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Abstract: The article is devoted to the important role ofataposition strategy in parallel computing (paratiemputers,
parallel algorithms). The influence of decompositinodel to performance in parallel computing weéehélustrated on the
chosen illustrative examples and that are paralfgrithms (PA) for numerical integration and matmultiplication. On the
basis of the done analysis of the used parallepetens in the world these are divided to the twsidbgroups which are from
the programmer-developer point of view very difféteThey are also introduced the typical princigctures for both
these groups of parallel computers and also thedais. The paper then in an illustrative way déssrithe development of
concrete parallel algorithm for matrix multiplicati on various parallel systems. For each individpadctical
implementation of matrix multiplication there istrioduced the derivation of its calculation comptexiThe described
individual ways of developing parallel matrix mplication and their implementations are comparad|yzed and discussed
from sight of programmer-developer and user in otdshow the very important role of decomposititrategies mainly at
the class of asynchronous parallel computers.

Keywords. Parallel Computer, Parallel Algorithms, Performarizecomposition Model, Numerical Integration,
Matrix Multiplication

1. Parallel Computing 1.1. Parallel Computers

Performance of actually computers (sequential, liedra From the point of system programmer we can dividle a
depends from a degree of embedded parallel prexiph to this time realized parallel computers. The basic
various levels of technical (hardware) and progsaipport classification is from the point of realized memaoag
means (software). At the level of intern architeetwf follows

basic module CPU (Central processor unit) of P tre » parallel computers  with  shared memory
implementations of scalar pipeline execution or tipld (multiprocessors, multicores)
pipeline (superscalar, super pipeline) executiond an < parallel computers with distributed memory (mginl
capacity extension of cashes and their redundant ut based on computer networks)

various levels and that in a form of shared andllcashes » others.
(L1, L2, L3). On the level of motherboard there ds
multiple using of cores and processors in buildin ] s ]
multicore or multiprocessors system as SMP (synioatr Basic common characteristics are as following [, 1
multiprocessor system) as powerful computation node ° Shared memory o

where such computation node is SMP parallel comgae ~ * USing shared memory for communication

[1]. On the level of individual computers the dommin * supported developing standard

EiLl.l. Parallel Computerswith Shared Memory

trend is to use multiple number of high performed * OpenMP
workstations based on single personal computery (PC - ?penMPThreads
= Java

SMP, which are connected in the network of worlstest
(NOW) or in a high integrated way named as Gridesys
[36]. A member of NOW or Grid could be any classic
supercomputers [34].

* typical architectures [37]
symmetrical multiprocessors (SMP)
= supercomputers (massive SMP)
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=  Grid achieve faster solution in comparison to quickesugntial
= meta computers solution. The role of programmer is for the givearailel
= others. computer and for the given application task to dmve
) o parallel algorithm (PA). Fig. 1 demonstrates howdé&sive
1.1.2. Parallel Computers with Distributed Memory parallel algorithm from existed sequential algarith
Basic common characteristics are as following (2], In last year's there is increased interest of gifien
* no shared memory (distributed memory) research into effective parallel algorithms. Thesads to

* computing node could have some form of localygiel algorithms also support actual trends in
memory where this memory in use only by connectef;,qramming technologies to the development of rardu
computing node applied algorithms based on object oriented programg

* cooperation and control of parallel processesy onl5op) OOP algorithms are in their merits resulalostract
using asynchronous message  communication  thinking toward parallel solutions for existed cdenp

« supported developing standard problems.
= MPI (Message passing interface)
= PVM (Parallel virtual machine) 2.1. General Classification of Parallel Algorithms
= Java

« typical architectures In general we supposed that potential effectivealfedr

*  network of workstations (NOW) algorithms according defined algorithm classifioati(Fig.
Grid 2) should be in the group P as classified polynbmia
algorithms.

* meta computers
= others.

2. Parallel Algorithms @
. Problem Expertto
Practice problem P
Description
(diagram)
¢

Aplication Analyst
informatics | Apstract formalization

NP

Figure 2. Parallel algorithm classification.

Parallel

S Other used acronyms at Fig. 2 are as following [12]
parallel Sequential |« * NP — general non polynomial group of all algarith
algorithm 1 * NC (Nick’s group). Group of effective polynomial

3 Modification ¥
Sequental of algorithm algorithms
algorithm No + PC — polynomial complete. Group of polynomial

Modification

Comglon algorithms with high complexity
algorithm * NPC — non polynomial complete. This group cossist
ve of non-polynomial algorithms with their high solgin

of algorithm
No X X X ~
complexity. The existence of any NPC algorithmin a
effective way makes it available to solve effectalso

No
Accuracy
‘ofsolving
other NPC algorithms.
2.2. Parallel Processes

Figure 1. Deriving process of parallel algorithm. To derive PA we have to create conditions for pidén
o . parallel activities through dividing the input pfeim
Users and programmers from a beginning of applied|qorithm to its independent parts (decompositionded)

computer using request more powerful computersnami®  ,ccording Fig. 3. These individual parts could e a
efficient applied algorithms. For a long time tdeetive following

technologies belong implementations of parallehgiples « heavy parallel processes

so into computers as applied parallel algorithnms tHis « light parallel processes named as threads.
way term parallel programming could relate to every

program, which contains more than one parallel gsed21,

23]. This process represents single independenteséiql

part of program. Basic attribute of parallel altjoms is to

Accuracy
of solving
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Complex problem
(sequential algorithm)

Decomposition

Parallel

5 . Parallel
process

process n

Figure 3. lllustration of decomposition process.

