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Abstract: The article is devoted to the important role of decomposition strategy in parallel computing (parallel computers, 
parallel algorithms). The influence of decomposition model to performance in parallel computing we have illustrated on the 
chosen illustrative examples and that are parallel algorithms (PA) for numerical integration and matrix multiplication. On the 
basis of the done analysis of the used parallel computers in the world these are divided to the two basic groups which are from 
the programmer-developer point of view very different. They are also introduced the typical principal structures for both 
these groups of parallel computers and also their models. The paper then in an illustrative way describes the development of 
concrete parallel algorithm for matrix multiplication on various parallel systems. For each individual practical 
implementation of matrix multiplication there is introduced the derivation of its calculation complexity. The described 
individual ways of developing parallel matrix multiplication and their implementations are compared, analyzed and discussed 
from sight of programmer-developer and user in order to show the very important role of decomposition strategies mainly at 
the class of asynchronous parallel computers. 
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1. Parallel Computing 
Performance of actually computers (sequential, parallel) 

depends from a degree of embedded parallel principles on 
various levels of technical (hardware) and program support 
means (software). At the level of intern architecture of 
basic module CPU (Central processor unit) of PC they are 
implementations of scalar pipeline execution or multiple 
pipeline (superscalar, super pipeline) execution and 
capacity extension of cashes and their redundant using at 
various levels and that in a form of shared and local cashes 
(L1, L2, L3). On the level of motherboard there is a 
multiple using of cores and processors in building 
multicore or multiprocessors system as SMP (symmetrical 
multiprocessor system) as powerful computation node, 
where such computation node is SMP parallel computer too 
[1]. On the level of individual computers the dominant 
trend is to use multiple number of high performed 
workstations based on single personal computers (PC) or 
SMP, which are connected in the network of workstations 
(NOW) or in a high integrated way named as Grid systems 
[36]. A member of NOW or Grid could be any classic 
supercomputers [34].  

1.1. Parallel Computers 

From the point of system programmer we can divide all 
to this time realized parallel computers. The basic 
classification is from the point of realized memory as 
follows 

• parallel computers with shared memory 
(multiprocessors, multicores) 

• parallel computers with distributed memory (mainly 
based on computer networks) 

• others. 

1.1.1. Parallel Computers with Shared Memory 
Basic common characteristics are as following [8, 13] 
• shared memory 
• using shared memory for communication 
• supported developing standard 

� OpenMP 
� OpenMP Threads 
� Java 

• typical architectures [37] 
� symmetrical multiprocessors (SMP) 
� supercomputers (massive SMP) 
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� Grid 
� meta computers 
� others. 

1.1.2. Parallel Computers with Distributed Memory 
Basic common characteristics are as following [22, 33] 
• no shared memory (distributed memory) 
• computing node could have some form of local 

memory where this memory in use only by connected 
computing node  

• cooperation and control of parallel processes only 
using asynchronous message   communication 

• supported developing standard  
� MPI (Message passing interface) 
� PVM (Parallel virtual machine) 
� Java 

• typical architectures 
� network of workstations (NOW) 
� Grid 
� meta computers 
� others. 

2. Parallel Algorithms 
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Figure 1. Deriving process of parallel algorithm. 

Users and programmers from a beginning of applied 
computer using request more powerful computers and more 
efficient applied algorithms. For a long time to effective 
technologies belong implementations of parallel principles 
so into computers as applied parallel algorithms. In this 
way term parallel programming could relate to every 
program, which contains more than one parallel process [21, 
23]. This process represents single independent sequential 
part of program. Basic attribute of parallel algorithms is to 

achieve faster solution in comparison to quickest sequential 
solution. The role of programmer is for the given parallel 
computer and for the given application task to develop 
parallel algorithm (PA). Fig. 1 demonstrates how to derive 
parallel algorithm from existed sequential algorithms.  

In last year’s there is increased interest of scientific 
research into effective parallel algorithms. These trends to 
parallel algorithms also support actual trends in 
programming technologies to the development of modular 
applied algorithms based on object oriented programming 
(OOP). OOP algorithms are in their merits result of abstract 
thinking toward parallel solutions for existed complex 
problems. 

2.1. General Classification of Parallel Algorithms 

In general we supposed that potential effective parallel 
algorithms according defined algorithm classification (Fig. 
2) should be in the group P as classified polynomial 
algorithms. 
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Figure 2. Parallel algorithm classification. 

Other used acronyms at Fig. 2 are as following [12] 
• NP – general non polynomial group of all algorithms 
• NC (Nick´s group). Group of effective polynomial 

algorithms 
• PC – polynomial complete. Group of polynomial 

algorithms with high complexity 
• NPC – non polynomial complete. This group consists 

of non-polynomial algorithms with their high solving 
complexity. The existence of any NPC algorithm in an 
effective way makes it available to solve effective also 
other NPC algorithms. 

2.2. Parallel Processes 

To derive PA we have to create conditions for potential 
parallel activities through dividing the input problem 
algorithm to its independent parts (decomposition model) 
according Fig. 3. These individual parts could be as 
following 

• heavy parallel processes 
• light parallel processes named as threads.  
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Figure 3. Illustration of decomposition process. 

We will define standard process as developed sequential 
algorithm or its independent part. In detail standard process 
does not represent only some part of compiled program 
because to its characterization belongs also register status 
of processor. Illustration of such standard process is at Fig. 
4.  

 

Figure 4. Illustration of standard process. 

