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Abstract: This paper introduces a new space object detection algorithm that is designed to process image data taken from 

astronomical telescopes for the purposes of finding sources of optical radiation in space. Specifically, the algorithm is designed to 

find unresolvable space objects or objects that possess an angular size that is too small to appear as anything, but a point source as 

viewed through the telescope conducting the search. The proposed approach involves calibrating the image data into units of 

photoelectrons and then executing an estimation algorithm to compute the strength of the hypothetical sources in the image. A 

Likelihood Ratio Test (LRT) is then implemented to make a determination if the hypothetical sources are classified as space objects 

or not. The proposed algorithm is demonstrated to achieve a higher probability of detecting unresolvable objects than the matched 

filter, which is still the state-of-the-art approach for finding optical sources in astronomical images. The new approach involves a 

pre-processing step where the amplitude of the optical source in a given test location is estimated under the hypothesis that at optical 

source exists at that location. The median filter is used to estimate the background level in the vicinity of the test location. Once 

these parameters are estimated, A likelihood ratio test is used to determine whether an object is present at the test location. The new 

algorithm is tested against the matched filter detector using two sets of measured short exposure data of the star Polaris and two stars 

in its vicinity taken with a small telescope. Receiver Operating Characteristic (ROC) curves are produced for the two detection 

schemes showing that the new algorithm out-performs the old one with a difference of 10 percent in the probability of detection, 

which is demonstrated to be statistically significant in these experiments with confidence as high as 90%. 
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1. Introduction 

Detection of objects in space is an ever increasingly 

important function of astronomical telescopes and the 

astronomical community. Useful space situational awareness 

is important for planetary protection from asteroids as well as 

mission planning for earth orbiting satellite programs and 

safety of manned space missions. The future need for space 

object detection will only grow as access to space becomes 

more affordable. The economics of the future space economy 

are still in doubt; however, so making space surveillance as 

affordable and cost effective remains a priority [1, 2]. 

Design and construction of space surveillance equipment 

remains expensive, whether those assets are on the ground or 

in space itself. The research explored in this paper is 

designed to economize space surveillance by improving the 

ability of existing sensors to accomplish the space object 

detection mission. For this reason, this paper will not discuss 

new advances in device or optics technology for 

accomplishing space surveillance but will instead only 

discuss research that can improve an existing system’s ability 

to detect objects in space through image processing. 

Additionally, with the advent of radar systems capable of 

detecting objects in low earth orbit, the research discussed in 

this paper will focus on improving the detection of objects in 

geosynchronous and geostationary orbit, which represent one 

of the most crowded regions where satellites operate. 

Image processing algorithms for accomplishing space 

object detection utilize different phenomenology to 

accomplish the detection. Some types of algorithms are 

designed to process long exposure images of objects in space 

while the telescope is rate tracking, thus making all stars 
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appear as point sources and objects not moving at the sidereal 

rate appear as streaks of light. This type of algorithm 

attempts to accomplish streak detection, which suffers 

efficiency problems as the light from the desired object is 

spread over many pixels, thus decreasing its visibility [3]. A 

more efficient method of telescope operation is to fix the 

telescope and allow the stars to streak across the detector 

during a long exposure. In this mode of operation, objects in 

geosynchronous or geostationary orbit will not streak and 

will have their photons integrate in fewer pixels, thus 

achieving a higher signal to noise ratio in those detectors [4]. 

For this reason, this research will endeavor to detect objects 

that appear as point sources to the observing telescope. A 

related area of research involves how to process collections 

of observations to make detection decisions [5, 6], but this 

research focuses on how to process a single observation as 

multiple observations are not always available in every case. 

Detection of objects that appear as point sources has been a 

subject of research for decades. MIT Lincoln Labs developed 

the some of the first algorithms for detecting such objects with 

what is called by some as the point detector [7]. This type of 

algorithm endeavors to find a space object by looking at a 

single pixel and normalizing its response by the local standard 

deviation of the measured intensities around the test location 

after subtracting the local background. The resulting signal is 

compared to a threshold set to achieve the desired probability 

of false alarm. A similar approach has been implemented with 

great success using a matched filter approach with the same 

kind of background subtraction and normalization scheme [4, 

8]. Other attempts have been made at improving space object 

detection over what is possible with a matched filter, by 

employing collections of matched filters or exploiting the 

statistics of space object occurrences [9.10] These techniques 

however do not improve space object detection in cases where 

the image field is not under sampled and rely on the basic 

matched filter approach, just with more filters. The matched 

filter approach is a state-of-the-art approach for accomplishing 

space object detection and will be used as the method to 

compare to in this research. 