We will define standard process as developed séiglien
algorithm or its independent part. In detail staddarocess
does not represent only some part of compiled pragr
because to its characterization belongs also srgstatus
of processor. lllustration of such standard process Fig.
4.

Standard parallel process

Memory module

Figure 4. lllustration of standard process.

Program code

Static data

Every standard process has therefore own systerk, sta
which contains process local data and in case ofgss
interruption also actual register status of prooesk is
obvious that we may have contemporary multiple nensib
of standard processes, which used together songggmo
part but their processes contexts (process loctl) dae
different. Needed tools to manage processes (indtéon,
abort, synchronization, communication etc.) arehinit
cores of multitask operation systems in form ofviees.
lllustration of standard multi processes statd iSig. 5.

Parallel processes

Memory module

Processes
ade ‘Stack

‘Static
data

Figure 5. Parallel algorithm based on multiple parallel prases.

ecompiositModels of Parallel Algorithms

But concept of generating standard processes with
individual address spaces is very time consumirigpr
example in operation system UNIX a new process is
generating with operation fork(), which makes sysizall
in order to create child process with new own askispace.
But in detail it means memory allocation, copyirfgdata
segment and descriptor of origin (parent) procesd a
realization of child process stack. Therefore thiscept we
named as heavy-weighted process. It is obvious that
heavy-weighted approach does not support effects®iof
applied parallel processing and needed scalabiity
parallel algorithms. In relation to it were necegs&o
develop another less time consuming concept of gzaoc
generation named as light-weighted process. Thistdn
conception of generating new processes under amnothe
name as threads were implemented at various operati
systems, supported threads libraries and paradiatidping
environments. Basic difference between standardegs
and thread is that we can within standard procesgrgte
additional new threads, which are together usirgdhme
address space including descriptor declaration rigiro
standard process.

2.3. Parallel Algorithms Classification

In principal parallel algorithms are dividing intwvo
following basic classes

 parallel algorithms with shared memory (RA In this
case parallel processes can communicate through
shared variables using existed shared memory. For
control of parallel processes are used typical
synchronization tools as busy waiting, semaphores
and monitors to guarantee exclusive using of shared
resources only by single parallel process [10, 28]
parallel algorithms with distributed memory (@RA
Distributed parallel algorithms have to
synchronization and cooperation of parallel proesss
only network communication. The term distributed
(asynchronous) parallel algorithms defines, that
individual parallel processes are performed on
independent computing nodes of used parallel
computer with distributed memory [16, 31]
mixed PA. Very perspective parallel algorithmsieth
are to use advantages of dominant parallel computer
based on NOW modules as following
using of parallel processes with shared memory
in individual computing nodes of parallel
computer
using of parallel processes based on distributed
memory in parallel computers with distributed
memory.

2.3.1. Parallel Algorithmswith Shared Memory

Typical activity graph of parallel algorithms witthared
memory PA, is at Fig. 6. To control decomposed parallel
processes there is necessary synchronization meohas
follows

» semaphors
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monitors

busy waiting

pathexpession

critical region (CR)

conditional critical region (CCR).

Par. process Par. process

Figure 6. lllustration of parallel activities of P4,

2.3.2. Parallel Algorithmswith Distributed Memory
Parallel algorithms with distributed memory RAare

parallel processes which are performing on asymdus

computing nodes of given parallel computer. Theefor

Communications42@15-1): 70-84 73

parallel applications. In order to extend the aggilility of
analytical techniques to the parallel processingnaia,
various enhancements have been introduced to model
phenomena such as simultaneous resource possession,
and join mechanism, blocking and synchronization.
Modeling techniques allow to model contention bath
hardware and software levels by combining approtéma
solutions and analytical methods. However, the derity

of parallel systems and algorithms limit the apgbitity of
these techniques. Therefore, in spite of its coatprt and
time requirements, simulation is extensively usexd ita
imposes no constraints on modeling.

3.1. The Role of Performancein Parallel Computing

To the performance evaluation in parallel computivey
briefly review the techniques most commonly adopfad
the evaluation in parallel computing as follows

» analytical

= application of queuing theory results [11, 20]
order (asymptotic) analysis [3, 15]
Petri nets [7]
» simulation methods [24]

experimental
benchmarks [32]
direct measuring [9, 29].

all needed cooperation of parallel processes wee hay Analytical method is a very well developed set of
available only inter process communication IPC. Théechniques which can provide exact solutions vergldy,

principal illustration of parallel processes forR4s at Fig.

7.
Par. Par. Par. Par.
process process process process

Figure7. lllustration of parallel activities of Pfy.

3. The Role of Performancein Parall€
Computing

Quantitative evaluation and modeling of hardware an
software components of parallel systems are critaathe
delivery of high performance. Performance studjgdyato
initial design phases as well as to procuremenintuand
capacity planning analysis. As performance cannet
expressed by quantities
workload, the quantitative characterization of rese

demands of application and of their behavior is agygies

important part of any performance evaluation stijy27].
Among the goals of parallel systems performancdyaisa

but only for a very restricted class of models. Fuore
general models it is often possible to obtain apipnate
results significantly more quickly than when using
simulation, although the accuracy of these resuly be
difficult to determine.

Simulation is the most general and versatile meazfns
modeling systems for performance estimation. It iasy
uses, but its results are usually only approxinmatito the
exact answer and the price of increased accuraoyuish
longer execution times. They are still only apgiieato a
restricted class of models (though not as restticis
analytic approaches.) Many approaches increasallyapi
their memory and time requirements as the sizehef t
model increases.

