecule [11]. Characteristic 

polynomials and spectra of graph, is independent of the choice 

of the adjacency matrix. We consider the sum of the eigenvalues 

squares of the topological matrix as a characteristic of the 

spectrum. The choice of the eigenvalues squares of the 

molecular graph are due to the consequence of the theorem of 

Sachs [11, 12], according to which the sum of the roots of the 

characteristic polynomial (10), i.e. the eigenvalues sum of the 

topological matrix of the molecular graph is zero. 

The eigenvalues squares sum of the molecular graph 

indirectly reflects the energy spectrum of the electronic States of 

molecules and is calculated by the formula 

1

2
n

i

i

L λ
=

=∑                                     (11) 

Where iλ  is eigenvalues of the molecular graph. 

It was shown earlier that the activation energy of viscous flow 

is related to the topology molecules [13]. Assuming that such a 

dependence exists, it would need to be present for the 

compounds under consideration. We write 

( ),a aE E L TI=                              (12) 

Where TI is topological index (topological parameter). 

We decompose aE  into a Taylor series by powers

( ) ( )0 0,L L TI TI− −  in the vicinity of a point (0, 0) and write 

the linear form of the formula: 

( ) 0 0
0, γ α βa a

a a

E E
E L TI E L TI L TI

L L

∂ ∂
= + + = + ⋅ + ⋅

∂ ∂
  (13) 

Where γ,α,β  is constants. 

3. Result 

The experimental values of hydrocarbons viscosities (Table 1) 

were selected from reference data [14-16]. The apparent 

activation energies of viscous flow and the logarithms of the 

Arrhenius constant (coefficients depending on the molecular 

nature of the liquid) were calculated by the least squares method 

according to equation (13) (Table 1).  

Note that the value aE
 
makes sense of the activation energy 

of viscous flow only under condition of complete identity of the 

particles shape, size and other characteristics. When calculating 

the value lnA used by multiplication numerical value of 

viscosity on 610 . According to one widespread of Frenkel's 

Theory viscosity [6], the appearance of the viscosity force in 

case of liquids is associated with overcoming of potential barrier. 

Table 1. Topological indices, apparent activation energy of the viscous process and logarithms of the Arrhenius constant (frequency factor) for hydrocarbon 

liquids of five-membered naphthenes. 

No Name 
Dynamic viscosity Topological indices 

L 
ln(η0) Еа, J/mol Platt Randic Balaban Harary Hyper-Wiener Szeged Wiener 

1 cyclopentane -11.004 7961.40 10 2.5 2.08 7.5 20 20 15 10 

2 methylcyclopentane -11.123 8590.88 14 2.89 2.18 10.17 39 33 26 12 

3 ethylcyclopentane -10.89 8300.44 16 3.43 1.83 12.83 75 52 43 14 

4 propylcyclopentane -10.782 8504.45 18 3.93 2.06 15.57 135 78 67 16 

5 butylcyclopentane -11.045 9790.01 20 4.43 1.76 18.38 227 112 99 18 

6 pentylcyclopentane -11.194 10788.04 22 4.93 1.91 21.29 360 155 140 20 

7 hexylcyclopentane -11.408 11955.60 24 5.43 1.69 24.27 544 208 191 22 

8 heptylcyclopentane -11.435 12564.72 26 5.93 1.81 27.34 790 272 253 24 

9 octylcyclopentane -11.615 13613.44 28 6.43 1.64 30.48 1110 348 327 26 

10 nonylcyclopentane -11.679 14205.95 30 6.93 1.75 33.69 1517 437 414 28 

11 decylcyclopentane -11.851 14972.96 32 7.43 1.61 36.96 2025 540 515 30 

12 isopropylcyclopentane -10.891 8842.67 20 3.8 2.24 16 114 73 62 16 

13 1,3-Dimethylcyclopentane -11.13 8647.39 18 3.29 1.93 13.08 68 51 41 14 

 
 

For five-membered naphthenes from Table 1, a kinetic 

compensation effect with a determination coefficient was 

established, which is described by the equation [13] 
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ln aA k E m= ⋅ +                                (14) 

Where ,k m  are constants in equations.  

In our case, 0.0001 /k mol kJ= − , 9.8702m = − . 

All the connections discussed in this article contain only 

simple bonds. Since all TI characterize the molecular 

structure and are a mathematical abstraction, a tests for their 

interchangeability were carried out. Linear and exponential 

correlations between indices were constructed for this 

purpose. The x-axis was postponed value of TI No. 1, and the 

y – axis TI No. 2, in other words, we checked the dependence 

of TI n 2 TI No. 1. Sample values TI No. 1 were postponed 

on the horizontal axis X and sample values TI No. 2 were 

postponed on the vertical axis Y. In other words, we checked 

for the dependence of TI No. 2 on TI No. 1. The largest 

coefficient of determination (R2) is shown in Table. 2. 

Table 2. Interchangeability of topological indices (TI's). 

 Platt Randic Balaban Harary Hyper-Wiener Szeged Wiener 

Platt 1 0.97 0.21 0.97 0.82 0.97 0.88* 

Randic  1 0.31 0.997 0.87 0.98* 0.98* 

Balaban   1 0.29 0.34 0.34 0.35 

Harary    1 0.97 * 0.95 0.94 

Hyper-Wiener     1 0.99 0.99 

Szeged      1 0.999 

Wiener       1 

* Logarithmic (exponential) dependence. 