The proposed space object detection algorithm explored in 

this paper uses a Log-Likelihood Ratio Test (LRT) based on 

Poisson statistics similar to that proposed by Polig [3]. The 

main difference in what is proposed here is that the 

brightness of the hypothetical object to be detected is 

estimated from the data and the natural logarithm is not 

approximated by a Taylor series expansion. The proposed 

technique also requires the use of a calibration algorithm [11] 

to convert the digital counts collected by the photodetector 

into units of photoelectrons that exhibit Poisson statistics. 

The digital counts are discrete and non-negative, but do not 

display Poisson statistics due to the detector gain and bias 

present in the system. This research will demonstrate how 

absolute calibration can be used in conjunction with an LRT 

to improve the ability of a telescope to detect objects in space 

over what can be achieve through a matched filter approach. 

Section 2 of this paper introduces the hybrid estimation and 

detection algorithm. Section 3 showcases the data sets used 

in this study. Section 4 displays the results obtained from 

applying the new algorithm and the matched filter to the data 

sets. Conclusions of the research are discussed in Section 5 

as well as future research possibilities. 

2. Algorithm Design 

The algorithms utilized in this paper for processing the 

image data comprise both an estimation scheme for the model 

parameters as well as a detection algorithm. The first is the 

estimation scheme, which is used to recover the background 

level as well as the hypothetical amplitude of the source as the 

test location. The second is the Likelihood Ratio Test (LRT) 

used to make the detection decision. The estimation step 

begins with the use of the median filter to determine the level 

of the background in the local area around the test location. 

The next step in the estimation procedure involves the 

estimation of the amplitude of a star that might exist at the test 

location through the use of an Expectation-Maximization 

approach. This new algorithm is compared to that of a baseline 

approach previously reported in the literature [8]. 

2.1. Estimation Algorithm 

The number of photoelectrons measured at each detector in 

the array is assumed to be a Poisson random variable with a 

mean equal to the sum of the mean number of photons from 

the objects in the field of view and the background. 

The data from these sources is modeled as separate Poisson 

random variables such that the data from the objects, dk(x,y) 

has the mean show in Equation (1). 

[ ( , )] ( , )k k kE d x y h x yγ=           (1) 

In this Equation, (x,y) are coordinates in the detector plane 

in an M-by-M pixel area centered at the test location (the test 

location has coordinates (M/2+1,M/2+1), γk is the number of 

photoelectrons from optical sources in the k’th frame of image 

data out of a total of J frames and hk is the PSF in the k’th 

frame. The second set of data. dB(x, y,k) has a mean equal to 

the background level as shown in Equation (2). 

[ ( , , )]B kE d x y k B=              (2) 

In this equation, Bk is the background level in the k’th frame 

of data, which is assumed to be uniform in the field of view on 

average and is computed using a median filter. The measured 

data,		�	� ���, �		is also Poisson and is equal to the sum of all 

both data sets as shown in Equation (3). 

( , ) ( , ) ( , , )k k Bd x y d x y d x y k= +ɶ        (3) 

An Expectation-Maximization approach is adopted for 

computing the amplitude of an unknown object from a single 

frame of camera data [12-14]. This procedure begins by 

identifying the joint log-likelihood of the two data sets, dk(x,y) 

and dB(x, y,k). Since these data are assumed to be Poisson and 

both statistically independent from one another as well as 
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statistically independent from pixel to pixel, the joint 

log-likelihood, L(gk), can be expressed using the following 

equation, which assumes that the PSF’s sum to one and the 

data in each pixel in every frame are statistically independent 

from one another: 
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The derivative of L(gk), with respect to γk is computed as 

shown in Equation (5). 
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A second derivative yields a strictly negative result, 

implying that a solution for Equation (5) when the derivative 

is set equal to zero will produce a maximum of the 

log-likelihood function. The solution for γk that maximizes 

L(gk) is shown in Equation (6). The conditional mean of the 

estimate given the measured data is computed to show the 

form of the estimate obtained from the 

Expectation-Maximization process. 

