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Abstract: The aim of the article is the elaboration of parametric resonance theory at piecewise constant frequency 

modulation. The investigation is based on the analogy with optics and optimal control theory (OCT) application. The exact 

expressions of oscillation frequency, gain/damping coefficients, dependencies of these coefficients on the modulation depth, 

duty ratio and initial phase are derived. First of all, the results obtained on the basis of the energy behavior analysis (at the 

conjunction conditions execution) in frictionless systems are presented. The well-known parametric resonance triggering 

condition is revised and adjusted. The heuristic feedback introduction (based on the energy behavior analysis) in the oscillation 

equation permits one to prove that the frequency modulation satisfying the parametric resonance condition is not necessary and 

sufficient condition of the oscillations unlimited increase. Their damping/shaking up formally corresponds by the frequency 

and duty ratio to the condition of the equality of optical paths to the quarter-wavelength characteristic of the interference filter 

or mirror. The unity of space-time coordinates shows itself in this specific form of the optical-mechanical analogy due to the 

general Hill’s equation description. It is marked that this equation theory underlies most of metamaterials advantages because 

all transport phenomena imply different wave – electromagnetic, acoustic, spin etc. propagation one way or another. The 

question about control uniqueness arises that is modulating frequency, duty ratio and signature sign uniqueness. Another 

question of characteristic index extremum at different controls is tightly bound with the former. The answers to these questions 

are obtained on the basis of OCT. The similarity of the optimal control problem solution and the one obtained at the heuristic 

feedback introduction through fundamental solutions product permits one to introduced the new form named general or mixed 

Hamiltonian along with the ordinary and OCT Hamiltonians. Besides this mixed Hamiltonian equality to zero together with the 

Wronskian constancy (almost everywhere) is the useful analogous in form to the Liouville’s theorem equation. The 

nonlinearity accounting using the OCT formalism is described too. 

Keywords: Parametric Resonance, Optimal Control Theory, Hill’s Equation, Bragg Condition, Optical-Mechanical Analogy 

 

1. Introduction 

The parametric resonance theory of single degree-of-

freedom oscillating systems is based on the Hill’s equation 

analysis [1]: 

2 (1 ( )) , 1, ( ) ( )x w a t x w a t T a tω= − + ⋅ ⋅ << + =ɺɺ         (1) 

The main conclusions of this analysis deal only with the 

solution dependence on the modulating function frequency 

(or wave vector for space oscillations) but don’t determine 

this function kind. For example, the equality of modulation 

frequency to doubled eigenmodes frequency (analogous to 

the Bragg condition in optics) isn’t completed by any other 

function’s characteristics such as duty ratio, modulation 

depth (rate) etc. At this even the parametric resonance 

condition in the form of the modulating function frequency 

equality to doubled – “Bragg’s” – is not always expressed 

explicitly (see, for instance, [2]). 

On assumption of the modulation depth smallness (w<<1) 

the condition of parametric resonance onset is obtained for 

the case when the deviation ε from the fundamental 

frequency ω0 satisfies [3]: 

0 0

2 2

w wω ωε⋅ ⋅
− < <                                  (2) 
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The relation (2) is derived though in the initial assumption 

that “…parametric resonance occurs if the modulating 

frequency ω(t) is near the doubled frequency ω0” ([3], p. 83). 

That’s why the obtained result cannot serve as a strict proof 

of the parametric resonance onset just at doubled modulating 

frequency and, moreover, doesn’t give any clear physical 

interpretation of the effect. 

Another more rigorous parametric resonance analysis 

though executed as well on assumption of modulation depth 

smallness is presented in a study [4]. It is based on the 

geometric interpretation of equation (1) properties – self-

adjoint differential form. At that the constancy and equality 

of Wronskian (W(x)) to unity is interpreted as the equality of 

the matrix A (linear plane self-mapping) determinant to unity 

– reflection upon the period conserving the area: 

11 12 1 2

21 22 1 2

( ) ( )
det ( ) 1,

'( ) '( )

a a x T x T
A A A W T

a a x T x T

   
= = ⇒ = ≡ =   
   

 

where 1 2( ), ( )x t x t  – fundamental solutions of (1), so that 

1 1(0) 1, '(0) 0x x= = and 2 2(0) 0, '(0) 1.x x= =  The spur of 

this matrix determines whether this reflection is the turning 

and that’s why steady or hyperbolic turning – that is 

unsteady. The transition boundary is determined by the 

equality 2.trA =  From the Hill’s equation theory viewpoint 

the matrix spur is the determining parameter of the 

characteristic equation at the condition of Wronskian equality 

to unity [1]: 

( ), , 0p q p qDet a s e− ⋅ = ⇒  

2 2
1 2[ ( ) '( )] ( ) 1 0s x T x T s W T s trA s− + + = − ⋅ + = , 

And its value surpassing 2 means the existence of this 

equation real roots. The parametric resonance condition is 

obtained at the replacement of exact Hill’s equation solutions 

in the matrix A on to harmonic ones (at the modulation depth 

tending to zero) and equalizing the spur to 2. 