4. Discussion 

According to the data given in Table 1, dependences were 

of activation energy on the eigenvalues squares sum and 

topological indices constructed. Regression analysis was 

performed for the confidence level set to 0.95. Correlations 

with different TI were constructed according to equation (13). 

The results are shown in Table 3. For significance 

contributions verification of TI and L to equation (13), we 

used the dependences of the activation energy on L (TI) and 

the dependence of TI on L (Table 3). 

The magnitude of the reliability of the approximation when 

considering the dependence of the activation energy of the 

viscous flow on the eigenvalues squares sum has 2 0.01R = . 

The coefficients of determination for other dependencies are 

presented in Table 3. Namely, coefficients by linear dependences 

of the viscous flow activation energy (Ea) from the sum of 

squares of eigenvalues (L) and topological indices (TI) (Column 

2), Ea from TI (Column 3) and TI from L (Column 4). 

Table 3. The coefficients of determination for dependencies. 

TI 
Coefficient of determination (R2) 

Еа(L, TI) Еа(TI) TI(L) 

1 2 3 4 

Platt 0.970 0.91 0.977 

Randic 0.965 0.96 0.999 

Balaban 0.965 0.61 0.290 

Harary 0.970 0.97 0.999 

Hyper-Wiener 0.971 0.91*  0.981*  

Szeged 0.974 0.94 0.982*  

Wiener 0.974 0.95 0.979*  

* Logarithmic (exponential) dependence. 

As can be seen from the table, all indices well describe the 

activation energy.  

We examined the Wiener index, analyzed the standard 

errors of the coefficients and calculated the interval estimates 

of the regression equation ( , ) 0aE L TI = . In our case, the 

coefficients for equation (13) are presented in the Table 4. 

Table 4. Coefficients for equation (13) and their characteristics. 

 
Regression coefficients Standard error t-statistics 

Y-intercept 5277.69 984.88 5.36 

Variable X 1 222.15 75.25 2.95 

Variable X 2 6.65 2.94 2.26 

 

We found that the standard error is less than the absolute 

value of the coefficient. This allowed us to say that all 

coefficients in the equation (including the free term) are 

significant. This conclusion is confirmed by t-statistics, 

which gives a more accurate assessment of the significance 

of the coefficients. Namely, with a standard 95% level of 

reliability, the corresponding ti criterion should fall into the 

5% two-way critical area. For our case, the boundary of the 

critical area can be written as: ( )1 0.95;13 1 2 2.23crt − − − = . 

All coefficients are significant.  

We will estimate the activation energy of the viscous flow 

using the Wiener index by the formula (13) and calculate the 

lnA by the formula (14). The values obtained are shown in 

Table 5. Comparative analysis of the above energy and 

molecular characteristics of experimental data available in 

the literature and by proposed formula is performed. 

Comparison results in the form of relative errors are given in 

Table 5. 
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Table 5. Activation energy for viscous flow and logarithms of Arrhenius constant (pre-exponential or frequency factor) for hydrocarbon liquids. 

No Hydrocarbon liquids 310−⋅aE , J/mol by formula (13) lnA by formula (14) 
Relative error. for 

310aE −−−−⋅⋅⋅⋅ , % 
Relative error. for 

lnA, % 

1 2 3 4 5 6 

1 cyclopentane 8044.00 -10.67 1.038 2.99 

2 methylcyclopentane 8561.49 -10.73 0.34 3.57 

3 ethylcyclopentane 9118.89 -10.78 9.86 0.99 

4 propylcyclopentane 9722.87 -10.84 14.33 0.56 

5 butylcyclopentane 10380.07 -10.91 6.03 1.24 

6 pentylcyclopentane 11097.14 -10.98 2.87 1.91 

7 hexylcyclopentane 11880.75 -11.06 0.63 3.07 

8 heptylcyclopentane 12737.54 -11.14 1.38 2.55 

9 octylcyclopentane 13674.17 -11.24 0.45 3.25 

10 nonylcyclopentane 14697.28 -11.34 3.46 2.90 

11 decylcyclopentane 15813.54 -11.45 5.61 3.37 

12 isopropylcyclopentane 9689.60 -10.84 9.58 0.48 

13 1,3-Dimethylcyclopentane 9105.59 -10.78 5.30 3.14 

Average value 4.68 2.31 

 

As it can be seen from the data of Table 5, the relative 

errors of estimating for values of the apparent activation 

energy of the viscous flow do not exceed 14.5%, and the 

average error is 4.7%, for logarithms of pre-exponential 

factor 3.57% and 2.3%, respectively. 

5. Conclusion 

It is established from the conducted studies that for the 

compounds of a number of five-membered naphthenes, the 

apparent activation energy of the viscous flow and the 

associated preexponent of the Arrhenius are determined by a 

pair of descriptors. Namely, one of the descriptors is the 

topological structure index, and the other is a descriptor 

reflective hueckel spectrum of the molecular graph. The 

reliability of the established regularities is confirmed by a 

high coefficient of determination (ca 0.97) and t-statistics.  

Topological descriptors e.g. the Wiener index, the Balaban 

index, the Randic index, Gutman (Szeged) index, Platt index 

and the Harary index influences of the activation energy of 

viscous flow of cyclopentanes.  

For five-membered naphthenes a kinetic compensation 

effect was established.  

Established dependencies can be used to predict the 

viscosity characteristics of synthesized and natural five-

membered naphthenes. 
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