 [ ( , ) | ( , )E d x y d x y
k k kx y

γ = ∑∑ ɶ
         (6) 

The expectation step shown in Equation (6) is necessary 

since the data described in Equation (1) is not directly 

observable but is contained within the observed data, 

	�	� ���, �		 as shown in Equation (3). The conditional 

expectation has been solved by Shepp and Vardi and is 

substituted into Equation (6) to yield the following result [15]. 
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      (7) 

In this equation a variable with the old superscript denotes a 

quantity computed with estimates obtained from the previous 

iteration of the EM algorithm. γk
new

 denotes the new estimate 

obtained from the EM algorithm for the number of photons 

present in the k’th data frame. In this way the algorithm is 

implemented by the user providing a starting estimate which is 

updated from iteration to iteration via Equation (7). One 

obvious way to initialize the estimate for γk is to subtract the 

median value, Bk, from the image,		�	� ���, �	, and sum the 

result over all pixels. 

2.2. Likelihood Ratio Test 

The test for determining whether an object is present at the 

test location is an LRT. To derive the form of the test, the 

probability of the data in the M-by-M pixel area around the 

test location must be surmised for both the hypothesis that a 

source is present at the test location as well as the hypothesis 

that a source is not present at the test location. The test is only 

conducted if the estimated value of γk
new

 exceeds a threshold 

of γthresh photons. The natural log of the probability of the data 

given there is an optical source at the test location is shown in 

Equation (8). 
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The natural log of the probability of the data given there is 

no optical source present is shown in Equation (9). 
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Subtracting the natural logarithms in Equation (9) from 

that found in Equation (8) yields the natural logarithm of the 

LRT, Q. If Q is greater than a threshold, t, we say that H1 is 

true and if it is not, we say that H0 is true. 
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Q is the test statistic for the new algorithm and is notably 

different than the test statistic used when employing a 

matched filter detector, which is denoted as C and is shown 

in Equation (11) for reference. 

1 1

( ( , ) ) ( , )   
M M

k k k

x y

C d x y B h x y
= =

=  − ∑∑ ɶ         (11) 

3. Experimental Data 

The data utilized in this research is taken with an 8-inch 

reflecting telescope with a 2-meter focal length that has a 

Cassegrain design. The aperture is stopped down with a mask 

that admits light in a 2-inch diameter circle within the entrance 

pupil of the optic at a position away from the secondary mirror. 

This creates an optical system that has a 2-inch diameter with 

a 2-meter focal length, achieving a F# of 40. The average 

wavelength of the light entering the telescope is 

approximately 500 nm. The CCD camera attached to the 

telescope is from a Roper Cascade 512B scientific camera 

which has a 16 micro-meter pixel pitch. 

Two sets of image data were taken containing a collection 

of optical sources with integration times of 10 and 100 ms. 

The telescope was pointed at Polaris and regions of the image 

were identified as containing optical sources and other regions 

were shown to possess no discernable optical sources. Figure 
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1 shows an average of 1000 frames of data taken at 100 ms 

integration time. Polaris is the brightest object in the field of 

view. 

 

Figure 1. 100ms image data of a region around Polaris. 

 

Figure 2. 1000 frame average of Polaris B. 

Two Regions were chosen to provide data where weak 

optical sources reside. A region was also chosen where there 

appear to be no optical sources present in the average data. 

Figure 2 shows an area that corresponds to the location of 

Polaris B. It is not visible in Figure 1, but its image can be 

viewed when isolated by itself as shown in Figure 2. 

Figure 2 represents an average of 1000 frames of image data. 

Figure 3 shows a typical individual frame. Figure 4 shows the 

1000 frame average of an area near Polaris A that appears to be 

free of optical sources. Figures 5 and 6 show another area used 

for testing where a weak optical source appears to be present 

in the 10ms data set. All 5 of these data sets were calibrated 

using an algorithm known as the SANUC calibration method. 

This method utilized 1000 frames of background data taken of 

the sky area shown in Figure 4. Using 1000 frames of the 

100ms data and 1000 frames of the 10ms data, this calibration 

technique was able to compute that the median pixel gain was 

20.7 digital counts per electron, the average sky background 

photo-electron count was 3.0 photo electrons and the digital 

bias level was 146 counts. 

 

Figure 3. Typical 10 ms exposure of Polaris B. 

 

Figure 4. 1000 frame average of an area near Polaris A that appears to be 

free of optical sources in the 1000 frame average. 

All the data frames were calibrated into units of 

photoelectrons by subtracting off the local mean, setting a 

negative value to be zero and then dividing the remaining 

digital counts by the gain of 20.7. A value of 3.0 

photoelectrons were then added to all the pixel values to 

account for the background light. 

This calibrated data was then processed by both the 

matched filter detector and the proposed detection algorithm 

with the results shown in the next section. In order to 

accomplish this a shape for the Point Spread Function (PSF) 

otherwise known as the system impulse response function 

must be given. Figure 7 shows the shape of the PSF used in 

this study that was obtained from using Polaris A as a guide 

star. This star is chosen because it is close to the optical 

source data and is comparatively bright. 