1 2

1
( ) cos( ), ( ) sin( ) 2cos(2 ) 2.x t t x t t trAω ω πω

ω
≅ ⋅ ≅ ⋅ ⇒ = =  

This implies that the unsteady systems set may really 

approach the axe ω (on the w, ω parameters plane) only in the 

points ω=k/2, k=1,2,…, where the spur is equal to 2. The 

unsteadiness or parametric resonance is interpreted as the 

unlimited oscillation amplitude and speed rise (of course in the 

linear approximation and friction absence) at the argument 

going to infinity. It follows from the fact that in the general 

case the characteristic equation solution at trA>2 has one root 

bigger modulo 1 (the second correspondingly smaller) that is 

the characteristic index is positive so that one of fundamental 

solutions is exponentially growing. Thus, the parametric 

resonance theory (presented in manuals) is reduced in fact to 

the determination of its onset condition at the modulation 

depth smallness without its thorough explanation. Whereas 

calculations of the true oscillation frequency (differing from 

the eigenmode one), characteristic indexes (gain/damping 

coefficients), their dependence on the modulation depth and 

duty factor (control – in OCT terms [5]) are absent even for the 

simplest case of piecewise constant frequency modulation. 

(Although this case is never realized due to the fundamental 

reason: the instantaneous frequency of an unsteady process is 

the derivative of the corresponding analytical signal and is 

continuously differentiable [6]). 

The exact description of the phenomenon needs the energy 

balance analysis. It’s well-known that a swing may be either 

shaken up or braked at the periodic length changing. 

However, the control changes at that are apriori unclear. In 

other words, it’s necessary to investigate what will be the 

control frequency and duty factor in both cases and calculate 

all other process characteristics. 

2. The Energy Behavior at Frequency 

Change 

The energy balance analysis is made in many articles and 

monographs concerning different oscillating systems 

including the mentioned above swing [7], electric vibration 

LRC contour [8], torsional vibration spring oscillator [9-12]. 

The energy balance condition consists of the equality to zero 

the sum of losses (due to a friction for instance) and useful 

(that is needed to change periodically the control parameter) 

works. So main efforts were made to correctly calculate these 

works in particular cases. Neglecting these particular 

peculiarities one may note some general aspects. 

The oscillating system with time-depending frequency is 

the Hamilton’s but not autonomic system. It means that the 

system Hamiltonian may be written in a standard form (the 

argument is denoted as x for time and space oscillations 

unity): 

2 2 2

2

1
( ) ( ( ) ( ) ( )) ,

2

( ) '( ) '( ) ( ) ( )

H x p x x y x Const

H H
p x y x p x x y x

p y

ω

ω

= ⋅ + ⋅ ≠

∂ ∂= = ⇒ = − ⋅ = −
∂ ∂

    (3) 

At the sharp frequency alteration the energy may either 

change or not. This interesting oscillating system peculiarity 

expresses explicitly at the conjugation condition realization 

that is the amplitude and its derivative (oscillation speed) 

continuity in the point where the frequency value changes. In 

a “node” that is in a zero amplitude point from the 

derivatives equality follows the inversely proportionality of 

amplitudes to corresponding frequencies so that the energy is 

conserved: 

1 1 2 2 1 2 2 1 1 2 0/ /Y Y Y Y H H Hω ω ω ω⋅ = ⋅ ⇒ = ⇒ = ≡ .   (4) 

In a “antinode” that is in a zero derivative point the 

conjugation conditions at the piecewise frequency change 

lead to the piecewise energy change too: 

2 2 2 2
1 2 1 2 1 2 1 2/ ( / ) , ( )Y Y H H H Yω ω ω ω= ⇒ = ∆ = − ⋅  (5) 
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The oscillation damping is possible if the frequency 

change – from bigger to smaller – occurs when the amplitude 

is near an antinode. In the general case the conjugation 

conditions for the oscillation at the frequency ω1 of unit 

amplitude with the oscillation at the frequency ω2 of 

amplitude В may be written in the form (compare with the 

similar conditions in [9]): 

( 1 ) ( 2 ( ))

1 ( 1 ) 2 ( 2 ( ))

( 1 ) / ( 2 ( ))

1 1
( 1 )

2 2

Cos x B Cos x

Sin x B Sin x

B Cos x Cos x

arctg tg x x

ω ω φ
ω ω ω ω φ

ω ω φ
ωφ ω

ω ω

⋅ = ⋅ ⋅ +
⇒ ⋅ ⋅ = ⋅ ⋅ ⋅ +

 = ⋅ ⋅ +


  = ⋅ −   

, ( 1 1 , 2 1w wω ω ω ω= ⋅ + = ⋅ − )                                    (6) 

Although the energy changes absolute values are always 

equal for both cases their relative values are never equal. For 

example, if the frequency switching occurs in antinodes the 

ratio of relative energy increase to relative decrease is equal 

(1 + w)/(1 – w)>0. It, of course, does not mean that the 

oscillation shaking up occurs – if switching occurs strictly in 

the function or its derivative extrema the energy during the 

period is conserved. In the general case the relative energy 

increase at the transition to bigger frequency is always 

greater than the relative decrease of the energy in the 

opposite case. Such energy behavior explains the oscillation 

shaking up at the modulating frequency equal to doubled 

main one and duty factor equal to 2. 

It is clear that if the transition to miner frequency occurs 

always at 1(1 ( )) (1 1( ) 1i iRE x RE x +− ⋅ + <  oscillations are 

damping because the energy decrease will not be 

compensated by its increase at the transition to the larger one. 