Evaluating system performance via experimental
measurements is a very useful alternative for caempu
systems. Measurements can be gathered on existing

. bs’ystems by means of benchmark applications thatadim
independent of the syste@iessing specific aspects of computers systemen Ev

though benchmarks can be used in all types of pagoce
their main field of application is comfieé
procurement and performance assessment of existing
systems and algorithms.

are to assess the performance of a system or ansyst

component or an application, to investigate the chmat
between requirements and  system
characteristics, to identify the features that haze
significant impact on the application execution dinto
predict the performance of a particular applicatmm a
given parallel system, to evaluate different suites of

3.2. Performance Evaluation Metrics of Decomposition

architecture Models

To evaluating decomposition models in parallel
algorithms we will be used defined complex basicoepts
in [15] as follows
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» parallel execution time T(s, p) as the executiome

DecompositModels of Parallel Algorithms

model) and distribute data to different nodes (nragp

performed by p computing nodes (processors, coreshe chosen decomposition model drives the rest of

workstations) of given parallel computer and s regi
input size (load) of given problem
« speed up factor S(s, p) as

_T6)
8P 15 p)
« efficiency E(s, p) as
_9sp)_ TED
HsP) p pT(s p)

« the isoefficiency concept

_E
W(S)—Eh(s p).

4. Developing Process of Paralle
Algorithms

To exploit the parallel
application program must be parallelized. The ¢ffec
way how to do it for a particular application pref
(decomposition model) belongs to the most imporsiep
in developing an effective parallel algorithm [148]. The
development of the parallel network algorithm acéaog
Fig. 8 includes the developing activities as follow

« decomposition - the division of the applicatiarioi a
set of parallel processes

e mapping - the way how processes and data are

distributed among the nodes
e inter process communication -

processes
e tuning - alternation of the working applicatioo t
improve performance (performance optimization).

Parallel computer Processors or Parallel

Problem Processes workstations solution

Decomposition

Mapping Synthesis of solution

Figure 8. Development steps in parallel algorithms.

To do these steps there is necessary to understand
concrete application problem, the data domain, ubed
algorithm and the flow of control in given appliat.
When designing a parallel program the descriptibithe
high level algorithm must include, in addition tesign a
sequential program, the method you intend to udaréak
the application into processes or threads (decoitipos

processing capability the

the way of
corresponding and synchronization among individual

program development.
4.1. Decomposition Models

Developing of sequential algorithms implicitly sused
existence of algorithm for given problem. Only laia
stage of practical programming they are defined ased
suitable data structures. In contrast to this aass
developing method suggestion of parallel algoristmould
include at beginning stage potential decomposisimategy
including distribution of input data to perform dasposed
parallel processes. Selection of suitable decortiposi
strategy has cardinal influence to further develeptmof
parallel algorithm.

Decomposition strategy defines potential dividing o
given complex problem to their independent partrdiel
processes) in such a way, that they could be peddrin a
parallel way through computing nodes of given paral
computer. Existence of some decomposition method is
critical assumption to possible parallel algoritHPatential
decomposition degree of given complex problem isiat
for effectivity of parallel algorithm [4, 17]. Tohis time
developed parallel algorithms and corresponding
decomposition strategies were mainly related talava
synchronous parallel computers based on classicineas
parallel computers (supercomputers and their inthows).
Developing parallel algorithms for actual domingatallel
computers NOW and Grid require at least modified
decomposition strategies incorporating followingpties

» emphasis to functional parallelism of complex

problems

minimization of inter process communication IPC.
The most important step is to choose the best
decomposition model for given complex problem. T d
this it is necessary to understand concrete apjaita
problem, data domain, used algorithm and flow aftaa
in given complex problem. When designing a parallel
program the description of the high-level algoritimnust
include, in addition to design a sequential prograhne
method you intend to use to break the applicatino i
processes and distribute data to different computiodes.
The chosen decomposition models drive the restff P
development. This is true is in case of developirgv
application as in porting serial code. The decontioos
method tells us how to structure the code and dath
defines the communication topology [25, 26].

Problem parallelization is very creative proceshjciv
creates potential degree of parallelism. Thiswsag how to
divide complex problems to nondependent parts (Rara
processes) in such a way, to make possible to iperRa\ in
parallel. The way of decomposition depends strofigiyn
used task algorithm and from data structures. I$ ha
principal influences to performance and its comroatidn
consequences. To this time developed decomposition
models and strategies seems to be close only tntte
world used supercomputers and their innovated types
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(classic parallel computers). On other way theizatibn of 1 L9 n

PA for in this time dominate parallel computers ME 7T=_[ f(») dxzj‘iz dx0)” f(x)
NOW, Grid) demand modified decomposition models and © ol+X i=1
strategies with respect to minimization of inte®s  Or next possible relation
communication intensity (NOW, Grid) and derivingitirey 4

1

latency T(s, P)at at using shared resources or at — 42, (i +05) Z(Nj

insufficient their capacities (1" j
 naturally parallel decomposition

+ domain decomposition 4 ——
 control decomposition 35 Xxkk
= manager/workers 5 T
= functional T —
« divide-and-conquer strategy for f(x) 25
« decomposition of big problems 2
« object oriented programming (OOP). 1,5
4.1.1. Natural Parallel Decomposition !
Natural parallel decomposition allows simple cnegtof 0.5
parallel processes whereby to their cooperatiormaby 0
there is necessary low amount of inter process o 01 02 03 04 05 06 07 08 09 1
communication IPC. Also for parallel computatioweri is X
normally not important sequence of individual smos. As Figure 9. Principle of numerical integration.

a consequence there are not necessary any syrgdtioni

of performed parallel processes during parallel matation. 4.1.1.2. Decomposition Model