Every standard process has therefore own system stack, 
which contains process local data and in case of process 
interruption also actual register status of processor. It is 
obvious that we may have contemporary multiple numbers 
of standard processes, which used together some program 
part but their processes contexts (process local data) are 
different. Needed tools to manage processes (initialization, 
abort, synchronization, communication etc.) are within 
cores of multitask operation systems in form of services. 
Illustration of standard multi processes state is at Fig. 5. 

 

Figure 5. Parallel algorithm based on multiple parallel processes. 

But concept of generating standard processes with 
individual address spaces is very time consuming.  For 
example in operation system UNIX a new process is 
generating with operation fork(), which makes system call 
in order to create child process with new own address space. 
But in detail it means memory allocation, copying of data 
segment and descriptor of origin (parent) process and 
realization of child process stack. Therefore this concept we 
named as heavy-weighted process. It is obvious that 
heavy-weighted approach does not support effectiveness of 
applied parallel processing and needed scalability of 
parallel algorithms. In relation to it were necessary to 
develop another less time consuming concept of process 
generation named as light-weighted process. This lighten 
conception of generating new processes under another 
name as threads were implemented at various operation 
systems, supported threads libraries and parallel developing 
environments. Basic difference between standard process 
and thread is that we can within standard process generate 
additional new threads, which are together using the same 
address space including descriptor declaration of origin 
standard process. 

2.3. Parallel Algorithms Classification 

In principal parallel algorithms are dividing into two 
following basic classes 

• parallel algorithms with shared memory (PAsm). In this 
case parallel processes can communicate through 
shared variables using existed shared memory. For 
control of parallel processes are used typical 
synchronization tools as busy waiting, semaphores 
and monitors to guarantee exclusive using of shared 
resources only by single parallel process [10, 28]  

• parallel algorithms with distributed memory (PAdm). 
Distributed parallel algorithms have to 
synchronization and cooperation of parallel processes 
only network communication. The term distributed 
(asynchronous) parallel algorithms defines, that 
individual parallel processes are performed on 
independent computing nodes of used parallel 
computer with distributed memory [16, 31] 

• mixed PA. Very perspective parallel algorithms which 
are to use advantages of dominant parallel computers 
based on NOW modules as following 
� using of parallel processes with shared memory 

in individual computing nodes of parallel 
computer 

� using of parallel processes based on distributed 
memory in parallel computers with distributed 
memory. 

2.3.1. Parallel Algorithms with Shared Memory 
Typical activity graph of parallel algorithms with shared 

memory PAsm is at Fig. 6. To control decomposed parallel 
processes there is necessary synchronization mechanism as 
follows 

• semaphors 
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• monitors 
• busy waiting 
• pathexpession 
• critical region (CR) 

� conditional critical region (CCR). 
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Figure 6. Illustration of parallel activities of PAsm. 

2.3.2. Parallel Algorithms with Distributed Memory 
Parallel algorithms with distributed memory PAdm are 

parallel processes which are performing on asynchronous 
computing nodes of given parallel computer. Therefore for 
all needed cooperation of parallel processes we have 
available only inter process communication IPC. The 
principal illustration of parallel processes for PAdm is at Fig. 
7.  
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Figure 7. Illustration of parallel activities of PAdm. 

3. The Role of Performance in Parallel 
Computing 

Quantitative evaluation and modeling of hardware and 
software components of parallel systems are critical for the 
delivery of high performance. Performance studies apply to 
initial design phases as well as to procurement, tuning and 
capacity planning analysis. As performance cannot be 
expressed by quantities independent of the system 
workload, the quantitative characterization of resource 
demands of application and of their behavior is an 
important part of any performance evaluation study [6, 27]. 
Among the goals of parallel systems performance analysis 
are to assess the performance of a system or a system 
component or an application, to investigate the match 
between requirements and system architecture 
characteristics, to identify the features that have a 
significant impact on the application execution time, to 
predict the performance of a particular application on a 
given parallel system, to evaluate different structures of 

parallel applications. In order to extend the applicability of 
analytical techniques to the parallel processing domain, 
various enhancements have been introduced to model 
phenomena such as simultaneous resource possession, fork 
and join mechanism, blocking and synchronization. 
Modeling techniques allow to model contention both at 
hardware and software levels by combining approximate 
solutions and analytical methods. However, the complexity 
of parallel systems and algorithms limit the applicability of 
these techniques. Therefore, in spite of its computation and 
time requirements, simulation is extensively used as it 
imposes no constraints on modeling. 

3.1. The Role of Performance in Parallel Computing 

To the performance evaluation in parallel computing we 
briefly review the techniques most commonly adopted for 
the evaluation in parallel computing as follows 

• analytical 
� application of queuing theory results [11, 20] 
� order (asymptotic) analysis [3, 15] 
� Petri nets [7] 

• simulation methods [24] 
• experimental 

� benchmarks [32] 
� direct measuring [9, 29]. 

Analytical method is a very well developed set of 
techniques which can provide exact solutions very quickly, 
but only for a very restricted class of models. For more 
general models it is often possible to obtain approximate 
results significantly more quickly than when using 
simulation, although the accuracy of these results may be 
difficult to determine.  

Simulation is the most general and versatile means of 
modeling systems for performance estimation. It has many 
uses, but its results are usually only approximations to the 
exact answer and the price of increased accuracy is much 
longer execution times. They are still only applicable to a 
restricted class of models (though not as restricted as 
analytic approaches.) Many approaches increase rapidly 
their memory and time requirements as the size of the 
model increases. 

