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Abstract: The estimation of wave parameters is of great importance in coastal activities such as design studies for harbor, 

inshore and offshore structures, coastal erosion, sediment transport, and wave energy estimation. For this purpose, several 

models and approaches have been proposed to predict wave parameters, such as empirical, numerical-based approaches, and 

soft computing. In this study, the group method of data handling type neural network (GMDH-NN) was presented for 

significant wave height prediction in an attempt to suggest a new model with superior explanatory power and stability. The 

GMDH-NN results were compared with the field data and with a multilayer perceptron neural networks (MLPNN) model. The 

results indicate that the prediction accuracy and avoidance of over-fitting of the GMDH-NN method were superior to those of 

the MLPNN method. The percentage improvement in the root mean square error and the mean absolute percentage error of the 

GMDH-NN model over the MLPNN model were 72.92% and 81.02%, respectively. Also, according to the indices, the 

GMDH-NN model performs the best for predicting the Hs of all of the wave height ranges. That is, the GMDH-NN model is 

capable of predicting wave heights for different ranges. The results of the analysis suggest that the GMDH-NN-based modeling 

is effective in predicting significant wave height. 
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1. Introduction 

Waves are important factors in the planning and design of 

harbors, waterways, shore protection projects, and offshore 

structures, as well as for environmental impact assessments 

and hazard mitigation. The field observation of waves is 

generally difficult, and the numerical modelling of waves is 

costly and time consuming. Various methods, such as 

empirical, numerical, and soft computing approaches, have 

been proposed in the literature for wave parameter 

prediction. 

The most commonly used soft computing techniques that 

has been proposed to forecast wave parameters is the neural 

networks (NNs). Deo and Naidu [1] compared the 

forecasting results of NNs and auto-regressive models and 

reported that NN models are more accurate. Deo et al. [2] 

tested a feed-forward neural network (FFNN) to obtain 

significant wave heights and average wave periods by using 

the current and previous time step wind speed values as 

input. Agrawal and Deo [3] predicted the wave heights 

using a back-propagation neural network (BPNN), a 

cascade-correlation neural network (CCNN), and auto-

regressive models (ARMA and ARIMA). These authors 

reported that the NNs were more accurate than the auto-

regressive methods. Tsai, Lin, and Shen [4] have used the 

back-propagation neural network to forecast the ocean 

waves based on the learning characteristics of the observed 

waves and also based on the wave records at the 

neighboring stations. Makarynskyy [5] applied the FFNN 

technique to predict significant wave heights and zero-up-

crossing wave periods over hourly intervals from 1 h to 24 

h. Makarynskyy et al. [6] forecasted wave heights and zero-

up-crossing wave periods at intervals of 3, 6, 12 and 24 h 

using an FFNN. Mandal and Prabaharan [7] used a 

recurrent neural network to forecast the significant wave 

heights on the west coast of India. In contrast, Mahjoobi, et 

al. [8] compared NNs, FISs and ANFISs in hindcasting 

wave parameters. Their results showed that these methods 
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perform nearly the same. According to the meteorological 

data, Günaydın [9] predicted monthly mean significant 

wave heights by using NN and regression methods. On the 

other hand, Elbisy [10] used the support vector machine 

(SVM) approach with various kernel functions for wave 

parameters prediction. The SVM results were compared 

with the field data and BPNN and CCNN models, and the 

results indicated that the SVM with a radial basis function 

kernel provides the best generalization capability and the 

lowest prediction error. While Malekmohamadi et al. [11], 

Londhe et al. [12], and Deshmukh et al. [13] combined NN 

and numerical models to realize the wave height prediction, 

Sadeghifar et al. [14] used recurrent neural networks (RNN) 

for wave predictions based on the data gathered and the 

measurement of the sea waves in the Caspian Sea in the 

north of Iran. Additionally, Elgohery et al. [15] used 

nonlinear regression and SVM methods to predict 

significant wave height. The results explained that the use 

of nonlinear regression methods gave a good result as 

compared to the results from the SVM; However, the 

results also indicated that the SVM based on radial basis 

function is more superior to the nonlinear regression 

methods. 

The aim of the present study is to illustrate a new approach 

to predict significant wave height using the group method 

data handling type neural network (GMDH-NN). The 

performances of GMDH-NN is evaluated by the multi-layer 

perceptron neural network (MLPNN). 

The group method of data handling (GMDH) type neural 

network (NN) is a powerful identification technique and can 

be used to model complex systems where unknown 

relationships exist between the variables without having 

specific knowledge of the processes. GMDH is a kind of 

machine learning algorithm where an artificial neural 

network algorithm is built heuristically using the self-

organization method. Originally, GMDH-NN s were 

applied to predict and forecast a univariate time series. But 

now, GMDH finds its applications in a wide spectrum of 

areas, such as prediction, forecasting, data mining, systems 

modelling, pattern recognition and knowledge discovery. 