It is clear too that the whole stop will never occur at this 

modulation but it is quite possible to approach the phase 

plane origin arbitrarily near during the finite time. This origin 

in this case will be the steady focus whereas in an arbitrary 

case it will be the unsteady focus. 

3. The Feedback Heuristic Introduction 

From the previous results unambiguously follows the 

possibility of oscillation damping in the case of switching 

points strict coincidence with oscillation equation’s solution 

singular points. To prove it let us present the solution of the 

following equation (the first fundamental solution is denoted 

by the index 1 and the heuristic control – by the index “e”): 

2 2
01 ''( ) (1 ( 1 ( ) 1 '( ))) 1 ( ) 0,

1 (0) 1, 1 '(0) 0

y e x w sign y e x y e x y e x

y e y e

ω+ + ⋅ ⋅ ⋅ =
= =

 (7) 

The solution, control (modulating function) and phase 

trajectory for w=0.1, ω0=0.2π (T=10) are presented on figures 

1, 2. These curves testify that the phase plane origin is the 

steady focus in this case. It is clearly seen that the frequency 

switching occurs just in the points where the solution itself or 

its derivative (amplitude or speed) changes its sign. At that 

the first switching occurs in the origin where the amplitude of 

“undisturbed” oscillations is maximal and the speed is zero 

and changes its sign. 

 

Figure 1. 1st fundamental solution y1е(x) and control u1е(x) at the “negative 

feedback introduction”. 

 

Figure 2. Phase trajectory at the “negative feedback introduction”; v1е(x) – 

the 1st fundamental solution derivative (speed). 

The sign before the control signature is chosen positive to 

switch the frequency from high to low in antinodes that is to 

decrease energy. The inverse switching will occur in nodes 

where energy change is absent. Thus, the “negative 

feedback” (if one may say it) is introduced in the equation 

whereas any driving force is absent. Let us note that for this 

control the oscillations damping will occur at any initial 

conditions and any modulation depth. The negative sign 
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before the signature at (7) corresponds to the control 

providing oscillations shaking up independently upon the 

initial conditions and modulation depth as well whereas the 

condition (2) may not be executed at that. For instance, at 

w>0.5 oscillations will shake up or damp depending on the 

control sign the faster the larger is the modulation depth (to 

the certain limit – see later). Of course, such a feedback may 

not be obligatory piecewise but may be continuous. Still the 

damping will be rather slow (see, for example [7-9]). 

To estimate the damping efficiency (during 10 periods) 

let’s introduce two criteria: K and S according to the formula: 

100 100 100

2 2 2 2 2

0 0 0

1
[( ( )) ( ( )) ] , [ ( )( ( )) ( ( )) ] ( )

2
K y x v x dx S x y x v x dx H xω= + = + =∫ ∫ ∫   (8) 

The first criterion determines the speed of the phase plane 

origin approaching, the second equal to the action according 

to its sense and dimension – the oscillation energy decrease 

efficiency for the chosen kind of the control. They are equal 

in this particular case to: Ке=8,943; Se= 2,447 (index “e” 

means “heuristic” as previously). 

It seems that the oscillation frequency is equal to the 

fundamental one and the control’s – the Bragg’s one. This 

frequency undoubtedly satisfies the parametric resonance 

condition, but oscillations nevertheless are damping. The 

characteristic index may easily be approximately calculated 

from the conjugation condition on assumption of near 

equality of the oscillation frequency to the fundamental one. 

During the half-period the amplitude’s decrease will be equal 

according to (4): 

( ) / (0) 1/ 2 (1 ) / (1 ),

2 1
( / 2) (0) exp( / 2) ln 0,04

1

Y T Y w w

w
Y T Y T

T w

ω ω

α α

= = − +
− = ⋅ ⋅ ⇒ = ≈ − + 

    (9) 

The oscillation frequency specification and 

correspondingly the characteristic index may be evaluated 

using the frequency switching condition just precisely in 

nodes and antinodes. It means that different frequencies 

oscillation times may be determined from the condition of 

their equality to quarter-period for corresponding frequencies 

– equality of optics ways to quarter-wavelength if one use the 

optic analogy. Let’s denote these times τ+ and τ- and evaluate 

the expressions for oscillations frequency – ω, modulating – 

ωт, duty ratio – DR and the characteristic index α: 

0

2
02

2

1 2
,

4 (1 ) 4(1 ) 4(1 )

2
2 (1 ) 2 ;

2(1 )

2 2 (1 ) 1
; ln

1 1

m

T T

w w w

T
T w

Tw

T w w
DR

w T w

πτ τ
ω

πτ τ ω ω ω

α
τ

+ −

Σ + −
Σ

Σ

+

= ⋅ = = ⇒
+ + −

= + = ⇒ = = ⋅ ⋅ − ≡
−

⋅ − − = = = ⋅  − + 

  (10) 

The modulation frequency is really equal to the double 

true oscillation frequency ω smaller than the fundamental in 

( )21 w−  times. The duty ratio occurs to be more than 2. 