Evaluating system performance via experimental 
measurements is a very useful alternative for computer 
systems. Measurements can be gathered on existing 
systems by means of benchmark applications that aim at 
stressing specific aspects of computers systems. Even 
though benchmarks can be used in all types of performance 
studies, their main field of application is competitive 
procurement and performance assessment of existing 
systems and algorithms.  

3.2. Performance Evaluation Metrics of Decomposition 
Models  

To evaluating decomposition models in parallel 
algorithms we will be used defined complex basic concepts 
in [15] as follows  
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• parallel execution time T(s, p) as the execution time 
performed by p computing nodes (processors, cores, 
workstations) of given parallel computer and s defines 
input size (load) of given problem 

• speed up factor S(s, p) as 
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4. Developing Process of Parallel 
Algorithms  

To exploit the parallel processing capability the 
application program must be parallelized. The effective 
way how to do it for a particular application problem 
(decomposition model) belongs to the most important step 
in developing an effective parallel algorithm [14, 18]. The 
development of the parallel network algorithm according 
Fig. 8 includes the developing activities as follow 

• decomposition - the division of the application into a 
set of parallel processes 

• mapping - the way how processes and data are 
distributed among the nodes 

• inter process communication - the way of 
corresponding and synchronization among individual 
processes 

• tuning - alternation of the working application to 
improve performance (performance optimization). 

 

Figure 8. Development steps in parallel algorithms. 

To do these steps there is necessary to understand the 
concrete application problem, the data domain, the used 
algorithm and the flow of control in given application. 
When designing a parallel program the description of the 
high level algorithm must include, in addition to design a 
sequential program, the method you intend to use to break 
the application into processes or threads (decomposition 

model) and distribute data to different nodes (mapping). 
The chosen decomposition model drives the rest of 
program development.    

4.1. Decomposition Models 

Developing of sequential algorithms implicitly supposed 
existence of algorithm for given problem. Only later in 
stage of practical programming they are defined and used 
suitable data structures. In contrast to this classic 
developing method suggestion of parallel algorithm should 
include at beginning stage potential decomposition strategy 
including distribution of input data to perform decomposed 
parallel processes. Selection of suitable decomposition 
strategy has cardinal influence to further development of 
parallel algorithm. 

Decomposition strategy defines potential dividing of 
given complex problem to their independent parts (Parallel 
processes) in such a way, that they could be performed in a 
parallel way through computing nodes of given parallel 
computer. Existence of some decomposition method is 
critical assumption to possible parallel algorithm. Potential 
decomposition degree of given complex problem is crucial 
for effectivity of parallel algorithm [4, 17]. To this time 
developed parallel algorithms and corresponding 
decomposition strategies were mainly related to available 
synchronous parallel computers based on classic massive 
parallel computers (supercomputers and their innovations).  
Developing parallel algorithms for actual dominant parallel 
computers NOW and Grid require at least modified 
decomposition strategies incorporating following priorities 

• emphasis to functional parallelism of complex 
problems 

• minimization of inter process communication IPC. 
The most important step is to choose the best 

decomposition model for given complex problem. To do 
this it is necessary to understand concrete application 
problem, data domain, used algorithm and flow of control 
in given complex problem. When designing a parallel 
program the description of the high-level algorithm must 
include, in addition to design a sequential program, the 
method you intend to use to break the application into 
processes and distribute data to different computing nodes. 
The chosen decomposition models drive the rest of PA 
development. This is true is in case of developing new 
application as in porting serial code. The decomposition 
method tells us how to structure the code and data and 
defines the communication topology [25, 26]. 

Problem parallelization is very creative process, which 
creates potential degree of parallelism. This is a way how to 
divide complex problems to nondependent parts (Parallel 
processes) in such a way, to make possible to perform PA in 
parallel. The way of decomposition depends strongly from 
used task algorithm and from data structures. It has 
principal influences to performance and its communication 
consequences. To this time developed decomposition 
models and strategies seems to be close only to the in the 
world used supercomputers and their innovated types 
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(classic parallel computers). On other way the realization of 
PA for in this time dominate parallel computers  (SMP, 
NOW, Grid) demand modified decomposition models and 
strategies with respect to minimization of interposes 
communication intensity (NOW, Grid) and deriving waiting 
latency T(s, p)wait at using shared resources or at 
insufficient their capacities  

• naturally parallel decomposition 
• domain decomposition 
• control decomposition  

� manager/workers  
� functional 

• divide-and-conquer strategy for  
• decomposition of big problems 
• object oriented programming (OOP). 

4.1.1. Natural Parallel Decomposition 
Natural parallel decomposition allows simple creating of 

parallel processes whereby to their cooperation normally 
there is necessary low amount of inter process 
communication IPC. Also for parallel computation there is 
normally not important sequence of individual solutions. As 
a consequence there are not necessary any synchronization 
of performed parallel processes during parallel computation. 
Based on these attributes natural parallel algorithms allows 
to achieve practical ideal p - multiple speed - up using p - 
computation nodes of parallel computer (linear speed – up), 
and that with minimal additional efforts at developing 
parallel algorithms. Typical examples are numerical 
integration parallel algorithms. Based on this example we 
will illustrate in detail the role of decomposition models in 
developing steps of parallel algorithms.  