GMDH-NN algorithms are generally inductive and offer the 

possibility to manage interrelations among data 

automatically. Its most powerful feature is the ability to 

select the optimal complexity of the neural network 

structure while achieving the maximum possible prediction 

accuracy. Once the optimal complexity of the neural 

network structure is found, the prediction model is quite 

resistant to noise in the data sample. In data mining, the 

model avoids overfitting and underfitting, where the noise 

in the data would no longer pose the problem of 

performance degradation. Therefore, the neural network 

structure is simplified and yields an optimal model that is 

just sufficient in the number of neurons and hidden layers to 

maintain its maximum possible accuracy. 

The manuscript is organized in the following manner: the 

next section introduces the methods used in this study. 

Section 3 describes the studied area and the data used. 

Section 4 presents the results of the GMDH-NN and 

MLPNN methods, and the conclusions are reported in the 

final section. 

2. Wave Prediction Methods 

2.1. Group of Method of Data Handling Type Neural 

Network 

The concept of neural networks (NN) was inspired by the 

complex architecture of the human brain, which is regarded 

to be a highly non-linear, parallel operating system [16]. The 

group method of data handling type neural network (GMDH-

NN) is a self-organizing approach by which gradually 

complicated models are generated based on the evaluation of 

their performances on a set of multi-input single-output data 

pairs (Xi, yi) (= 1, 2,…, M). The main idea of GMDH is to 

build an analytical function in a feed forward network based 

on a quadratic node transfer function whose coefficients are 

obtained using the regression technique. Using the GMDH 

algorithm, a model can be represented as a set of neurons in 

which the different pairs in each layer are connected through 

a quadratic polynomial and produce new neurons in the next 

layer. Such representations can be used to map inputs to 

outputs [17]. The formal definition of the identification 

problem is to find a function ��  that can be used 

approximately instead of the actual one �� in order to predict 

output ��	for a given input vector � = �	, ��, ��, … . . , ��  as 

closely as possible to the actual output y. Therefore, given M 

is the observation of multi-input-single-output data pairs, 

�� = ����	 , ���, ���, … . . , ����, (i=1, 2, 3, …., M)     (1) 

It is now possible to train a GMDH-NN to predict the 

output values ���  for any given input vector � =
���	, ���, ���, … . . , ����, that is, 

��� = ��	���	, ���, ���, … . . , ����, (i=1, 2, 3, …., M)     (2) 

In order to determine a GMDH-NN, the square of the 

differences between the observed and predicted output one 

was minimized, that is: 

∑ ��	���	, ���, ���, … . . , �������	 − �� → ���      (3) 

The general connection between the input and output 

variables can be expressed by a complicated discrete form of 

the Volterra functional series in the form of: 

� =
�� + ∑ ���� +∑ ∑ ��������	���	���	 �� +	∑ ∑ ∑ ���������� +⋯���	���	���	                   (4) 

This is known as the Kolmogorov-Gabor polynomial. The 

full form of this mathematical description can be represented 

by a system of partial quadratic polynomials consisting of 

only two variables (neurons) in the form of [18]: 

�� = !"�� , ��# = �� + �	�� + �	�� + ������ +	�$��� + �%���  (5) 

By this means, the partial quadratic description is 
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recursively used in a network of connected neurons to build 

the general mathematical relation between the inputs and 

output given in (4). The coefficients ai in (5) are calculated 

using regression techniques to minimize the difference 

between the observed output y, and the calculated one, �� for 

each pair of xi, xj as input variables. Apparently, a tree of 

polynomials is constructed using the quadratic form given in 

(5) whose coefficients are obtained in a least squares scheme 

[19]. 

In this way, the coefficients of each quadratic function Gi 

are obtained to optimally fit the output in the whole set of 

input–output data pairs, that is 

& = ∑ '()*+)",),,-#.
/0)12

� → min 	                    (6) 

In the basic form of the GMDH algorithm, all the 

possibilities of the two independent variables out of the total 

n input variables are taken in order to construct the regression 

polynomial in the form of (5) that best fits the dependent 

observations (yi = 1, 2,..., M) in a least squares sense [20]. 