These parameters provide oscillations shaking up/damping 

(depending on the control sign) independently on the 

modulation depth. The reduced characteristic index Tα 

(modified attenuation index) that is divided on the 

fundamental frequency or multiplied on the fundamental 

period plot is given on figure 3 (the modulation depth taken 

variable is denoted as ξ and called “modulation rate”). In the 

0 to 0.4 interval the reduced index is almost linear function of 

the modulation depth: ( ) 3,56Tα ξ ξ≅ ⋅ . It’s interesting that 

this dependency has the minimum in the point 

0,648wξ ≡ = . The reduced characteristic modulo in it is 

equal to 1.791 that is at period equal to 10 the characteristic 

index is equal to 0.1791. Thus, at this frequency modulation 

method the maximal oscillations increase/decrease is 

obtained at the strictly determined modulation depth. 

 

Figure 3. The reduced characteristic index dependency on the modulation 

depth. 

The feedback introduction method considered above is 

obviously not unique. As a “key” one may take not the 

solution and its derivative product, but the product of the 

fundamental solutions. The oscillating systems corresponding 

to different fundamental solutions are conjugated (not in the 

sense of the conjugation conditions (6) but in the sense of the 

belonging to conjugated differential forms). Because the 

oscillation equation differential form is self-conjugated the 

difference in the solutions is expressed only in the initial 

conditions difference. In this case the 2
nd

 order 2 equations 

system is solved (or 4 equations of the 1
st
 order; index 1 

corresponds to the 1
st
 fundamental solution as before, and by 

letter s we denote solutions at heuristic feedback introduction 

through fundamental solutions product): 

2 2

2 2

1 '( ) 1 ( ), 1 (0) 1

1 '( ) (1 ( 1 ( ) 2 ( )) 1 ( ), 1 (0) 0

2 '( ) 2 ( ), 2 ( ) 0

2 '( ) (1 ( 1 ( ) 2 ( ))) 2 ( ), 2 (0) 1

y s x v s x y s

v s x w sign y s x y s x y s x v s

y s x v s x y s x

v s x w sign y s x y s x y s x v s

ω

ω

= =


= − − ⋅ =
 = =
 = − ⋅ − ⋅ =

 (11) 

Depending on the signature sign the control will provide 

the damping of one solution and the rising of the other in full 

accordance with the analysis given in [3]. The control sign 

alteration ( ) ( 1 ( ) 2 ( ))us x sign y s x y s x= − ⋅  in comparison with 

(7) is explained by the fact that ( 1'( )) ( 2( ))sign y x sign y x= − . 

Returning to the Arnold’s analysis we note that the matrix А’ 

becomes diagonal according to the period definition at the 
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feedback introduction: 12 211'( ) 2( ) 0.a y T a y T= = = ≡  So, 

the feedback introduction procedure may be considered as 

the physical analogy to the mathematical procedure of matrix 

diagonalization reduced to its eigenvalues and eigenvectors 

determination. 

To finish with this section, we have to illustrate the case 

when the frequency switching occurs not at doubled 

frequency but at the fundamental one (k=2) that is in the 

points corresponding to maxima or antinodes. It’s clear that 

there’s no energy changes in this case (see the previous 

section), but the oscillations will not be strictly harmonic. 

That is why the phase trajectory represents the somehow 

deformed ellipse – the steady limit cycle – figure 4. 

 

Figure 4. Phase trajectory corresponding to the energy conservation during 

the period. 

The steadiness consists in the fact that any initial conditions 

changes will not change principally the solution’s type but only 

slightly deform the phase trajectory. Thus, the statement about 

the parametric resonance existence at k=2 for this kind of 

modulation is strictly wrong. At the approximate coincidence 

of the modulation frequency with the oscillation one and 

switching in the points symmetrical relative to the origin these 

oscillations are strictly periodic (with doubled control period) 

due to the energy changes absence during the period. 

Due to the importance of this section let us list its main 

results. The heuristic (based on the energy behavior analysis) 

feedback introduction in the oscillation equation (at the 

conjunction conditions execution) permits one to prove that 

the frequency modulation satisfying the parametric resonance 

condition is not necessary and sufficient condition of the 

oscillations unlimited increase. In other words, the statement: 

“Thus, at ω≈ k/2, k=1,2,… the lowest position of the 

idealized swing is extremely unsteady and it shakes up at 

arbitrary small periodic change of length [4, p. 107]” is true 

not for all periodic laws of the length alteration. 

The oscillations damping/shaking up formally corresponds 

by the frequency and duty ratio to the condition of the 

equality of optical paths to the quarter-wavelength 

characteristic of the interference filter or mirror. So the 

optical-mechanical analogy shows itself not only in the 

Fermat Principle but the parametric resonance too due to the 

general Hill’s equation description. However, the 

investigation of light amplification/decay needs the complex 

wave vector in this equation (see, for instance [13]) which is 

outside the range of the article. Returning to mechanics one 

may note that major properties of super lattices hard coatings 

(see, for instance [14]) are explained by acoustic waves 

(optical phonons) behavior in them also described by the 

Hill’s equation. Generally, this equation theory underlies 

most of metamaterials [15] advantages because all transport 

phenomena imply different wave – electromagnetic, acoustic, 

spin etc. propagation one way or another. 

The difference of solutions types is determined exclusively 

by the control signature signs. Naturally, the question about 

the control uniqueness (that is the modulating frequency, 

duty ratio and signature sign uniqueness) arises. The question 

about the existence of characteristic index extreme value in 

different controls is tightly adjoined to the former. 