4.1.1.1. Numerical Integration 
Numerical integration algorithms are typical examples 

with implicitly latent decomposition strategy in which the 
parallelism is the integral part of own algorithm. Standard 
way of typical numerical integration algorithm (the 
computation of π number) assumes that we divide the 
interval <0, 1> to n identical subintervals whereby in each 
subinterval we approximate its part of curve with rectangle. 
Function values in middle of each subinterval determine 
height of the rectangle. Number of selected subintervals 
determines computation accuracy. The computed value of π 
will be given as sum of surface area of defined individual 
approximated rectangles. Illustration of numerical 
integration applied to π computation is at Fig. 9. Concretely 
for the calculation of the value π the following standard 
formula is used  

∫ +
=
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, where h = 1 / n is the width of the selected splitting 
interval, xi = h (i - 0.5) are mid-ranges and n is the number 
of selected intervals (accuracy). For computation of π we 
can use an alternative following interpolating polynomial 
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Figure 9. Principle of numerical integration. 

4.1.1.2. Decomposition Model 
For the parallel way of numerical integration 

computation we are used the property of latent 
decomposition strategy in all natural parallel algorithms. 
We divide the whole needed computation to its individual 
parallel processes according to the Fig. 10 where are for 
simplicity illustrated four parallel processes. For the 
parallel computation of number π we then use these created 
parallel processes. 
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Figure 10. Decomposition model of numerical integration problems. 

enter the desired number of subintervals n 
compute the width w of each subinterval 
for each subinterval 
  find its centre x 
  compute f(x) and the sum 
end of cycle 
multiply the sum with width to obtain π 
return π 
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The prospective parallel implementations on dominant 
parallel computers (SMP, NOW, Grid) allow analysis of 
communication load depending on input computation load 
because input load is proportional to changes in load 
communication.  

4.1.1.3. Mapping of Parallel Processes 
The individual independent processes we distribute 

forcomputation in such way that every created parallel 
process will be executed on different computing node of 
parallel computer (mapping). After the parallel computation 
in individual nodes of a network of workstations was 
performed we need only to sum the partial results to get 
final result. To manage this task we have to choose one of 
the computing nodes to handle it. As well at the 
computation begin the chosen node (let it be node 0) must 
know the value of n (number of the strips in every process) 
and then selected node 0 has to let it know to all other 
computing nodes. Example of the parallel computation 
algorithm (manager process) is then as following 

 
if my node is 0 

read the number n of strips desired and send it to all  
other nodes 

else 
receive n from node 0 

end if 
for each strip assigned to this node 

compute the height of rectangle (at midpoint) and sum 
result 

end for 
if my node is not 0 

send sum of result to node 0 
else 

receive results from all nodes and sum 
multiple the sum by the width of the strips to get π 

return 
 

Sending values of n / p could be done in case of parallel 
algorithm with distributed memory PAdm using MPI API 
explained collective communication command Broadcast in 
case of the same size of parallel processes or MPI 
command Scatter in case of variable size of parallel 
processes. 

We illustrate on this relative simple example parallel 
algorithm in parallel language FORTRAN for parallel 
computer with distributed memory. The algorithm extends 
and modifies the starting serial algorithm for the specific 
parallel implementation. To characterize shortly this 
parallel algorithm, we note that number of computing 
nodes of a parallel computer and identification of each 
computing node performed procedures numnodes() 
(number of computing nodes), mynode() (my computing 
node) and my pid() (number of my parallel process). These 
procedures allow the activation of any number of 
computing nodes of a parallel system. Then if we allow 
designated node, for example computing node 0, perform 

management functions and certain partial computations, 
while other nodes perform a substantial part of the rest of 
computations for assigned subintervals, and communicated 
obtained partial amounts specified computing node 0. 
Procedures silence and crecv serve to ensure the required 
collective data communications and the final summation of 
achieved partial results. 

  
f(x) = 4.0 /(1.0 + x*x) 

integer n, i, p, me, mpid 
real w, x, sum, pi 
p = numnodes ()        return number of nodes 
me = mynode ()    return number of my node 
mpid = mypid ()    return id of my process 
msglen = 4     estimate message length 
allnds = -1     message name for all nodes 
msgtp0 = 0     name for message 0 
msgtp1 = 1     name for message 1 
if (me .eg. 0) then       if i am node 0 
 read *, n     read number of subintervals n 

 callcsend (msgtp0,n,msglen,allnds,mpid) and send it to 
all other nodes 

else      if I am any other node 
 callcrecv (msgtp0, n, msglen)    receive value n 
end if 
w = 1.0/n 
sum = 0.0  
do 10 i = me+1, n   dividing subintervals among nodes 
 x =w*(i-0.5) 
 sum = sum + f(x)     10 continue 
 if (me .ne. 0) then   if I am not node  0 
   callcsend (msgtp1, sum, 4, 0, mpid) send partial 

result to node 0 
  else         if I am node 0 
    do 20 i = 1, p-1   for every other used node 
    callcrecv (msgtp1, temp, 4)  receive partial result 

to temp 
sum = sum + temp and add it to sum 

   20 continue 
 pi = w*sum                         
compute final result 
print *,pi    and print it 

endif 
end 
 

The disadvantage is that the implementation of the 
central necessary routing communications through the 
designated node 0 (manager node), and as a result there 
may be a bottleneck which could negatively affect the 
efficiency of the parallel algorithm implementation.  

4.1.1.4. Performance Optimization 
In the above example of numerical integration this 

requirement leads to reduce the bottleneck, which is 
inter-process communication (IPC) latency. This latency 
should be minimized, since it could be used more effective 
in useful computation of parallel algorithm. It is therefore 
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very important to minimize the number of communicating 
data messages proportionally to number of computational 
operations, thereby minimizing also overall execution time 
of a parallel algorithm. In computation of number π 
demanded centralization of needed communication through 
manager computing node 0 may come to computation 
bottleneck for two following reasons 

• manager computing node 0 node could simultaneously 
receive data message only from one other computation 
node 

• summary of the partial results at manager node 0 is 
done sequentially, in a sequential way, which is just a 
prerequisite to come to bottleneck. 