Using the quadratic sub-expression in the form of (5) for 

each row of M data triples, the following matrix equation can 

be readily obtained as 

6� = �                                        (7) 

where a is the vector of unknown coefficients of the quadratic 

polynomial in (5): 

6 = 7�� , �	, ��, ��, �$, �%8                            (8) 

And: 

� = 7�	, �� , ��, �$, �%89                               (9) 

Here, y is the vector of the output’s value from 

observation. It can be readily seen that: 

6 =
1 �	; �	<
1 ��; ��<
1 ��; ��<

�	;�	< �	;� �	<�
��;��< ��;� ��<�
��;��< ��;� ��<�

               (10) 

The least squares technique from the multiple regression 

analysis leads to the solution of the normal equations in the 

form of: 

� = �696�*	69�                                  (11) 

This determines the vector of the best coefficients of the 

quadratic (3) for the whole set of M data triples. This 

procedure is repeated for each neuron of the next hidden 

layer according to the connectivity topology of the network. 

When the errors for the test data in each layer stop 

decreasing, the iterative computation is terminated. 

2.2. Multi - Perceptron Neural Network 

As the name implies, an MLPNN can have several layers. 

Each layer has a weight matrix, a bias vector, and an output 

vector. The MLPNN architecture contains an input layer, an 

output layer, and at least one hidden layer, which are fully 

interconnected. The network is repeatedly exposed to a set of 

training data, and errors are calculated based on the resulting 

outputs. These errors are used to adjust the weights and 

biases. This process will eventually lead to optimum and bias 

values that can mimic the model. The transfer functions 

(logistic [sigmoid] and linear) are used as an activation 

function for the hidden layers and the output layer, 

respectively. A wide range of parameters, such as the number 

of layers and neurons of each layer, initial conditions and 

learning factors, can affect the network’s performance. 

3. Study Area and Data 

The study area is the Abu Qir Bay coastal zone, which is a 

semi-circular basin that lies approximately 35 km northeast 

of Alexandria on the north-eastern Egyptian Nile delta coast 

between latitude 31°16' and 31°28'N and longitude 30°4' and 

30°20'E. The bay has a shoreline length of approximately 50 

km. It is relatively shallow with a depth of less than one 

metre along the coast that increases gradually away from the 

shore to reach a maximum depth of approximately 15 m. 

The wind data (speed and direction), which was taken 

during 2010–2014 from a weather station at the Abu Qir Bay, 

were sampled at 6-hour intervals and calculated at 10 m 

above sea level. The collected wind data were subjected to 

statistical analysis to determine the percentage of occurrence 

of a certain wind speed moving in a certain direction. 

The mean monthly wind speed is lower in summer and 

higher in winter due to frequent storms during the winter 

season: speeds of average 2 knots could be seen in the 

summer and spring months and 4 knots in winter. The 

maximum mean wind speed (8.5 knots) occurred in 

December, while the minimum (1.5 knots) was in August. 

The wind observations reveal that the winter season is 

characterised by winds coming from all directions; however, 

northerly and northwesterly winds are still more predominant 

than those from the other directions. 

The waves were measured using a Cassette Acquisition 

System (CAS) directional wave recorder during 2010–2014. 

The data were statistically analysed in terms of directional 

and wave height distributions. Approximately 87% of all 

wave heights were less than or equal to 1.5 m, and 13% were 

greater than this value. The average annual wave height was 

approximately 0.94 m, and the predominant direction of all 

waves was from the NW (42%) with a portion (25%) 

approaching from the WNW. The majority of the wave 

period values (59%) ranged between 5 and 8 s with an annual 

mean period of 6.5 s. Additionally, for all of the waves, 

approximately 80% of wave periods were less than or equal 

to 8 s. The maximum significant wave height (4.19 m) was 

observed during the winter season with a wave period of 10.7 

s and it came from the NW. 

4. Results and Discussion 

The wind speeds (U) and fetch (F) were selected as the 
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input variables to the GMDH-NN and MLPNN models. The 

output was the significant wave height (Hs). The agreement 

between the predictions and the observations can be checked 

statistically by calculating the following measures: the 

normalized mean square error (NMSE), the correlation 

coefficient (R), the root mean square error (RMSE), the mean 

squared error (MSE), the mean absolute error (MAE), and the 

mean absolute percentage error (MAPE). 