Based on these attributes natural parallel algostallows For the parallel way of numerical integration
to achieve practical ideal p - multiple speed -using p - Ccomputation we are used the property of latent
computation nodes of parallel computer (linear dpeap), decomposition strategy in all natural parallel aigons.
and that with minimal additional efforts at deveétgp We divide the whole needed computation to its iiatlial
parallel algorithms. Typical examples are numericaparallel processes according to the Fig. 10 wheeefar
integration parallel algorithms. Based on this eptemwe  simplicity illustrated four parallel processes. Fme
will illustrate in detail the role of decompositionodels in ~ parallel computation of numberwe then use these created

developing steps of parallel algorithms. parallel processes.
4.1.1.1. Numerical I ntegration 4 -

Numerical integration algorithms are typical exaespl 35 e
with implicitly latent decomposition strategy in igh the . -
parallelism is the integral part of own algorith8tandard —
way of typical numerical integration algorithm (the 25

computation ofr number) assumes that we divide the f(X) 2
interval <0, 1> to n identical subintervals wherebyeach

. . . . 15
subinterval we approximate its part of curve witstangle.
Function values in middle of each subinterval detee 1
height of the rectangle. Number of selected subiate 05

determines computation accuracy. The computed \aflae
will be given as sum of surface area of definedviddal
approximated rectangles. |lllustration of numerical
integration applied ta computation is at Fig. 9. Concretely X

for the calculation of the value the following standard Figure 10. Decomposition model of numerical integration prabée
formula is used

0

012301230123%501230123

Loy enter the desired number of subintervals n
= I 5 ax compute the width w of each subinterval
1+x i
0 for each subinterval
, where h = 1/ n is the width of the selectedtspd find its centre x
interval, x = h (i - 0.5) are mid-ranges and n is the number  compute f(x) and the sum
of selected intervals (accuracy). For computatibm ave end of cycle
can use an alternative following interpolating pualynial multiply the sum with width to obtain

[93] returnz



76 Michal Hanuliak and Juraj Hanuliak: DecompositModels of Parallel Algorithms

The prospective parallel implementations on dontinammanagement functions and certain partial computatio
parallel computers (SMP, NOW, Grid) allow analysis while other nodes perform a substantial part ofrést of
communication load depending on input computatmad! computations for assigned subintervals, and comoated
because input load is proportional to changes iadlo obtained partial amounts specified computing node 0O
communication. Procedures silence and crecv serve to ensure thered

) collective data communications and the final sunwnabf
4.1.1.3. Mapping of Parallel Processes achieved partial results.

The individual independent processes we distribute
forcomputation in such way that every created pelral f(x) = 4.0 /(1.0 + x*x)
process will be executed on different computing enad
parallel computer (mapping). After the parallel gutation
in individual nodes of a network of workstations swa

integer n, i, p, me, mpid
real w, X, sum, pi

, p = numnodes () return number of nodes
performed we need only to sum the partial resutget me = mynode () return number of my node
final result. To manage this task we have to chawee of mpid = mypid () return id of my process
the computing nodes to handle it. As well at the msglen = 4 estimate message length
computation begin the chosen node (let it be ngdest allnds = -1 message name for all nodes
know the value of n (number of the strips in evergcess) msgtp0 = 0 name for message 0
and then selected node 0 has to let it know tootder msgtpl = 1 name for message 1
computing nodes. Example of the parallel computatio (me .eg. 0) then if i am node 0
algorithm (manager process) is then as following read *, n read number of subintervals n

callcsend (msgtp0,n,msglen,alinds,mpid) and setad i
all other nodes
else if | am any other node
callcrecv (msgtp0, n, msglen)  receive value n

if my node is 0
read the number n of strips desired and send ialto
other nodes

else end if
receive n from node O w=1.0/n

end if _ , _ sum = 0.0

for each strip assigned to this node o do 10i=me+1, n dividing subintervals among esd
compute the height of rectangle (at midpoint) anchs X =w*(i-0.5)
result sum = sum + f(x) 10 continue

end for if (me .ne. 0) then if | am not node 0

if my node is not 0
send sum of result to node O
else

callcsend (msgtpl, sum, 4, 0, mpid) send partial
result to node O

) else if | am node O
receive results from all nodes and sum do20i=1,p-1 for every other used node
multiple the sum by the width of the strips tomget callcrecv (msgtpl, temp, 4) receive partiasuie
return to temp
) ) sum =sum +temp and add it to sum
Sending values of n / p could be done in case ligh 20 continue
algorithm with distributed memory BA using MPI API pi = w¥sum
explained collective communication command Broatlitas compute final result

case of the same size of parallgl processes or MPI print *,pi and print it
command Scatter in case of variable size of pdralle 5.4
processes.

We illustrate on this relative simple example petal
algorithm in parallel language FORTRAN for parallel
computer with distributed memory. The algorithmesxis
and modifies the starting serial algorithm for gecific
parallel implementation. To characterize shortlyis th
parallel algorithm, we note that number of compmtin
nodes of a parallel computer and identification eaich
computing node performed procedures numnodesfl.1.4. Performance Optimization
(number of computing nodes), mynode() (my computing In the above example of numerical integration this
node) and my pid() (number of my parallel proce$bese requirement leads to reduce the bottleneck, whigh i
procedures allow the activation of any number ofnter-process communication (IPC) latency. Thiseihatl
computing nodes of a parallel system. Then if wewal should be minimized, since it could be used mofecéfe
designated node, for example computing node Opparf in useful computation of parallel algorithm. Ittiserefore