The outgoing point in mentioned both cases is to 
consider using of collective communication commands of 
standardized development environments as MPI API, and 
that collective command Reduce or Gather. For some 
parallel computers are available alternative global 
summarization operation gssum(), just to eliminate such 
bottlenecks. This operation in iterative manner always sums 
partial results of two computing nodes, which both 
computing nodes are exchanged. Each partial sum, which 
receives one of computing node pair, is added to the 
obtained sum in a given node, and this result is transmitted 
to next computing node of defined communication chain. 
In this way there is gradually obtained the total 
accumulated amount of the computing nodes whereby 
manager computing node 0 can perform the last sum and 
print the final result. This procedure of global 
summarization can be also programmed, but the sequence 
of implemented appropriate procedures simplifies 
implementation of parallel algorithms and contributes to its 
effectiveness too. 

In other applied tasks using a larger direct inter process 
communication implementation of communication used, 
for example form of asynchronous communication using 
direct support of multitasking in a given node, thereby 
achieving parallelism implementation of communication 
activities other node. Of course, an example of reducing the 
ratio of communication computing activity is not the only 
task in optimizing the performance of parallel algorithms. 
Available methods for optimizing performance are virtually 
the same colorful as diverse mere parallel application tasks. 
Inspired examples and procedures will therefore be 
included in the illustrative application examples in the 
following sections. Commonly used method and procedure 
for the decomposition of the application tasks indirectly 
implies the possibilities of optimizing its performance, i.e., 
optimization can also cause re-evaluation of strategies used 
decomposition. 

Then if we allow designated node, for example node 0, 
perform management functions and certain partial 
calculations while other nodes perform a substantial part of 
the calculations for assigned subintervals, and 
communicate obtained partial amounts to specified node 0. 
Procedures silence and crecv serve to ensure the required 
communication. 

It is also important to note that for mentioned module is 
required direct communication of every computing node 
with other computing nodes as assumption of parallel 
communication between multiple pairs of computing nodes. 
In this approach the final sum can be obtained after 
performing the second, third or even fourth cycle of the 
communication chain. In fact we need only log2 p, where p 
is the number of computing nodes of parallel computer, 
cycles of communication chains compared to n data 
messages at initial implementation. Used parallelism of 
data message exchange will therefore increase efficiency of 
parallel algorithms. For the implementation of an improved 
approach for data messages communications it’s necessary 
to replace following part 

 
if (me .ne. 0) then   

callcsend (msgtp1, sum, msglen, 0, mpid) 
else       

do 20 i = 1, p-1   
 callcrecv (msgtp1, temp, msglen)  
 sum = sum + temp   
20 continue 
pi = w*sum    
print *, pi      

endif 
end 
with next part 

callgssum (sum, 1, temp) 
if (me .eg. 0) then   
 pi = w*sum   
 print *, pi    
endif 

 
In other applied parallel algorithms there is possible at 

using a larger direct inter process communication to 
perform communication for example in form of 
asynchronous communication using multitasking support in 
a given node, thereby it is achieved parallelism of 
performing communication with other computing node 
activity. Of course described example of reducing ratio of 
communication/ computing activity is not the only task in 
optimizing the performance of parallel algorithms. 
Available methods for performance optimizing are practical 
so various as are diverse parallel application problems.  

4.1.2. Domain Decomposition 
Typical characteristic of many complex problems is 

some regularity in sequential algorithms or in their data 
structures (computational or data modularity). Existence of 
such computational or data modules then represent domain 
of computation or data. Decomposition strategy based on 
such domain is substantial part of these complex problems 
to generate parallel processes. Mostly such domain is 
characterized by massive, discrete or static data structure. 
Typical examples of computational domains are matrix 
parallel multiplication and matrix parallel algorithms 
representing for example with system of linear equations. 
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These both matrix parallel algorithms we have chosen to 
represent typical examples of matrix data decomposition 
models.  

4.1.2.1. Decomposition Methods for Matrix Multiplication 
We will illustrate the role of optimal selection of 

decomposition model on matrix multiplication. The 
principle of matrix multiplication we illustrate for 
simplicity for the matrixes A, B with numbers of rows and 
columns k=2. The result matrix C = A x B is 

 

 
 
The way of sequential calculation is following 

Step 1:  
compute all the values of the result matrix C for the   
first row of matrix A and for all columns of the matrix B 

Step 2 :  
take the next row of matrix A and repeat step 1. 
In this procedure we can see the potential possibility of 

parallel computation that is the repetition of activities in the 
step 1 always with another row of matrix A. Let consider 
the calculation example of matrix multiplication on parallel 
system. The basic idea of the possible decomposition 
procedure illustrates Fig. 11. 

 

Figure 11. Standard decomposition of matrix multiplication. 

The procedure is as following 
Step 1:  
give to the i-th node horizontal column of the matrix A 
with their names A´i and i-th vertical column of the 
matrix B named as B´i 

 Step 2:  
compute all values of the result matrix C for A´i and B í 
and named them as C´ii  

 Step 3: 
give to i-th computing node its value B´i to the node i-1 
and get B´i+1 value from computing node i+1. 
Repeat the steps 2 and 3 to the time till i-th node does 

not computed C´i,i-1 values with Bí-1 columns and row A´i. 
Then i-th node computed i-th row of the matrix C (Fig. 12.) 
for the matrix B with the number k-columns. The 
advantage of such chosen decomposition is the minimal 
consume of memory cells. Every node has only three 
values (rows and columns) from every matrix. 