=>?& = 	
@∑

�A)*B)�/
ACBC

@��	                            (12) 

D = ∑ 'A)*A
C.E)12 'B)*B

C.
F∑ 'A)*A

C./∑ 'B)*B
C./E)12E)12

                        (13) 

D>?& = F	@∑ �G� − H���@��	                          (14) 

>?& = 	
@∑ �G� − H���@��	                             (15) 

>6& = 	
@∑ |G� − H�|@��	                                (16) 

>6G& = J	@∑ K�A)*B)�A) K@��	 L M 100                      (17) 

where Oi is the observed value, Pi is the predicted value, N is 

the total number of data points in validation, O
−

 is the mean 

value of the observations, and P
−

 is the mean value of the 

predictions. Further, the RMSE describes the average 

difference between the predicted value and measured value, 

the MAE shows how developed models overestimate or 

underestimate the measured values, the MAPE describes the 

accuracy of the models by error percentage, the R describes 

the degree of association between the predicted and the 

measured values, and the NMSE statistics indicates that the 

model performance over the entire data set of sampled 

concentrations are not fulfilled. The MSE is a common 

measure of model quality. 

A certain amount of data processing is required before 

presenting the training patterns to the network. In this study, 

a linear scaling was used. A linear normalization function 

within the values of zero to one is as follows: 

? � �O � OP��� �OPQ, � OP���⁄                     (18) 

where S is the normalized value of variable V, and Vmin and 

Vmax are the variable minimum and maximum values, 

respectively. 

In this study, MLPNN was used as a benchmark, and a 

genetic algorithm (GA) was utilised to adjust the MLPNN 

model to its optimised performance. The GA tests the 

different combinations of the different parameters. This 

process is repeated for each solution in a generation so that 

new generations that are ameliorated are compared to their 

predecessors. The network parameters tested in the proposed 

model included the following: the number of hidden layers, 

the number of hidden neurons, the learning rate, the 

momentum factor, the input noise, and the training time. The 

integrated performance testing indicated the following best 

network parameters: the number of hidden layers was two, 

the number of neurons in the first hidden layer was two, the 

number of neurons in the second hidden layer was seventeen, 

the learning rate was 0.75, the momentum factor was 0.31, 

and the input noise was 0.016. The model results for different 

MLPNN architectures are presented in Figure 1, which 

shows the performance of the MLPNN with various neurons 

in one hidden layer. 

 

Figure 1. The performance of the MLPNN with a number of neurons in a 

hidden layer. 

Table 1 shows the error statistics for the observed and 

predicted significant wave heights. The values for the NMSE, 

MAE, MSE, RMSE, MAPE and R of the wave height 

MLPNN prediction model are 0.0001 m, 0.00836 m, 0.00021 

m
2
, 0.01441 m, 19.366, and 0.99, respectively. The results 

show that the MLP model significantly reduces the overall 

error. The correlation between the observed and predicted 

values for Hs by the MLP model is shown in Figure 2. Figure 

3 presents the residual error between the observed and 

predicted Hs for the MLP (2–17–1) model. 

Table 1. Error statistics for the observed and predicted Hs by the GMDH-

NN and MLPNN models. 

Error statistics 
Model 

GMDH MLP 

NMSE (m) 9.7717×10-6 0.0001 

MAE (m) 0.0029 0.0084 

MSE (m2) 1.5493×10-5 0.0002 

RMSE (m) 0.0039 0.0144 

MAPE (%) 3.6752 19.366 

R 0.99 0.982 

As mentioned in the GMDH-NN definitions section, the 

structure of the GMDH model is built using the least square 

sense. In the present study, the Quadratic polynomial neurons 

extracted from the GMDH model were expressed as: 

ST � 0.646734 � 0.000615Z � 0.000051Z� �

0.618327] � 0.148482]� � 0.001129Z]           (19) 

When the GMDH-NN model was applied, the NMSE was 

9.7717×10
-6

, the MAE was 0.002879, the MSE was 

1.54931×10
-5

, the RMSE was 0.003936, and the MAPE was 

3.6752. Following this, a correlation coefficient of 0.999 was 

obtained. The results show that the GMDH-NN model 

significantly reduces overall error. The variation in Hs 

between the observed data and the results of the GMDH-NN 
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model has the same trend. Figure 4 illustrates the residual 

error between the observed and predicted Hs for the GMDH-

NN model. The correlation between the observed and 

predicted values for Hs by the GMDH-NN model is shown in 

Figure 5. 

 

Figure 2. Scatter of the predicted and observed values of Hs for the MLPNN 

model. 

 

Figure 3. The residual error between the observed and predicted Hs for the 

MLPNN model. 

 

Figure 4. The residual error between the observed and predicted Hs for the 

GMDH-NN model. 

 

Figure 5. The scatter of the predicted and observed values of Hs for the 

GMDH-NN model. 

According to the indices, the GMDH-NN model can 

significantly reduce the overall forecasting errors, produce 

the best performance, and accurately estimate the wave 

heights. A comparison of the results of the GMDH-NN model 

and the MLPNN model shows that the percentage 

improvements in the MAE, RMSE, and MAPE of the 

GMDH-NN model over the MLPNN model were 65.48%, 

72.92%, and 81.02% for predicting Hs, respectively. 