The disadvantage is that the implementation of the
central necessary routing communications througé th
designated node 0 (manager node), and as a résu t
may be a bottleneck which could negatively affdut t
efficiency of the parallel algorithm implementation
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very important to minimize the number of communiogt It is also important to note that for mentioned wiedis
data messages proportionally to number of compmutati required direct communication of every computingdeo
operations, thereby minimizing also overall exemutiime with other computing nodes as assumption of pdralle
of a parallel algorithm. In computation of number communication between multiple pairs of computingles.
demanded centralization of needed communicatiovutiit = In this approach the final sum can be obtainedr afte
manager computing node 0 may come to computatigmerforming the second, third or even fourth cycfette
bottleneck for two following reasons communication chain. In fact we need only.lqpg where p
* manager computing node 0 node could simultangousis the number of computing nodes of parallel corput
receive data message only from one other computatiaycles of communication chains compared to n data
node messages at initial implementation. Used paraftelisf
e summary of the partial results at manager node 0 data message exchange will therefore increaseeafbig of
done sequentially, in a sequential way, which & pu  parallel algorithms. For the implementation of enproved
prerequisite to come to bottleneck. approach for data messages communications it'sseacg

The outgoing point in mentioned both cases is tto replace following part
consider using of collective communication commaatis
standardized development environments as MPI ARd, a if (me .ne. 0) then
that collective command Reduce or Gather. For some callcsend (msgtpl, sum, msglen, 0, mpid)
parallel computers are available alternative globatlse
summarization operation gssum(), just to eliminateh do20i=1,p-1
bottlenecks. This operation in iterative manneragisysums callcrecv (msgtpl, temp, msglen)
partial results of two computing nodes, which both sum = sum + temp
computing nodes are exchanged. Each partial suithwh 20 continue
receives one of computing node pair, is added ® th pi=w*sum
obtained sum in a given node, and this resultaissimitted print *, pi
to next computing node of defined communicationitha endif
In this way there is gradually obtained the totakend
accumulated amount of the computing nodes wherehwith next part
manager computing node 0 can perform the last saon a callgssum (sum, 1, temp)
print the final result. This procedure of global if (me .eg.0)then
summarization can be also programmed, but the segque pi = w*sum
of implemented appropriate procedures simplifies print *, pi
implementation of parallel algorithms and contrédsuto its endif
effectiveness too.

In other applied tasks using a larger direct iqercess In other applied parallel algorithms there is pblesiat
communication implementation of communication usedysing a larger direct inter process communication t
for example form of asynchronous communication gisinperform communication for example in form of
direct support of multitasking in a given node, réiy asynchronous communication using multitasking supipo
achieving parallelism implementation of communicati a given node, thereby it is achieved parallelism of
activities other node. Of course, an example oficedj the performing communication with other computing node
ratio of communication computing activity is noetlenly  activity. Of course described example of reduciatjor of
task in optimizing the performance of parallel aijons. communication/ computing activity is not the onsk in
Available methods for optimizing performance angually  optimizing the performance of parallel algorithms.
the same colorful as diverse mere parallel apjdinatisks. Available methods for performance optimizing aragical
Inspired examples and procedures will therefore bso various as are diverse parallel application lerob.
included in the illustrative application examplas the

following sections. Commonly used method and praced 4-1-2- Domain Decomposition ,
for the decomposition of the application tasks riectly Typical characteristic of many complex problems is

implies the possibilities of optimizing its perfoamce, i.e., SCMe regularity in sequential algorithms or in ftheata
optimization can also cause re-evaluation of sgiateused structures (computational or data modularity). Eeise of
decomposition. such computational or data modules then represemtih

Then if we allow designated node, for example node of computaltioln or data. .Decomposition strategy tase
perform management functions and certain partia?”Ch domain is substantial part of these compleblpms

calculations while other nodes perform a substhptiet of (0 generate parallel processes. Mostly such doniin
the calculations for assigned subintervals, an&haractenzed by massive, dlscrete or statlf: datectare. _
communicate obtained partial amounts to specifiedern.  1YPical examples of computational domains are matri

Procedures silence and crecv serve to ensure thuired parallel multiplication and matrix parallel algdnibs
communication representing for example with system of linear ¢iqua.
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These both matrix parallel algorithms we have chase
represent typical examples of matrix data decontiposi
models.

4.1.2.1. Decomposition Methods for Matrix Multiplication ) ) ) ) ) )

We will illustrate the role of optimal selection of |t Yz | Y a0 |G| G| e ik
decomposition model on matrix multiplication. The
principle of matrix multiplication we illustrate Ifo
simplicity for the matrixes A, B with numbers ofws and
columns k=2. The result matrix C=Ax B is

Figure 12. lllustration of the gradually calculation of matri.

This method is also faster as second possible way o
decomposition according Fig. 13.

{eu au}x{bu blz}z[autﬂmaufﬂal autﬂwautﬂaz}:[ql C12:|
a21 a22 bZl bZZ a21m11+622[ﬂ)21 a21[a12+a22|:ﬂ122 Czl CZZ

The way of sequential calculation is following
Step 1:
compute all the values of the result matrix C fbe t
first row of matrix A and for all columns of the ma B
Step 2:
take the next row of matrix A and repeat step 1.
In this procedure we can see the potential podyiluf Figure 13. Matrix decomposition model with columns of firstirixa
parallel computation that is the repetition of atités in the ) .
step 1 always with another row of matrix A. Let sinier The procedure is following
the calculation example of matrix multiplication parallel ~ SteP 1:

system. The basic idea of the possible decompositio 91V€ tO the i-th node vertical column of the matxA';)
procedure illustrates Fig. 11. and the horizontal row of the matrix B (B

Step 2:
perform the ordinary matrix computation ;Aand Bj.
The result is the matrix Cof type n x n. Every element
from Cj is the particular element of the total sum which
corresponds to the result matrix C.