4. The Optimal Control Theory 

Application 

The easiest way to answer the questions put in the end of the 

previous section is to apply the optimal control theory (OCT) 

[5]. It permits one to receive rather easily damping solutions 

for piecewise control even for the simplest problem definition 

– quick-action problem. For such problems the figure of merit 

is the time needed to hit the phase plane origin. Let’s give the 

similar problem’s definition for the 2
nd

 Hill’s equation 

fundamental solution. This problem is defined this way: one 

needs to find out the control u(x) which provides the quickest 

phase plane origin hitting. In the OCT the state equations – are 

the 1
st
 order ordinary differential equations (ODE) 

1 2 1 2' ( , ,..., ; , ,..., )i i r ky f y y y u u u=  that’s why let’s rewrite the 

Hill’s equation in the system form using underfoot to differ the 

2
nd

 variable from the 2
nd

 fundamental solution: 

1 2 1

2 2
2 0 1 2

'( ) ( ), (0) 0
( ) 1

'( ) (1 ( )) ( ), (0) 1

y x y x y
u x

y x w u x y x yω

= = ≤
= − + ⋅ ⋅ =

   (12) 

The figure of merit 

0

X

Kopt dx= ∫ , so that the zeroth state 

equation looks like 0 0'( ) 1, (0) 0.y x y= =  Then the 

conjugated equations (in OCT terms) are the ODE system: 

2 2
1 0 2 1 1,0

2 1 2 2,00

'( ) (1 ( )) ( ), (0)
'

'( ) ( ), (0)

r
j

i j
ij

f p x w u x p x p p
p p

y p x p x p p

ω

=

∂ = + ⋅ ⋅ == − ⇒∂ = − =
∑  (13) 

The optimal control is found from the Pontryagine’s 

maximum principle [5] according to it the optimal control 

corresponding to the figure of merit minimum corresponds to 

the “optimal Hamiltonian” maximum. Due to the linear 

dependence of the “optimal Hamiltonian” h(x) on the control 

u(x) it’s necessary that it changes its sign at the product’s 

p2(x)y1(x) sign alteration to maximize the “optimal 

Hamiltonian”: 
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2 2
1 2 0 2 1

1 2

( ) ( ) ( ) (1 ( )) ( ) ( ) 1

( ) ( ( ) ( ))

h x p x y x w u x p x y x

u x sign y x p x

ω= − + ⋅ − ⇒

= − ⋅
     (14) 

Besides the maximal value of the optimal Hamiltonian 

must be zero everywhere that is the state equations vector is 

normal to the conjugated variables one because the optimal 

Hamiltonian is their scalar product: 

0

( ) ( ) ( ) ( , ) 0

r

i i

i

h x f x p x f p

=

≡ ≡ =∑
� �  

However, this condition permits one to determine only p1,0 

from (13): 

2 2
1 2 0 2 1 1 1,0(0) (0) (0) (1 (0)) (0) (0) 1 0 (0) 1 1 1h p y w u p y p pω= − + ⋅ − = ⇒ ⋅ = ⇒ =  

The initial speed (derivative) value is not zeroth instead of 

“heuristic feedback introduction through the fundamental 

solutions product” but coincides with the initial speed value 

y2(0) in (12). As for p2,0, that is the initial value of the 

conjugated function itself one may determine only its sign not 

magnitude. Because at y1(0)=0 its sign is positive than the p2,0 

sign – negative. It follows from the optimal Hamiltonian 

maximum need at arbitrary small initial value of y1(x) – the 

control must be negative. Thus, at any negative initial values 

of p2,0 oscillations must damp but the damping efficiency will 

be naturally different. It’s clear that to draw an analogy with 

the heuristic feedback introduction the initial condition for the 

conjugated coordinate must be equal to - ∞ at the non-zeroth 

speed value. Therefore, the solutions coincidence – the optimal 

and heuristic ones in this particular case is possible only in the 

limit – at the conjugate coordinate initial value going to - ∞. 

But, as it was noted above, at any other negative values an 

oscillation damping is provided with different efficiency. In 

figure 5 the solution – ym(x), control – um(x) and energy 

dependence for the 2
nd

 fundamental solution are given (the 

phase trajectory is similar to the figure 2). 

 

Figure 5. The 2nd fundamental solution (coordinate) at optimal frequency 

modulation, optimal control and system’s energy. 

This solution is obtained for the initial value p2,0= –10. Its 

alteration (unlike the alteration of the initial value at the 

heuristic feedback introduction) leads to the oscillation 

frequency, control and duty ratio alteration. Criteria (8) in 

this particular case are equal: Km=22,149, Sm=6,404. Let’s 

note that at heuristic feedback introduction the corresponding 

criteria are equal: Ke=22,231, Se=6,251; Ks=22,232, 

Ss=6,247. Thus, the optimal control for the initial value p2,0= 

–10 provides somewhat quicker oscillation damping than the 

heuristic one but worse from the energy damping viewpoint. 

The minimal value of the figure of merit KoptM=22,096 

corresponds to p2,0 (17,18)∈ − . At p2,0 17, 5= −  the frequency 

0,997optω ω= , and duty ratio 2,088optdr = . 