The prediction accuracies of the GMDH-NN model and 

the MLPNN model for different wave height ranges were 

investigated. Table 2 shows that the GMDH-NN performed 

better than the MLPNN. According to the indices, the 

GMDH-NN model performed the best in terms of predicting 

Hs for all of the wave height ranges. 

 

(a) 

 

(b) 

 

(c) 

Figure 6. Comparison of the error statistics for the MLPNN and GMDH-NN 

models for different wave height ranges: (a) MAE, (b) MAPE, and (c) 

RMSE. 
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A comparison of the MAE values shows that the largest 

difference in the performance of the two methods, 96.94%, 

was observed at wave heights of more than 3.0 m, while the 

smallest difference (58.97%) was observed at wave heights 

of less than 1.0 m (Figure 6a). From Figure 6b, the largest 

performance difference, in terms of MAPE, for the two 

methods (96.98%) was observed at wave heights of more 

than 3.0 m, while the smallest difference (61.94%) was 

observed at wave heights from 1.0 to 2.0 m. 

A comparison of the RMSE values shows that the largest 

difference in the performance of the two methods (97.14%) 

was observed at wave heights of more than 3.0 m, while the 

smallest difference (62.16%) was observed at wave heights 

from 1.0 to 2.0 m (Figure 6c). From the results, it can be seen 

that the predictions of the GMDH-NN were closer to the 

corresponding actual values at all wave height ranges than 

for the MLPNN method. Generally, the GMDH-NN model 

forecasting results are more accurate than of the MLPNN. 

That is, the GMDH-NN model is capable of forecasting wave 

heights of different ranges. The notable point in this method 

is the self-organizing characteristic of the network and its 

high flexibility, making it a powerful instrument for the 

prediction of a variety of nonlinear complex systems. 

Table 2. The Error statistics for the observed and predicted Hs by the MLPNN and GMDH-NN models for different height ranges. 

Error statistics 
GMDH-NN MLPNN 

Hs<1.0 1.0≤Hs<2.0 2.0≤Hs<3.0 Hs≥ 3.0 Hs<1.0 1.0≤Hs<2.0 2.0≤Hs<3.0 Hs≥3.0 

NMSE (m) 2.4408×10-6 1.4182×10-5 0.0004 3.8685×10-5 2.0170×10-5 9.7715×10-5 0.0058 0.0482 

MAE (m) 0.0032 0.0020 0.0021 0.0014 0.0078 0.0055 0.0155 0.0457 

MSE (m2) 1.2844×10-5 7.9443×10-6 6.7859×10-5 2.8158×10-6 0.0001 5.4804×10-5 0.0011 0.0035 

RMSE (m) 0.0036 0.0028 0.0082 0.0017 0.0103 0.0074 0.0330 0.0594 

MAPE (%) 5.1223 0.15937 0.0844 0.0366 27.0779 0.4187 0.6313 1.2111 

R 0.99 0.99 0.99 0.99 0.981 0.983 0.983 0.98 

 

5. Conclusions 

The sea waves parameters’ prediction problems play an 

important role in many different ocean engineering tasks, 

such as the designing of marine structures like oil platforms 

or harbors or in the designing and management of marine 

energy systems, such as the proper operation of wave 

energy converters, among others [21-22]. The group 

method of data handling type neural network (GMDH-NN) 

was implemented in this investigation to predict the 

significant wave height using wind speed and fetch data. 

The GMDH-NN model results were compared with the 

field data and with the MLPNN model. The results show 

that the accuracies of the models obtained using these two 

methods were quite high. The GMDH-NN model 

(NMSE=9.7717×10
-6

, MAE=0.0029, MSE=1.5493×10
-5

, 

RMSE=0.0039, MAPE=3.6752, and R=0.99) performed 

better than the MLP model (NMSE=0.0001, MAE=0.0084, 

MSE=0.0002, RMSE=0.0144, MAPE=19.366, and R=0.982) 

in all respects. A comparison of the significant wave height 

prediction results obtained with the GMDH-NN model and 

those obtained with the MLPNN model showed 65.48%, 

72.92%, and 81.02% improvements in the MAE, RMSE, and 

MAPE, respectively, using the GMDH-NN model. Also, 

according to the indices, the GMDH-NN model performs 

the best for predicting the Hs of all of the wave height 

ranges. That is, the GMDH-NN model is capable of 

forecasting wave heights for different ranges. In conclusion, 

the GMDH-NN model was demonstrated to be the more 

efficient and robust of the two models for use in predicting 

significant wave height. 
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