Step 3:
call the function of parallel addition GSSUM foreth
creating of the result matrix C through  corresjeah
elements G’ This added function causes increasing of
the calculation time, which strong depends on the

X B

il - <

Figure 11. Standard decomposition of matrix multiplication.

The procedure is as following

Step 1: magnitude of the input matrixes (Fig. 14.).
give to the i-th node horizontal column of the matk
with their names A"and i-th vertical column of the [ec@ 1) c@2) §§
matrix B named as B’ c@) &
Step 2: - C'1(1,1) C'1(1.2)
compute all values of the result matrix C for Ahd Bj C'1(2,1)
- l ’
and named them as;C
Step 3:

give to i-th computing node its value;B6 the node i-1

and get B, value from computing node i+1.

Repeat the steps 2 and 3 to the time till i-th nddes
not computed Gi; values with B; columns and row A’
Then i-th node computed i-th row of the matrix Gy(A.2.)
for the matrix B with the number k-columns. The
advantage of such chosen decomposition is the ralnim Ci?],l%: by +a, b, + o+ by
consume of memory cells. Every node has only threeC,(11)=ay g by, +agyp By + .ot ag 5 Moy
values (rows and columns) from every matrix.

Figure 14. lllustration of the gradually calculation of theeghents G;.

Let k be the magnitude of the rows or columns Agril
U defines the total number of nodes. Then
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c, (1,1) = &y _aes BLu-mrer T - F Ak Oy ik eliminated method (GEM) are as follows [5]
' « allocation of block strips

and the finally element of matrix C * gradually allocation of strips. .
In the first allocation method strips are dividedset of
Jy oo strips and to every computing node is assignedbioek.
C(l,l):ZCi (11) lllustration of these allocation methods is at Fid. At
=1 another method with gradual allocation of columrestare

allocated columns to individual computing node< like
card are gradually passing out at games to game
we can create parallel processes dividing mattix &trips participants. lllustration of gradual assignmentcofumns
(rows, columns). In generation process of matriralbel Is at Fig. 16.

processes there is necessary to tray allocate dgpaais in 4 1 3. Functional Decomposition

such a way that every computing node has roughty th pynciional decomposition strategies concentrater the
same number of strips (rows, columns). If the tatahber  ayention to find parallelism in distribution of ceential

of strips is divisible by the number of processaithout  computation stream in order to create independeraliel
rest then all computing node will have the sametmemof  ,qcesses. In comparison to domain decompositiomnee
decomposed parts (load balance). Otherwise som@ncerned to create potential alternative contrelasns of
computing node has some strips extra. concrete complex problem. In this way we are stiegrin
functional decomposition to create so much as ptessif

4.1.2.2. Decomposition Matrix Models
Any matrix is a regular data structure (domain)vidrich

Number of columr

2 3 4 5 6 78 9 10 11 12 13 14 15 Pparallel threads. lllustration of functional decassjtion is
at Fig. 17.
|‘ m“ rl‘ \“h:’:,
iTo) & o IR L
7 Func’uon.1 g
- _
V i “ "I\“UMH
Function 2/ /i
not
Branch
block
yes
0 1 2 3 0 1 23 0 1 2 3 0 12 Eunchions
Computing nodes J,
Figure 15. Matching of data blocks. =
Number of columns =
1 2 3 4 5 6 78 9 10 1 12 13 14 15 Figure 17. lllustration of functional decomposition.

The widely distributed functional strategies are as
following

» controlled decomposition

* manager / workers (server / clients).

Typical parallel algorithms are complex optimizatio
problems, which are connected with consecutivecbéay
of massive data structures.

4.1.3.1. Control Decomposition

Control decomposition as an alternative of fundaion
decomposition concentrates to given complex problas
0 1 2 3 0 1 22 0 1 2 3 0 1 2 sequence of individual activities (operations, catimg
Computing nodes steps, control activities etc.), from which we afale to

Figure 16. Assigns columns. derive multiple control processes. For example wa c

consider searching tree, which respond to game snove

Matrix allocation methods of decomposed strips &ow where branch factor is changed from node to node A

columns) for solving system of linear equations@®guss static allocation of tree is not possible or adtga
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unbalanced load.
So in this way this decomposition method supposed Main parallel
irregular structure controlled decomposition whishsoft process

connected with complex problems in artificial ifigggnce
and similar non numerical applications. Secondesywery
natural to look at any complex problem as collectif

modules, which represent needed functional pargiven Queue of Queue of
a|gorithm_ par. processes results

4.1.3.2. Decomposition Strategy Manager / Workers /A
Another alternative of functional decompositiontie Q
strategy manager / workers. In this case theresésl wne / ,
parallel process as control one (manager). Manageess
then sequentially and continuously generates needed
parallel processes (workers) to their performing in
controlled computing nodes. The illustration of gl
structure of decomposition model manager / workerat

Fig. 18. One of the possible applied solutionssitates Fig. 4.1 4. Divide and Conquer Decomposition Model

19. Divide and conquer strategy decomposed complex
problem into subtasks of the same size but it titexly
keeps repeating this process to obtain yet smpHeis of
given complex problems. In that sense this decoitipos

model iteratively applies the problem partitionbeghnique

as we can see it at Fig. 20. Divide and conquer is
sometimes called recursive partitioning. Typicalbmplex
problem size is an integer power of 2 and the eéiéahd
conquer strategy halves complex problem into twaaéq

parts at each iteration step.