4. Results 

1000 frames of image data collected on an object in the 

vicinity of Polaris A as shown in Figure 6 was processed by 
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the algorithm proposed in Section 2 of this paper. This data 

contains an object centered at the middle of the image which is 

the test location for this study. Since we know there is an 

object present (as seen in the 1000 frame average at that 

location) the output of the LRT defined in Section 2 serves to 

characterize the behavior of the detection algorithm when an 

object is present at the test location 

 

Figure 5. 1000 frame average of the data of an object near Polaris A. 

 

Figure 6. A single frame of the averaged image shown in Figure 5. 

Figure 8 shows the histogram of outputs from the LRT 

when processing the data of the dim object shown in Figure 5. 

This data set of 1000 LRT outputs from equation (10) was fit 

to a Gaussian distribution using the MATLAB © NORMFIT 

function. The mean and standard deviation are computed as 

2082.5 and 486.2 respectively and a lower bound on the mean 

was found to be 2074.5 and a lower bound on the standard 

deviation was computed to be 480.7. 

These bounds were computed with 70% confidence, 

meaning that there is a 70 percent chance that the mean is 

above the reported bound and the standard deviation is below 

the bound. The same procedure is followed with data collected 

of the area shown in Figure 4. Figure 9 shows a histogram of 

the output of the algorithm when processing an area that 

appears to not have any optical sources present in the 

long-term average. This data set was also fit to a Gaussian 

distribution using the MATLAB © NORMFIT function. The 

mean and standard deviation are computed as 1419.7 and 

356.5 respectively and an upper bound on the mean was found 

to be 1425.6 and an upper bound on the standard deviation 

was computed to be 360.8. 

These statistics were used to compute the probability of 

detection and probability of false alarm of the proposed 

algorithm. Using a normal distribution, the probability of 

detection is computed by choosing a threshold and then 

integrating the probability of the normal distribution above the 

threshold. This is mathematically equivalent to taking one 

minus the Cumulative Distribution Function (CDF) at the 

threshold value. 

 

Figure 7. 100 frame average of Polaris A used to estimate the PSF. 

 

Figure 8. Histogram of the outputs of the proposed LRT algorithm when 

processing 1000 frames of data shown in Figure 6 of the object in Figure 5. 

A lower bound on the probability of detection can also be 

computed by taking the 70% confidence bound values 

reported earlier and using the CDF method just described to 

compute the probability of detection using the lower bound of 

the mean and standard deviation of the detector outputs. By 

choosing the lower limit of the mean and lower limit on the 

standard deviation, the probability of detection is bounded 

using these ‘worst case’ values. If the mean was higher and the 

standard deviation was higher, then the probability of 

detection for a given threshold (over the mean value) would be 

lower than the that computed using the nominal values for the 

mean and standard deviation. 
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The same process is utilized for computing the probability 

of false alarm using the outputs from the 1000 frames of data 

of the empty sky fed into the proposed algorithm. In this case 

because the sky is empty, we are computing the probability of 

false alarm. To obtain the ‘worst case’ for this statistic the 

upper bound on the mean and upper bound on the standard 

deviation are used to compute the upper bound on the 

probability of false alarm. 

 

Figure 9. Histogram of the outputs of the proposed LRT algorithm when 

processing 1000 frames of data shown in Figure 4 of a region of space 

appearing to contain no optical sources. 

 

Figure 10. Histogram of the outputs of the matched filter algorithm when 

processing 1000 frames of data shown in Figure 6 of the object shown in 

Figure 5. 

With a lower bound on the probability of detection and an 

upper bound on the false alarm rate computed for a given 

threshold, the Receiver Operating Characteristic (ROC) curve 

can be graphed by plotting the probability of detection vs. the 

probability of false alarm for each threshold value. The range 

of threshold values was chosen to be between zero and 18,000, 

which spans the entire range of possible outputs of the 

proposed algorithm in this case with much greater than 

99.9999% probability. 

This same procedure is applied to the output of the matched 

filter algorithm. The difference is that instead of computing 

the ‘worst case’ performance of the algorithm with 70% 

confidence, now the ‘best case’ is computed with 70% 

confidence again using the MATLAB © NORMFIT function. 

Figure 10 shows the histogram obtained from the matched 

filter output when the images used to generate Figure 6 are 

input. The mean and standard deviation are computed as .0491 

and .04 respectively and an upper bound on the mean was 

found to be .0498 and a lower bound on the standard deviation 

was computed to be .0397. 