 

Figure 12. Illustration of the gradually calculation of matrix C. 

This method is also faster as second possible way of 
decomposition according Fig. 13. 

 

Figure 13. Matrix decomposition model with columns of first matrix. 

The procedure is following 
Step 1:  

give to the i-th node vertical column of the matrix A (A´ i) 
and the horizontal row of the matrix B (B´i). 

Step 2:  
perform the ordinary matrix computation A´i and B í. 
The result is the matrix C´i of type n x n. Every element 
from C í is the particular element of the total sum which 
corresponds to the result matrix C. 

Step 3: 
call the function of parallel addition GSSUM for the 
creating of the result matrix C through   corresponded 
elements C´i. This added function causes increasing of 
the calculation time, which strong depends on the 
magnitude of the input matrixes (Fig. 14.). 

 

Figure 14. Illustration of the gradually calculation of the elements C´i,j. 

Let k be the magnitude of the rows or columns A, B and 
U defines the total number of nodes. Then 

 

. 

. 

. 









=








⋅+⋅⋅+⋅
⋅+⋅⋅+⋅

=







×








2221

1211

2222122121221121

2212121121121111

2221

1211

2221

1211

cc

cc

babababa

babababa

bb

bb

aa

aa

C´
i , 1
    ...  C´ C´ C´ C´ C´ C´

i , i - 2    i , i - 1      i , i      i , i + 1   i , i + 2      i , k
...   

A´
i C´× ⇒B´

i

=

C(1,1)  C(1,2)

C(2,1) ad
di

tio
n C´ (1,1)  C´ (1,2)

C´ (2,1)

3 3

3
C´ (1,1)  C´ (1,2)

C´ (2,1)

2 2

1
C´ (1,1)  1 C´ (1,2)

C´ (2,1)

1

1

( )
( ) kkkkkk

kk
bababaC

bababaC

2,12,12,12,11,11,12

,1,12,12,11,11,11
  . . .  1,1

  . . .  1,1
⋅++⋅+⋅=′

⋅++⋅+⋅=′
++++



 American Journal of Networks and Communications 2014; 3(5-1): 70-84 79 
 

 

and the finally element of matrix C 

 

4.1.2.2. Decomposition Matrix Models  
Any matrix is a regular data structure (domain) for which 

we can create parallel processes dividing matrix into strips 
(rows, columns). In generation process of matrix parallel 
processes there is necessary to tray allocate domain parts in 
such a way that every computing node has roughly the 
same number of strips (rows, columns). If the total number 
of strips is divisible by the number of processors without 
rest then all computing node will have the same number of 
decomposed parts (load balance). Otherwise some 
computing node has some strips extra. 

 

Figure 15. Matching of data blocks. 

 

Figure 16. Assigns columns. 

Matrix allocation methods of decomposed strips (rows, 
columns) for solving system of linear equations by Gauss 

eliminated method (GEM) are as follows [5] 
• allocation of block strips  
• gradually allocation of strips. 
In the first allocation method strips are divided to set of 

strips and to every computing node is assigned one block. 
Illustration of these allocation methods is at Fig. 15. At 
another method with gradual allocation of columns they are 
allocated columns to individual computing nodes like the 
card are gradually passing out at games to game 
participants. Illustration of gradual assignment of columns 
is at Fig. 16. 

4.1.3. Functional Decomposition 
Functional decomposition strategies concentrate their 

attention to find parallelism in distribution of sequential 
computation stream in order to create independent parallel 
processes. In comparison to domain decomposition we are 
concerned to create potential alternative control streams of 
concrete complex problem. In this way we are streaming in 
functional decomposition to create so much as possible of 
parallel threads. Illustration of functional decomposition is 
at Fig. 17. 

 

Figure 17. Illustration of functional decomposition. 

The widely distributed functional strategies are as 
following  

• controlled decomposition 
• manager / workers (server / clients). 
Typical parallel algorithms are complex optimization 

problems, which are connected with consecutive searching 
of massive data structures. 

4.1.3.1. Control Decomposition 
Control decomposition as an alternative of functional 

decomposition concentrates to given complex problems as 
sequence of individual activities (operations, computing 
steps, control activities etc.), from which we are able to 
derive multiple control processes. For example we can 
consider searching tree, which respond to game moves 
where branch factor is changed from node to node. Any 
static allocation of tree is not possible or activates 
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unbalanced load. 
So in this way this decomposition method supposed 

irregular structure controlled decomposition which is soft 
connected with complex problems in artificial intelligence 
and similar non numerical applications. Secondary it’s very 
natural to look at any complex problem as collection of 
modules, which represent needed functional parts of given 
algorithm. 

4.1.3.2. Decomposition Strategy Manager / Workers 
Another alternative of functional decomposition is the 

strategy manager / workers. In this case there is used one 
parallel process as control one (manager). Manager process 
then sequentially and continuously generates needed 
parallel processes (workers) to their performing in 
controlled computing nodes. The illustration of parallel 
structure of decomposition model manager / workers is at 
Fig. 18. One of the possible applied solutions illustrates Fig. 
19. 

Main
par. process

Worker WorkerWorker Worker

Main
par. process

Worker WorkerWorker Worker

 

Figure 18. Manager / worker parallel structure. 

