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Abstract: A moment technique is presented to improve the performance of the discrete ordinates method when solving 

the radiation problems in spherical media. In this approach the angular derivative term of the discretized 1-D radiative 

transfer equation is derived from an expansion of the radiative intensity on the basis of angular moments. The set of 

resulting differential equations, obtained by the application of the SN method associated to moment method, is numerically 

solved using the boundary value problem with the finite difference algorithm. Results are presented for the different 

independent parameters. Numerical results obtained using the moment approximation compare well with the benchmark 

approximate solutions. Moreover, the new technique can easily be applied to higher-order SN calculations.  
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1. Introduction 

In practical engineering problems, radiative transfer in 

participating media appears in many applications such as 

combusting systems, furnaces and reactor nuclear theory. 

Many of these systems can be considered as spherical 

enclosure. Therefore, it is desirable to have an accurate and 

reliable model for solving the radiative transfer equation 

for this geometry which contain, absorbing, emitting and 

scattering medium. A number of studies interested in 

resolving the radiative transfer equation in such media have 

been conducted. These works included various numerical 

techniques: integral transformation techniques [1,2], 

spherical harmonics method [3], Galerkin method [4-5] and 

others [6-7].  

The discrete ordinates method has also been used in 

solving the radiative transfer equation in spherical 

media[ 8 ].This method enjoys great popularity owing to its 

accuracy and to its compatibility with other techniques; 

Sghaier et al [9] and Trabelsi et al [10] developed a 

discrete ordinates method associated with the finite 

Legendre transform. Recently, Aouled-Dlala et al [11] used 

the finite chebyshev transform to treat the angular 

derivative term of the discretized one-dimensional radiative 

transfer equation. Kim et al[12]used the combined finite 

volume and discrete ordinates method to investigate 

radiative heat transfer between two concentric spheres and 

Li et al [13] developed a Chebyshev  collocation spectral 

method for coupled radiation and conduction in a 

concentric spherical participating medium. Very recently, 

Mishra et al [14]  used a lattice Boltzmann and modified 

discrete ordinates method to study radiative  transport  in a 

spherical medium with and without conduction.  

In order to apply the discrete ordinates method, it is 

necessary to approximate the angular derivative term 

appearing in the radiative transfer equation in spherical 

coordinates. This term is generally approximated by a 

classical finite differencing scheme [15].  

In this work, we introduce a new approach to evaluate 

the angular derivative term using an angular moment 

technique. This yields  a quasi-analytical expression of the 

discrete angular derivative term. The obtained higher 

moments of the radiative intensity are expressed in term of 

the incident radiation, the net radiative heat flux and the 

radiation pressure using the generalized eddington 

approximation [16 ]. We therefore adopt the discrete 

ordinates method to study the radiation transfer in such 

media. In this paper, the considered medium is a hollow 

sphere. The boundaries are maintained at different but 

uniform temperatures and are considered to be opaque, 

gray diffusely emitting and diffusely reflecting. The 

obtained results are compared with those given by the 

standard discrete ordinates method and with those available 

in the literature. The mathematical formulation is given for 
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gray media but its extension to any absorption coefficient 

based non gray model is straightforward.  

 

2. Analysis 

The radiative transfer equation through an absorbing, 

emitting and isotropically scattering spherical shell 

medium is 
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The above equation is subject to the following boundary conditions  
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In Eqs.(1), (2a) and (2b), r is the space radial variable, 

µ  is the cosine of the angle between the direction s of the 

radiation intensity ( ),I r µ and the positive r-axis. ,   χ σ
and β  are the absorption, scattering and extinction 

coefficients, respectively, which are related by 

β χ σ= + . 

The blackbody radiation is related to the temperature 

( )T r  in the medium through 

( )2 4

b
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σ
π
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where n  denotes the refractive index and σ the Stefan 

Boltzmann constant. In the boundary conditions given by 

Eqs (2a) and (2b), ε  is the isotropic emissivity of the 

opaque boundaries. The subscripts 1 and 2 refer to the 

boundaries at 1r R=  and 2r R=  respectively. The 

geometry and coordinates for the hollow sphere are shown 

in Fig. 1. 

 
Fig 1. Hollow sphere geometry and notations. 