The difference from the heuristic control in this particular 

case consists of the fact that the frequency switching occurs 

not in points corresponding to the solution maximum but 

somewhat later – the delay is equal only to 0.05 of the 

modulating frequency half-period. Of course, at the 

modulation depth rise this difference rises too. The oscillation 

damping improvement in the sense of the criterion introduced 

above at the frequency switching not strictly in antinodes 

(whereas strictly in nodes) is explained rather simply. 

Although the maximal energy decrease and correspondingly 

the oscillation amplitude really occurs at the frequency 

switching strictly in nodes, the motion time with smaller 

frequency is greater than at optimal control. So, the quickest 

oscillation damping occurs when the resulting frequency and 

duty ratio become somewhat smaller than the heuristic ones, 

though only a little at the small modulation depth. 

5. The Mixed Hamiltonian 

Let’s note the similarity of the optimal control problem 

solution and the one obtained at the heuristic feedback 

introduction through fundamental solutions product. The 

“shorten” that is not containing –1 optimal Hamiltonian 

coincides (with the accuracy to the sign between the 

summands) with the quadratic form produced by the problem 

(11) solutions (see, though, the Appendix 6 from [4]): 

2 2
0( ) 1 ( ) 2 ( ) (1 ( 1 ( ) 2 ( ))) 1 ( ) 2 ( )Hs x v s x v s x w sign y s x y s x y s x y s xω= ⋅ + − ⋅                                   (15) 

Let’s name the (15) form the mixed or general 

Hamiltonian (in contrast to the optimal Hamiltonian). Its 

equality to zero for simple harmonic oscillations is checked 

immediately. It is zero as the optimal Hamiltonian almost 

everywhere apart from the zero measure set that is switching 

points. At the introduction of state (for the 1
st
 fundamental 

solution and its derivative) and conjugate (for the 2
nd

 

fundamental solution and its derivative) equations vectors 

one can say that they are normal to each other. 

Now let’s note the difference in conjugate equations type. 
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For the heuristic feedback introduction they are strictly the 

same as the state equations (12) (due to the differential form 

self-conjugation), only initial values differ. At that only the 

equality to zero of the “conjugated” function and its derivative 

sign initial value are important, in the case (12) – it is “+”, 

whereas this value itself may be arbitrary, so that in this case 

the “conjugated” solution is determined with the accuracy of 

any positive multiplicative constant. Any change of constant 

doesn’t lead to the control change and correspondingly the 

“state equations system solution”. The conjugated equations of 

the optimal control problem differ by signs from the state 

equations that is instead of speed the function opposite in sign 

to it is introduced. Correspondingly in the speed equation the 

sign “+” stands in the right part, so that differentiating this 

equation (in the interval of constant control) and the speed 

substitution one gets the ordinary oscillation equation. 

Therefore, the conjugated variables of the optimal control 

problem describe exactly the same oscillating system as the 

investigated one described by the state equations but with 

other initial conditions. Moreover, at the “shorten 

Hamiltonian” use the conjugated equations solution exactly 

corresponds to the 1
st
 fundamental solution, the only 

difference consists of the speed determination (its sign) and 

consequently the Hamiltonian – by analogy in sign bounding 

the “kinetic” and “potential” energies. If one uses the full 

optimal Hamiltonian the main difference consists in the 

initial values of the conjugated variables. 

So, in the OCT the optimal Hamiltonian equality to zero 

determines the control. At the heuristic control determination 

by the feedback introduction through the fundamental 

solutions product the equality to zero of the analogous form – 

is the solution conclusion. However, the mixed Hamiltonian 

introduction permits one to obtain the needed solution from the 

condition of its minimum (instead of Pontryagine’s maximum 

principle). In fact from (15) follows that if solutions differ only 

by the phase shift than the mixed Hamiltonian changes from 

the doubled energy at zero shift to zero at the shift equal to π/2. 

(Damping/shaking up with different efficiency oscillations 

correspond to intermediate phase values.) 

The availability of explicit dependency upon time in a 

motion equation may be considered as the result of “external 

influence” on the described system. If one considers these 

influences as controls than the optimal control or feedback 

introduction automizes systems. At that the conjugated 

systems energies are not conserved but the mixed 

Hamiltonian as well as the optimal one is constant (almost 

everywhere) and equal to zero. Its constancy reflects the fact 

of the conjugated systems autonomies and piecewise control 

type whereas energy is periodically added to one system and 

subtracted from the other. But due to the constancy and 

equality to zero of the mixed Hamiltonian together with the 

Wronskian these energies product is the periodic piecewise 

function and its averaged value upon the modulation period 

is strictly constant: 

2 2 2 2 2 21 1
1( ) 2( ) {( ( )) (1 ( )) ( ( )) } ( ),

4 4
H x H x W x w us x Hs x W xω ω⋅ = ⋅ + ⋅ + = ⋅                             (16) 

2 2 2

0

1 1
1( ) 2( ) 1( ) 2( ) (1 )

4

T

H x H x H x H x dx W w
T

ω
Σ

Σ
⋅ = = ⋅ ⋅ −∫  

The other consequence of the mixed Hamiltonian equality to zero together with the Wronskian constancy is the useful 

analogous in form to the Liouville’s theorem equation: 

( ) [ ]( 1( ) 2( )) 2 1( ) 2( ) 2( ) 1( ) 2 ( ), ( ) ,
d

W y x y x y x H x y x H x y x H x
dx

⋅ + = ⋅ − ⋅ =                                  (17) 

where the commutator is denoted by brackets as usually 

whereas Н1(х) and Н2(х) – are ordinary Hamiltonians of 

conjugated equations (systems). The particularly simple form 

(17) has at the Wronskian equality to unity whereas for 

simple harmonic oscillations (W=ω) the equality (17) is 

checked immediately. 