Manager process controls computation sequence in 
relation to sequential finishing allocated parallel processes 
from individual workers. This decomposition strategy is 
suitable mainly in such cases in which given problem does 
not content static data or known fixed number of 
computations. In such cases there is necessary to 
concentrate to control aspects of individual parts of 
complex problems. From performed analysis then comes 
out needed communication sequence to achieve demanded 
time sequences of created parallel processes. Dividing 
degree of given complex problem coincide with number of 
computing nodes of parallel computer, with parallel 
computer architecture and with performance knowledge of 
computing nodes. One of important element of previous 
steps is allocation algorithm. It is more effective to allocate 
parallel process to first free computing node (worker) in 
comparison to some defined sequence order of allocation. 

Q  of
par. processes

ueue Q  of
results

ueue

Main parallel
process

Worker Worker Worker

 

Figure 19. Illustration of manager / workers strategy. 

4.1.4. Divide and Conquer Decomposition Model 
Divide and conquer strategy decomposed complex 

problem into subtasks of the same size but it iteratively 
keeps repeating this process to obtain yet smaller parts of 
given complex problems. In that sense this decomposition 
model iteratively applies the problem partitioning technique 
as we can see it at Fig. 20. Divide and conquer is 
sometimes called recursive partitioning. Typically complex 
problem size is an integer power of 2 and the divide and 
conquer strategy halves complex problem into two equal 
parts at each iteration step. 

 

Figure 20. Illustration of divide and conquer strategy (n=8). 

Every from N / 2 – point DFT we can again divide to 
next parts, that is to two N / 4 – point  DFT. Applied 
decomposition strategy could follows till to exhausting 
dividing possibility for given N (one point value). Dividing 
factor is named as radix - q, and that for dividing number 
higher than two. We have applied decomposition model of 
divide-and-conquer strategy for parallel solution of fast 
discrete Fourier transform (DFFT) in [15]. 

4.1.5. Decomposition Models for Complex Problems 
To decompose complex problem there is in many cases 

necessary to use more than one decomposition strategy. 
This is true mainly in hierarchical structure of concrete 
complex problem. The hierarchical character of complex 
problem means that we are looking to such complex 
problem as set of various hierarchical levels whereby it 
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would be useful to apply at every existed level another 
decomposition model. This approach we are naming as 
multilayer decomposition.  

To effective using of multilayer decomposition 
contributes new generation of common parallel computers 
based on implementation of the order more than thousand 
computing nodes (processors, cores). Secondly unifying 
trends of high performance parallel computing (HPC) 
based on massive parallel computers (massive SMP, 
supercomputers) and distributed computing (NOW, Grid) 
open to programmers new horizons.  

To the typical complex problems belong weather 
prognosis, fluid flow, structural analysis of substance 
building, nanotechnologies, high physics energies, artificial 
intelligence, symbolic processing, knowledge economic etc. 
Multilayer decomposition model makes it available to 
decompose complex problem at first to simpler modules 
and then in second phase to apply suitable decomposition 
model only to given decomposed part. 

4.1.6. Object Oriented Decomposition 
Object oriented decomposition is integral part of object 

oriented programming (OOP). Actually it presents modern 
way of parallel program development. OOP beside 
increased demand to abstract thinking of programmer 
contents decomposition of complex problem to independent 
parallel modules named as objects [35]. In this way object 
oriented approach looks at complex problem as collection 
of abstract data structures (objects), where integral parts of 
objects are also build object functions as other form of 
parallel processes. In the same way OOP creates bridge 
between sequential computers and modern parallel 
computers based on SMP, NOW and Grid. Illustration of 
object structure is at Fig. 21. 

.

.

.

Obje tc

D ta objea ct

Procedure 1

Procedure 2

Procedure n

 

Figure 21. Object structure. 

4.1.7. Mapping 
This step allocates created parallel processes to 

computing nodes of parallel computer for their parallel 
execution. There is necessary to achieve that every 
computing node should perform allocated parallel 
processes (one or more) with at least approximate input 

loads (load balancing) on real assumption of equal 
powerful computing nodes. Fulfillment of this condition 
contributes to optimal parallel solution latency.  

4.1.8. Inter Process Communication 
In general we can say that dominated elements of 

parallel algorithms are their sequential parts (Parallel 
processes) and analyzed inter process communication (IPC) 
among performed parallel processes using high speed 
communication networks [2, 37]. 

4.1.8.1. Inter Process Communication in Shared Memory 
Any concrete communication mechanism make use 

existence of shared memory which allows every parallel 
process to story communicating data at some addressed 
memory place and then another parallel process to read 
stored data (shared variable). It looks very simple but there 
is necessary to guarantee that in the same time can use the 
addressed memory place only one parallel process. These 
needed control mechanism are named as synchronization 
tools. The typical synchronization tools are as following 

• busy waiting 
• semaphores 
• conditional critical regions (CCR) 
• monitors 
• path expressions. 

4.1.8.2. Inter Process Communication in Distributed 
Memory 

Inter process communication (IPC) for parallel algorithm 
with distributed memory (PAdm) is defined within 
supporting developing standards as following 

• MPI (Message passing interface) 
� point to point (PTP) communication commands   

o send commands 
o receive commands 

� collective communication commands 
o data distribution commands 
o data gathering commands 

• PVM (Parallel virtual machine) 
• Java (Network communication support) 
• other. 

NIC NIC

Par.
process i

Par.
process j

Computing 
node i

communication channel

Data
 message

Data
message

Computing 
node j

 

Figure 22. Illustration of MPI network communication. 
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To create needed synchronization tools in MPI we have 
available only existed network communication of 
connected computing nodes. Typical MPI network 
communication is at Fig. 22. Based on existed 
communication links MPI contains synchronization 
command Barrier. 