2.1. Differencing Scheme 

The discrete form of the radiative transfer equation is 

obtained by evaluating Eq. (1) at each of the discrete 

directions and replacing the integral by numerical 

quadrature to give 
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The discrete ordinate representation of the boundary conditions, Eqs. (2a) and (2b) is given by 
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where subscripts m and m' refer to discrete directions, M is 

the total number of these directions. If a standard 

difference scheme is used, the discrete form of the term 

involving the angular derivative term is written 
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where
1/2m

I +  and 
1/ 2m

I −  are the angular  intensities in the 

directions m+1/2 and m-1/2. The constants 
1/ 2m

α +  and 

1/2m
α −  only depend on the differencing scheme and 

therefore they may be determined by examining the case of 

an isotropic intensity field as described in Ref. [15]. As far 

as the curved geometries are concerned, the differencing 

scheme introduces two angular variables; 
1/2m

I +  and
1/ 2m

I − . 

They must be determined at each space position r. For this 

purpose, the standard diamond difference approximation is 

used to relate the 
1/2m

I +  and
1/ 2m

I − , namely 
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In the calculation of the average angular intensity
m

I , we 

need the starter intensity
1/ 2

I . For spherical geometry, it is 

obtained from the solution of the transfer equation in slab 

geometry with starter direction cosine 1µ = − . We develop 

in what follows an alternative technique based on angular 

moment equations. .The results from both approaches will 

be compared. 

2.2. Moment Method 

We develop a new approach to approximate the angular 

derivative term: 
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We start by defining the k-th order moment of D(r,µ) 
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The application of the angular moment technique to the angular derivative term, denoted ( , )D r µ  yields 
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The moments of the radiative intensity represent a 

generalized incident radiation, which for the case n=0, n=1 

and n=2 reduces the usual definition of the incident 

radiation, radiative flux and the radiation pressure. The 

obtained higher moments of the radiative intensity are then 

expressed in term of the incident radiation, the net radiative 

flux and the radiation pressure using the generalized 

eddington approximation (16). 

In order to obtain the angular derivative term, the 

integrals over direction are replaced by the discrete form 
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where the 
m

w  are the quadrature weights associated with the directions 
m
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Now, the angular derivative terms 
m

D  are obtained from Eq. (12) written for k=1, M-1. Thus, this system is closed by 

using the obvious relation 
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The angular derivative terms 
m

D  are then given by 
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inverse of the matrix which is given  by 
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The new discrete ordinates representation of Eq. (1), for 

a finite number of discrete ordinates may be written 
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and the discrete ordinates representation of the boundary 

conditions is given by Eqs.(4a, 4b) 

Once the directional intensities
m

I are known, the 

radiative  heat flux ( )r
q r  and the incident radiation energy 

( )G r  in the medium are determined from their definitions 

as 
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Equations (18) and (4a, 4b) provide the complete 

mathematical formulation for the radiation problem in a 

dimensional spherical medium. A numerical technique, 

namely the boundary value problem with finite difference 

(BVPFD) [17] is used to solve this problem. The new 

technique called MOM-DOM with eight directions (N=8) 

is adopted. The weights and quadrature points are those of 

corresponding Gaussian quadratures.  
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3. Results and Discussion 

In table1, we give the numerical values of r
2
 q

*
 (r) for a 

radiation problem between two concentric spheres with 

diffusely emitting and reflecting boundaries subject to pure 

radiative transfer. Results obtained from the new technique 

denoted by MOM-DOM have been compared with that of 

kim et al [12], Jia et al [7], Sghaier et al [9], standard 

discrete ordinates method, denoted by DOM [11] and those 

of Mishara et al [14].For the standard discrete ordinates 

method, the coefficient 
1/ 2m

α +  and 
1/2m

α −  are calculated 

following the procedure as described by Modest [ 16 ]. We 

present results for 
*

1 20.5, 1r τ= =  and for various 

combinations of the boundary emissivities 
1

ε and
2

ε  and 

for different values of outer sphere temperature θ2. MOM 

results show an excellent comparison. 

In table 2, we present the numerical values of moment of 

order 1( 

1

1

( , )I r udµ µ
+

−
∫ ) for a purely radiation problem with 

black boundaries, inner sphere temperature θ1=1 and outer 

sphere temperature θ2=0, and for different optical thickness 

of inner and outer sphere 1 1Rτ β= and 2 2Rτ β=
respectively. Results are compared with those of Viskanta 

et al, Jia et al and Abulwafa et al. The MOM results 

compare well with those available in literature [4, 5, 6]. 