 

Figure 11. Histogram of the outputs of the proposed matched filter algorithm 

when processing 1000 frames of data of the region of empty space shown in 

Figure 4. 

 

Figure 12. ROC plots for the proposed algorithm and the matched filter 

showing as much as 5% improvement in probability of detection for a given 

threshold. The upper and lower bounds were computed using a 70% 

confidence interval and this level of confidence was chosen because it is the 

point where the lower and upper bound ROCs are approximately the same. 

The same procedure is followed with data collected of the 

area shown in Figure 4. Figure 11 shows a histogram of the 

output of the algorithm when processing an area that appears 

to not have any optical sources present in the long-term 
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average. This data set was also fit to a Gaussian distribution 

using the MATLAB © NORMFIT function. The mean and 

standard deviation are computed as -.0021 and .03 

respectively and a lower bound on the mean was found to be 

-.0026 and a lower bound on the standard deviation was 

computed to be .0295. 

Figure 12 shows the ROC curves produced by the 

proposed LRT detection algorithm for the nominal case and 

the ‘worst case’ estimates of the mean and standard 

deviations of the outputs. This figure also shows plots of the 

ROC curve for the nominal values of mean and standard 

deviations of the outputs obtained from the matched filter 

detector as well as the ROC computed using the ‘best case’ 

with 70 percent confidence. The 70 percent confidence 

interval was chosen as this is the point at which the ‘worst 

case’ of the proposed algorithm and the ‘best case’ of the 

matched filter are approximately equal. This signifies that the 

proposed detection algorithm achieves approximately a 5 

percent improvement in the probability of detection with at 

least 70 percent confidence. 

The exact same procedure is used to compute the 

performance of the algorithms on the data shown in Figure 3 

of Polaris B. The same set of empty space is used for 

computing the probability of false alarm. Figure 13 shows the 

ROC curves for nominal values of the mean and standard 

deviation of the detector outputs as well as the ‘worst case’ 

ROC for the proposed detector and the ‘best case’ ROC for 

the matched filter detector. 

 

Figure 13. ROC plots for the proposed algorithm and the matched filter 

showing as much as 10% improvement in probability of detection for a given 

threshold. The upper and lower bounds were computed using a 90% 

confidence interval and this level of confidence was chosen because it is the 

point where the lower and upper bound ROCs are approximately the same for 

part of the curve. 

The Pfa region between 0 and 0.1 is shown here on the 

x-axis as this is the region in which the new detector has the 

greatest performance advantage over the matched filter and 

lower false alarm probabilities are generally desirable for 

practical operation. The red curve showing the nominal 

performance is just over the line representing the 90% lower 

bound of performance. 

The same set of data without employing the 

photo-calibration step was processed in the exact same way 

as before and produced the ROC curves seen in Figure 14, 

showing how important the absolute calibration step is. 

 

Figure 14. ROC plots for the proposed algorithm and the matched filter 

showing no improvement at all using the new algorithm when the data is not 

calibrated into units of photons. 

5. Conclusions 

The results presented in the previous section show that the 

combination of a calibration algorithm together with an LRT 

based on Poisson statistics can improve the probability of 

detecting space objects over what is achievable with a 

matched filter. The improvement is as much as 10 percent and 

is shown to be statistically significant with 90% confidence. 

The application of the new technique does not require 

expensive of time-consuming calibration work, since the sky 

background is used to compute the calibration parameters. All 

that is required is that two sets of data taken at different 

integration times be available to complete the calibration step. 

Failure to employ the calibration step produces results that are 

inferior to the matched filter as shown in Figure 14. This is due 

to the reality that although the photodetector is measuring a 

Poisson random variable, the system gain and bias skew the 

statistics in such a way as to reduce the effectiveness of an 

LRT that is based on Poisson statistics. Calibrating the data 

back into units of photoelectrons alleviates this problem. 

The method proposed in this paper does require knowledge 

of the shape of the PSF as does the matched filter algorithm. 

Future work could include a sensitivity analysis to determine 

which algorithm requires more exact knowledge of the PSF. 

Another topic for future exploration could include an 

algorithm that adaptively determines the PSF while detecting 

objects in space. Such a technique would potentially be more 

robust as it would deal with the fluctuations in atmospheric 

seeing that inevitably occur during long observation periods. 

It would also deal with telescope aberrations that are field 

dependent and change across the sensor field of view, which is 

a serious problem for synoptic survey telescopes. 
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