4.1.9. Performance Tuning 
After verifying developed parallel algorithm on concrete 

parallel system the further step is performance modeling 
and optimization (effective PA). This step contents analysis 
of previous steps in such a way to minimize whole latency 
of parallel computing T(s, p). Performed optimization of 
T(s, p) for given parallel algorithm depends mainly from 
following factors 

• allocation of balanced input load to used computing 
nodes of parallel computer (load balancing) [19] 

• minimization of accompanying overheads amounts 
(parallelization, inter process communication IPC, 
control of PA) [30]. 

To do load balancing we need in case of obvious using of 
equally powerful computing nodes of PC results of load 
allocation for given developed PA. In dominated 
asynchronous parallel computers (NOW, Grid) there are 
necessary to reduce (optimize) mainly number of inter 
process communications IPC (communication load) for 
example through using of alternative existing 
decomposition model.  

5. Chosen Illustration Results 

 

Figure 23. Computation and communication latencies for epsilon=10-5. 

We illustrate some of chosen performed tested results. 
For experimental testing we have used workstations of 
NOW parallel computer as follows 

• WS 1 – Pentium IV (f = 2,26 G Hz) 
• WS 2 - Pentium IV Xeon (2 proc., f = 2,2 G Hz) 
• WS 3 - Intel Core 2 Duo T 7400 (2 cores, f=2,16 

GHz) 
• WS 4 - Intel Core 2 Quad (4 cores, 2.5 GHz) 
• WS 5 - Intel Sandy Bridge i5 2500S (4 cores, f=2,7 

GHz). 

5.1. Numerical Integration 

We have measured defined performance evaluation 
metrics in NOW parallel computer with Ethernet 
communication network and previous defined specification 
of used workstations. The individual latencies of complex 
execution time for accuracy epsilon=10-5 are illustrated at 
Fig. 23. 

From this figure we can see that for used computation 
loads communication latencies (initialization, network load) 
are dominant. 

From Fig. 24 we can see that with decreasing order of 
epsilon (higher computation accuracy) growths needed 
computing time in a linear way caused with linear raise of 
needed computations.   

 

Figure 24. Computation latency for various accuracy (epsilon =10-5 - 10-9). 

From Fig. 25 we can see that increased input 
computation loads could result in dominating influence of 
computation time. This is caused by low increased 
communication load, which remains nearly constant. 

 

Figure 25. Dominancy of computation latency for epsilon = 10-9. 
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Based on these results we know that dominate influence 
to the whole complexity of analyzed parallel algorithm has 
computation latency T(s, p)comp in comparison to 
communication latency T(s, p)comm. To map mentioned 
assumption to the relation for asymptotic isoefficiency w(s) 
means that 

[ ] [ ]compcompcommcomp psTpsTpsTpsTsw ),(max),(),(,),(max)( =<=  

Such parallel algorithms are very effective also at using 
dominant parallel computers with distributed memory 
(NOW, Grid). 

5.2. Parallel Multiplication 

The comparison on analyzed decomposition models for 
parallel multiplication in part 4.1.2.1. for various number of 
computing nodes of parallel computer illustrates Fig. 26. 
The first chosen decomposition model (decomposition 1) 
goes straightforward to the calculation of the individual 
elements of the result matrix C through multiplication of 
the corresponding matrix elements A and B. The second 
decomposition model (decomposition 2) for the getting the 
final elements of the matrix C besides multiplication of the 
corresponded matrix elements A and B demand the 
additional addition of the particular results, which causes 
the additional time complexity in comparison to the first 
used method. This additional time complexity depends 
strong on the magnitude of the input matrixes. On this 
example of matrix multiplication we can see potential 
crucial influence of decomposition model to complexity of 
parallel algorithms. 

 

Figure 26. Influence of decomposition models in parallel multiplication. 

6. Conclusions and Perspectives  
Performance modeling in parallel computing as a 

discipline has repeatedly proved to be critical for design 
and successful use of parallel computers and parallel 
algorithms too. At the early stage of design, performance 
models can be used to project the system scalability and 
evaluate design alternatives. At the production stage, 
performance evaluation methodologies can be used to 
detect bottlenecks and subsequently suggests ways to 

alleviate them. Analytical methods (order analysis, queuing 
theory systems, Petri-nets), simulation and experimental 
measurements have been successfully used for the 
evaluation of parallel computers and parallel algorithms 
too.  

On the given illustrative examples of chosen parallel 
algorithms (numerical integration, matrix multiplication) 
we have been demonstrated great influence of selection of 
decomposition model to their potential effectiveness. This 
is very important mainly in using dominant parallel 
computers (NOW, Grid) where the dominant influence used 
to have communication complexity of parallel algorithms. 
Therefore according the latest trends in parallel computing 
based on developing of mixed parallel algorithms (shared 
memory, distributed memory) there are important optimal 
decisions in developing PA which parts would be executed 
on SMP computing nodes and which on NOW modules.    
Via the extended form of complex isoefficiency concept we 
have illustrated its concrete using to predicate the 
performance in applied matrix parallel algorithms. To 
derive complex isoefficiency function in analytical way it is 
necessary to derive al typical used criterion for 
performance evaluation of parallel algorithms including 
their overhead function h(s, p). Based on these relations we 
are able to derive complex issoefficiency function as real 
criterion to evaluate and predict performance of parallel 
algorithms also for theoretical (not existed) parallel 
computers. So in this way we can say that this process 
includes complex performance evaluation including 
performance prediction. 
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