An increase in optical thickness 2 2Rτ β= , the medium 

becomes more denser. The net radiative heat flux decreases 

in the medium as shown in Fig.2.  

For the optical thickness 2 22, 0.5τ θ= =  and for black 

boundaries, the effects of the ratio R1/R2 on the radiative 

heat flux is shown in Fig.3. With an increase in the ratio 

R1/R2, the medium tends to planar one and the radiative 

heat flux becomes constant. 

Fig.4 shows the effect of the outer sphere temperature θ2 

on the radiative heat flux distribution in the medium. When 

the outer sphere becomes hot, the net radiatif heat flux 

changes sign and becomes negative.  

In Fig.5, we study the effect of emissivity of the inner 

and outer sphere on the radiative heat flux distribution in 

the medium. For this study, 2 21, 0.5τ θ= = and R1/R2=0.5. 

It 'is observed when the hot inner sphere is more reflecting, 

the net radiative heat flux in the medium becomes less.  

4. Conclusion 

An analysis of a radiation problem in one dimensional 

absorbing, emitting and isotropically scattering hollow 

spherical medium is investigated. The angular derivative 

term appearing in this geometry is approximated by 

making use of a new approach called MOM-DOM 

approximation. This leads to an accurate expression for  the  

angular derivative term. The set of differential equations is 

solved using the boundary value problem with finite 

difference algorithm. The accuracy of the new technique 

has been verified by comparison with benchmark 

approximate solutions.  

Table 1. Values of r2q(r) for various combinations of  1ε  and 2ε  2ε  with  
*

1 0.5r = , 2Θ =0.5 and 2 1τ =
.
  

1ε 2ε 
2Θ  

2
* *rr q

DOM[11] 

2
* *rr q  

FLT[9] 

2
* *rr q  

MOM-DOM 

2
* *rr q  

Galerkin[4] Method 

2
* *rr q  

FVM[12] 

2
* *rr q  

MDOM[14] 

1 1 0.5 0.21733 
0.21733 

 
0.21030 0.21038  0.20827 0.20820 

0.5 1 0.5 0.11312 0.11312 
0.11160 

 
0.1108  0.11027 0.11022 

1 0.5 0.5 0.17281 
0.17281 

 
0.17127 0.1718  0.17038 0.17000 

0.5 0.5 0.5 0.09977 0.09977 0.09966 0.0991  0.09866 0.09849 

1 1 2 
-  3.47938 

 

-  3.47938 

 
-3.36480 - 3.36557 -3.33625 -3.37597 

0.5 1 2 -1.79980 -1.79980 
-1.7623 

 
-1.77357 -1.76643 -1.78700 

1 0.5 2 
-2.8160 

 

-2.8160 

 
-2.77656 - 2.74880 -2.72926 -2.75610 

0.5 0.5 2 -1.61580 -1.61580 -1.59463 -1.58604 -1.58034 -1.59690 

Table 2. The net radiative heat flux with transparent boundaries, isotropic incidence at the inner surface and ω=1.0. 

τ1 τ2 Ref.[4] Ref.[5] Ref.[6] Present work 

0.5 1 0.11221 0.11220 0.11220 0.11215 

0.9 1 0.38305 0.38310 0.38308 0.39110 

0.95 1 0.43658 0.43660 0.43660 0.44680 

1 10 __a 
__a 

0.00343 0.00339 

5 10 __a 
__a 

0.04793 0.04784 

9 10 __a 
__a 

0.24609 0.24685 
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Fig 2. Effect of the optical thickness τ2 on the dimensionless radiative flux with ε1=ε2=1, θ2=0.5 and R1/R2=0.5. 

 

Fig 3. Effect of the ratio R1/R2 on dimensionless radiative flux with ε1=ε2=1, θ2=0.5 and τ2=2.0. 
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Fig 4. Effect of the boundary temperature θ 2 on the dimensionless radiative flux with ε1=ε2=1, τ2=2 and R1/R2=0.5. 

 

Fig 5. Effect of the surfaces emissivity on the dimensionless radiative flux with θ2=0.5, τ2=1 and R1/R2=0.5.
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