Figure 19. lllustration of manager / workers strategy.

Figure 18. Manager / worker parallel structure. \ / \ / x / \

Manager process controls computation sequence n
relation to sequential finishing allocated parapjebcesses
from individual workers. This decomposition strateis Figure 20. lllustration of divide and conquer strategy (n=8).
suitable mainly in such cases in which given probtioes
not content static data or known fixed number of Every from N / 2 — point DFT we can again divide to
computations. In such cases there is necessary next parts, that is to two N / 4 — point DFT. Appl
concentrate to control aspects of individual padfs decomposition strategy could follows till to exhting
complex problems. From performed analysis then somalividing possibility for given N (one point valud)ividing
out needed communication sequence to achieve deandactor is named as radix - g, and that for dividmgnber
time sequences of created parallel processes. iDivid higher than two. We have applied decomposition rhotle
degree of given complex problem coincide with numiife  divide-and-conquer strategy for parallel solutioh fast
computing nodes of parallel computer, with parallediscrete Fourier transform (DFFT) in [15].
computer architecture and with performance knowdedf)
computing nodes. One of important element of previo
steps is allocation algorithm. It is more effectteeallocate
parallel process to first free computing node (veoykin
comparison to some defined sequence order of &iboca

4.1.5. Decomposition Models for Complex Problems

To decompose complex problem there is in many cases
necessary to use more than one decomposition gfrate
This is true mainly in hierarchical structure ofnceete
complex problem. The hierarchical character of clemp
problem means that we are looking to such complex
problem as set of various hierarchical levels whera
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would be useful to apply at every existed leveltheno loads (load balancing) on real assumption of equal
decomposition model. This approach we are naming g®owerful computing nodes. Fulfillment of this cotioin
multilayer decomposition. contributes to optimal parallel solution latency.

To effective using of multilayer decomposition o
contributes new generation of common parallel cammsu 1.8 Inter Process Communication ,
based on implementation of the order more thanstod In general we can say that dominated elements of
computing nodes (processors, cores). Secondly ingify Parallel algorithms are their sequential parts &elr
trends of high performance parallel computing (HPCProcesses) and analyzed inter process communiddiay)
based on massive parallel computers (massive SM®NOng performed parallel processes using high speed
supercomputers) and distributed computing (NOWdjGri communication networks [2, 37].
open to programmers new horizons. 4.1.8.1. Inter Process Communication in Shared Memory

To the typical complex problems belong weather any concrete communication mechanism make use

prognosis, fluid flow, structural analysis of sullste gyistence of shared memory which allows every peiral
building, nanotechnologies, high physics energiesiicial  rqcess to story communicating data at some adsttess
|nteII_|gence, symbohc_processmg, knowledge ecqnoetc. memory place and then another parallel processeaal r
Multilayer decomposition model makes it available t giqreq data (shared variable). It looks very sintplethere
decompose complex problem at first to simpler meslul js hecessary to guarantee that in the same timeismithe
and then in second phase to apply suitable decatigos ,qqressed memory place only one parallel processser

model only to given decomposed part. needed control mechanism are named as synchramizati

4.1.6. Object Oriented Decomposition tools. The typical synchronization tools are atofeing
Object oriented decomposition is integral part bjeot * busy waiting
oriented programming (OOP). Actually it presentsderm * semaphores

way of parallel program development. OOP beside * conditional critical regions (CCR)
increased demand to abstract thinking of programmer *® Mmonitors

contents decomposition of complex problem to indejpat * path expressions.

parallel modules named as objects [35]. In this whject
oriented approach looks at complex problem as ctidie Memory

of abstract data structures (objects), where iateuarts of Inter process communication (IPC) for parallel zilon
objects are also build object functions as othemf®f | wh  distributed memory (PA) is defined within

parallel processes. In the same way OOP creatéegebri supporting developing standards as following
between sequential computers and modern parallel,  \p (Message passing interface)

computers based on SMP, NOW and Grid. lllustratbn » point to point (PTP) communication commands
object structure is at Fig. 21. o send commands

0 receive commands
Object = collective communication commands
Procedure 1 0 data distribution commands
0 data gathering commands
» PVM (Parallel virtual machine)
» Java (Network communication support)

4.1.8.2. Inter Process Communication in Distributed

Procedure 2

» other.
Data object :
Computing 3 Computing
nodei | node j
Par. Par.
i processi ! process j

Procedure n \ /

Data | Data

message | | message
Figure 21. Object structure. | / i \

4.1.7. Mapping

This step allocates created parallel processes to MN°¢ ‘ NIC
computing nodes of parallel computer for their pata | I

execution. There is necessary to achieve that every
computing node should perform allocated parallel
processes (one or more) with at least approximapeti

communication channel

Figure 22. lllustration of MPI network communication.
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To create needed synchronization tools in MPI weeha 5.1. Numerical Integration

available only existed network communication of ] )
connected computing nodes. Typical MPI network We have measured defined performance evaluation

communication is at Fig. 22. Based on existedn®lfics in NOW parallel computer with Ethernet
communication links MPI contains synchronizationcOmmunication network and previous defined spesitn

command Barrier. of used workstations. The individual latencies omplex
execution time for accuracy epsilon=1@re illustrated at
4.1.9. Performance Tuning Fig. 23.
After verifying developed parallel algorithm on cvete From this figure we can see that for used compnati

parallel system the further step is performance etiog loads communication latencies (initialization, netkvload)
and optimization (effective PA). This step contemtalysis are dominant.
of previous steps in such a way to minimize whakercy From Fig. 24 we can see that with decreasing oofler
of parallel computing T(s, p). Performed optimieatiof epsilon (higher computation accuracy) growths ndede
T(s, p) for given parallel algorithm depends maiflgm  computing time in a linear way caused with linegise of
following factors needed computations.