6. The Control at an Arbitrary Phase 

Shift 

From the previous section results follows that the 

damping/shaking up efficiency is determined in particular by 

the phase shift between the solutions whose product is chosen 

as the control “key”. To estimate this shift influence let’s 

generalize the (10) formulae on the case of the switching in an 

arbitrary point accounting the conjugation conditions (6). Let 

the 1
st
 switching occur in the point corresponding to the initial 

phase ( / 2, / 2)ψ π π∈ − . From (6) we immediately get the 

phase of the conjugated function, its period and characteristic 

index. Let’s note that the switching occurs twice during a 

period. At the 1
st
 one the oscillations amplitudes ratio is equal 

to the amplitude ( )B ψ  whereas at the 2
nd

 – to the frequency’s 

ratio as in the (10). Hence, these values must be multiplied at 

the characteristic index calculation: 
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B

T w
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ω
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ω ψω φ ψ

ω

α ψ ψ
ψ

 + − = ⋅ − ⋅  − − +  

= − =
 ⋅ −  

− ⋅ +  +  

− = ⋅ ⋅ + 

                                 (18) 

It’s seen that at zero initial phase (18) reduces to (10) with 

the accuracy to the 2 in the nominator because (10) have 

been obtained for the half of a period. Characteristic indexes 

dependencies upon initial phase for three modulation depth 

values: w1=0.1, w2=0.2, w3=0.3 are shown on figure 6. 

 

Figure 6. The characteristic indexes dependencies on the initial phase at 

different modulation depths (w1=0.1, w2=0.2, w3=0.3). 

It’s seen that as it follows from the OCT application results 

characteristic indexes reach their minimal values not in the 

point with minimal initial phase but in the points determined 

by the modulation depth. Their difference from calculated 

according to (10) is not large: for the minimal modulation 

depth and the given calculation accuracy there is no difference 

at all; for the value 0.2 the index is – 0.078 that is less on one 

thousandth, at last for the modulation depth equal to 0.3 the 

calculated value is equal to –0.113 that is less on 0.004. 

However, if one takes the obtained in the previous section 

modulation depth which provides the minimal characteristic 

index value – 0.179 and finds its minimum as the initial 

phase function one gets already – 0.231 for the initial phase 

0.22. Let’s note that the significant initial phase introduction 

transforms the index from a nonmonotonic function into the 

monotonic one right up to w=0.99. At that this modulation 

depth corresponds to the characteristic index minimal value 

equal to – 0,305 at the initial phase equal to 0.24 or 13
о
45’. 

This initial phase provides the maximal increase/decrease at a 

large modulation depth (beginning from around 0.4) which is 

seen on the figure 7 plots for different initial phases: 0 (α), 

0.1 (α1), 0.24 (α2) and 0.35 (α3). 

 

Figure 7. The characteristic indexes dependencies on the modulation depth for different initial phases. 



81 Nikolay Nikolaevitch Schitov:  The Optics and Optimal Control Theory Interpretation of the Parametric Resonance  

 

 

From formula (16) one can easily get analytic expressions 

for the true oscillation frequency and duty ratio as the 

modulation depth and initial phase functions. The duty ratio 

versus the initial phase for different modulation depth value 

plots are presented on figure 8. 

It’s interesting for technical applications to determine 

the control providing the oscillation damping at duty ratio 

equal to 2 and predetermined modulation depth, say 

w1=0.1, for example, for the first fundamental solution. To 

make it one has to determine the initial phase from the 

duty ratio dependence on the initial phase (fig. 4). At this 

initial phase one calculates the true oscillation frequency 

(the reduced shift of this frequency from the fundamental 

one 
1

0 0( , ) ( ( , ) )w wδω ψ ω ω ψ ω−= − is on the figure 9) and 

the characteristic (damping) index (figure 6). Now it lasts 

only to determine the control initial phase providing 

damping. If the control is presumed piecewise then the 

initial control phase χ is found from the condition of the 

argument equality to zero in the point corresponding to the 

solution initial phase. 

 

Figure 8. The duty ratio dependence on the initial phase for different 

modulation depths. 

 
Figure 9. The reduced shift of the true oscillation frequency (from the initial 

one) 
1

0 0( , ) ( ( , ) )w wδω ψ ω ω ψ ω−= − dependency on the initial phase for 

different modulation depths. 

Thus the control with duty ratio equal to 2 providing 

oscillation damping for the 1
st
 fundamental solution looks 

like: ( ) 1 [sin(2,0466 0,44)]u t w sign tω= − ⋅ ⋅ ⋅ − . The Hill’s 

equation solution (z(t)) with this control and initial conditions 

corresponding to the 1
st
 fundamental solution and the 

approximating function L1(t) plots are given on the figure 10. 

At last the smooth control providing damping differs from 

the piecewise one by its modulation frequency, initial phase 

and damping index. These differences for the small 

modulation depth are not significant but cannot be calculated 

as easily as in the case of piecewise modulation. For the 

modulation depth equal to 0.1 the modulation frequency is 

equal to 2.04239ω whereas the control initial phase – 0.504. 