« allocation of balanced input load to used comuyti

nodes of parallel computer (load balancing) [19] ;
« minimization of accompanying overheads amounts 20000 |
(parallelization, inter process communication IPC, 18000
control of PA) [30]. 16000
To do load balancing we need in case of obviousgusf 14000 |
equally powerful computing nodes of PC results addl paraies 12000 |
allocation for given developed PA. In dominated |executiontime 1000 |
asynchronous parallel computers (NOW, Grid) there a msl oo -
necessary to reduce (optimize) mainly number oérint so0 g
process communications IPC (communication load) for o0 5222222;1
example through using of alternative existing i O 00000001
HY 2000
decomposition model. U ™ soaoooor
¢ W51 WS3 WS4 WS5
5. Chosen Illustration Results Bo0oo0t 5 | 3 2 |
0000001 " 19 17 12
Oo.0000001 755 173 153 112
Epsilon = 0.00001 Ooooooooot | 7401 | 4715 | 1568 | 1108
M0 000000001 | 73855 17186 15816 11075
100%-
800/0 Computing nodes
o
Execution 60%
parts Figure 24. Computation latency for various accuracy (epsild02 - 10).
[ 40%;
20% EE":“N‘;“‘;I“O’; From Fig. 25 we can see that increased input
el K loa . . . . .
0% st | ws3 | wsa | wss O Initialisation computation loads could result in dominating inflae of
[ocompuation| 7 | 2 | 2 | 1 computation time. This is caused by low increased
[@Networkload| 8 | 6 | 3 | 3 communication load, which remains nearly constant.
|I:I Initialisation 9 0 0 0
Network nodes Epsilon = 0.000000001
Figure 23. Computation and communication latencies for epsildr®. 100%1
80%
We illustrate some of chosen performed tested t®sul Execution 0o |
For experimental testing we have used workstatiohs p[?/s]s 20%1
NOW parallel computer as follows 20% | O Computation
« WS 1-Pentium IV (f= 2,26 G Hz) 0% ;I“‘?F‘;V?rkfoad
. t i
« WS 2 - Pentium IV Xeon (2 proc., f= 2,2 G Hz) WSL | WS3 | WS4 | WS5 nialsation
* WS 3 - Intel Core 2 Duo T 7400 (2 cores, f=2,16 |8 Corputation | 73836 | 17850 | 15610 | 11066
GHz) [ENeworkioad | 10 | 5 [ 4 | 3
O Initialisation 9 0 0 0
* WS 4 - Intel Core 2 Quad (4 cores, 2.5 GHz) l Notork oo
« WS 5 - Intel Sandy Bridge i5 2500S (4 cores, 1=2,

GHz). _ _ . I
Figure 25. Dominancy of computation latency for epsilon =10
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Based on these results we know that dominate indlee
to the whole complexity of analyzed parallel alfom has
computation latency T(s, §h, in comparison to
communication latency T(s, #h» TO map mentioned
assumption to the relation for asymptotic isoedfiay w(s)
means that

WS =Max TS Plomy TS Prom< TS Poomd =MaX TS Pleom

alleviate them. Analytical methods (order analygisguing
theory systems, Petri-nets), simulation and expemial
measurements have been successfully used for
evaluation of parallel computers and parallel atpoms
too.

On the given illustrative examples of chosen patall
algorithms (numerical integration, matrix multigiton)

Such parallel algorithms are very effective alsausihg we have b_gen demonstrateq great |r_1fluence .Of syiheqf
dominant parallel computers with distributed memor)éjecompo.Sltlon model t(? thel_r pote_ntlal effeptwemeths
(NOW, Grid). is very important r_nalnly in using _dom|r_1ant parallel

computers (NOW, Grid) where the dominant influensed

to have communication complexity of parallel al¢joms.
) N Therefore according the latest trends in paralbehguting

The comparison on analyzed decomposition models f@yzsed on developing of mixed parallel algorithnsated
parallel multiplication in part 4.1.2.1. for var®@aumber of memory, distributed memory) there are importanirogt
computing nodes of parallel computer illustrateg. 6.  decisions in developing PA which parts would beceted
The first chosen decomposition model (decomposifipn o P computing nodes and which on NOW modules.
goes straightforward to the calculation of the wlial v/ the extended form of complex isoefficiency ceptwe
elements of the result matrix C through multipieatof  pave illustrated its concrete using to predicate
the corresponding matrix elements A and B. The 8®cO performance in applied matrix parallel algorithnigo
decomposition model (decomposition 2) for the gettihe  gerive complex isoefficiency function in analyticedy it is
final elements of the matrix C besides multiplioatiof the necessary to derive al typical used criterion for
corresponded matrix elements A and B demand thgsrformance evaluation of parallel algorithms ichg
additional addition of the particular results, whicauses their overhead function h(s, p). Based on thesaiosis we
the additional time complexity in comparison to st e able to derive complex issoefficiency functas real
used method. This _additional time comple_xity de_@e”dcriterion to evaluate and predict performance ofajel
strong on the magnitude of the input matrixes. @is t algorithms also for theoretical (not existed) peatal
example of matrix multiplication we can see potnti computers. So in this way we can say that this @ssc
crucial influence of decomposition model to comiiexf  jncludes complex performance evaluation  including
parallel algorithms. performance prediction.

the

5.2. Parallel Multiplication

th
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