At that the damping index modulo reduces to 0.03. Hence, to 

parametric oscillation increase/decrease with the help of 

smooth modulation with the duty ratio equal to 2 it’s enough 

to correctly choose the modulating frequency and initial 

phase depending on the control parameter modulation depth. 

At that the (2) condition of the parametric resonance 

initiation is not necessary and either sufficient. 

 

Figure 10. The Hill’s controlled equation 1st fundamental solution and its 

approximating function plots. 

7. The Nonlinearity Accounting 

The simple dependences presented in the previous section 

seem to exclude the necessity of OCT application, though it’s 

not true. In the general case, for example at any friction 

existence, the conjugated equation must contain the increase 

factor due to the sign change of the 1
st
 derivative in the linear 

differential form. But if this form is not linear the 

construction of the conjugated one without OCT is hardly 

possible. Let’s consider the general homogeneous differential 

form interesting for physical application – the motion 

equation in the form: 

( ) '' ( , ', ) 0 '' ( , ', )L y y F y y x y F y y x= + = ⇒ = − .      (19) 

The conjugated differential form may be found with the 

help of OCT algorithm: 
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1 2 1 2 1 2 2 1 2 2 1 2
1 2

' , ' ( , , ) ' , ' .
F F

y y f y F y y x f p p p p p
y y

∂ ∂= = = − = ⇒ = = − +
∂ ∂                                             (20) 

Differentiating as usually the 2
nd

 conjugated solution upon x and substituting the p1’ value from the 1
st
 one we get the 

conjugated to (8) homogeneous differential form looking like (substituting р2 simply onto – р): 

2 2
*( ) '' ' 0 '' '

' ' ' '

F F F F F F
L p p p p p p p

y y y x y y y x

   ∂ ∂ ∂ ∂ ∂ ∂= − + − = ⇒ = − −      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
                                               (21) 

This equality (10) is immediately checked for the case of linear differential form (8), for example, at the friction availability. 

It’s seen that in the general case the conjugated form depends upon the solution of the main one – only linear forms are 

independent. The mixed and optimal Hamiltonians and canonic equations look like (compare with (8,9)): 

2 1 1 2 2

1 2 2 1 2
1 2

1 2 2 1 2
1 1 2 2

( , ', )
' ' ( ( , ', ) ' ) ( , , ) ;

'

' , ' ' ( , , ),

' , '

F y y x
Hs y p p F y y x y y p F y y x p Hopt

y

d Hopt d Hopt
y y y y y F y y x

dx p dx p

Hopt F Hopt F
p p p p p

y y y y

∂= + − = ⋅ − = ⇒
∂

∂ ∂= = = = = = −
∂ ∂

∂ ∂ ∂ ∂= − = = − = − +
∂ ∂ ∂ ∂

                                         (22) 

For example the physical pendulum oscillation equation 

looks like [3]: 

2 2

2

'' ( ) ( ) 0 ' ' ( ) ( )

'' ( ) ( )

y x Sin y Hs y p x Sin y p

Hs
p p x Cos y p

y

ω ω

ω

+ ⋅ = ⇒ = + ⇒

∂= − = −
∂

  (23) 

In the case of constant frequency (autonomic system) 

numerical solution proves the mixed Hamiltonian constancy 

and equality to zero. The optimal control is determined now 

by the signature of the basic and conjugated solutions 

product. In the case of small oscillations, the control 

corresponds to the linear oscillation case considered above 

( ( ) , ( ) 1Sin y y Cos y≈ ≈ ). At the time-depending frequency 

substitution by the control function the mixed Hamiltonian 

immediately becomes zero as well as the optimal one. Other 

nonlinearities may be accounted in the similar way. 

8. Conclusion 

The parametric resonance analysis given in [2-4] being 

true in general is though incomplete and strict. It follows 

from the above consideration that: 

- there exist an infinite set of modulating frequencies and 

duty ratios satisfying the parametric resonance initiation 

condition and providing oscillation damping/rise up at the 

feedback introduction through the product of solutions 

differing by their initial phase; 

- at that the solutions are conjugated that is at phase shift 

corresponding to π/2 the bilinear form (15) – the mixed 

(general) Hamiltonian analogous to the optimal one is zero 

almost everywhere too, the one’s system oscillations are 

damping whereas the other’s – conjugated – are rising up; 

- at the absence of phase shift no frequency modulation 

occurs because the solution square doesn’t change its sign 

and oscillations are strictly harmonic with maximal or 

minimal frequency depending on the signature sign; 

- for a given modulation depth there exist the optimal 

phase shift providing the quickest oscillation damping and 

strictly determined frequency and duty ratio correspond to it, 

their knowledge permits one to implement explicitly the 

control without any feedback introduction. 

This feedback introduction is possible either by the 

piecewise – signatures – or smooth functions, though 

piecewise control provides the best oscillation 

decrease/increase in the sense of the introduced figures of 

merit and the mixed Hamiltonian equality to zero almost 

everywhere. The feedback in the form of fundamental 

solutions product signature clearly illustrates the physical 

sense of the optimal control problem’s conjugated variables 

and optimal Hamiltonian on the Hill’s equation solutions class. 
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