

American Journal of Networks and Communications
2014; 3(5-1): 70-84
Published online July 30, 2014 (http://www.sciencepublishinggroup.com/j/ajnc)
doi: 10.11648/j.ajnc.s.2014030501.16
ISSN: 2326-893X (Print); ISSN: 2326-8964 (Online)

Decomposition models of parallel algorithms
Michal Hanuliak, Juraj Hanuliak

Dubnica Technical Institute, Sladkovicova 533/20, Dubnica nad Vahom, 018 41, Slovakia

Email address:
michal.hanuliak@gmail.com (M. Hanuliak)

To cite this article:
Michal Hanuliak, Juraj Hanuliak. Decomposition Models of Parallel Algorithms. American Journal of Networks and Communications.
Special Issue: Parallel Computer and Parallel Algorithms. Vol. 3, No. 5-1, 2014, pp. 70-84. doi: 10.11648/j.ajnc.s.2014030501.16

Abstract: The article is devoted to the important role of decomposition strategy in parallel computing (parallel computers,
parallel algorithms). The influence of decomposition model to performance in parallel computing we have illustrated on the
chosen illustrative examples and that are parallel algorithms (PA) for numerical integration and matrix multiplication. On the
basis of the done analysis of the used parallel computers in the world these are divided to the two basic groups which are from
the programmer-developer point of view very different. They are also introduced the typical principal structures for both
these groups of parallel computers and also their models. The paper then in an illustrative way describes the development of
concrete parallel algorithm for matrix multiplication on various parallel systems. For each individual practical
implementation of matrix multiplication there is introduced the derivation of its calculation complexity. The described
individual ways of developing parallel matrix multiplication and their implementations are compared, analyzed and discussed
from sight of programmer-developer and user in order to show the very important role of decomposition strategies mainly at
the class of asynchronous parallel computers.

Keywords: Parallel Computer, Parallel Algorithms, Performance, Decomposition Model, Numerical Integration,
Matrix Multiplication

1. Parallel Computing
Performance of actually computers (sequential, parallel)

depends from a degree of embedded parallel principles on
various levels of technical (hardware) and program support
means (software). At the level of intern architecture of
basic module CPU (Central processor unit) of PC they are
implementations of scalar pipeline execution or multiple
pipeline (superscalar, super pipeline) execution and
capacity extension of cashes and their redundant using at
various levels and that in a form of shared and local cashes
(L1, L2, L3). On the level of motherboard there is a
multiple using of cores and processors in building
multicore or multiprocessors system as SMP (symmetrical
multiprocessor system) as powerful computation node,
where such computation node is SMP parallel computer too
[1]. On the level of individual computers the dominant
trend is to use multiple number of high performed
workstations based on single personal computers (PC) or
SMP, which are connected in the network of workstations
(NOW) or in a high integrated way named as Grid systems
[36]. A member of NOW or Grid could be any classic
supercomputers [34].

1.1. Parallel Computers

From the point of system programmer we can divide all
to this time realized parallel computers. The basic
classification is from the point of realized memory as
follows

• parallel computers with shared memory
(multiprocessors, multicores)

• parallel computers with distributed memory (mainly
based on computer networks)

• others.

1.1.1. Parallel Computers with Shared Memory
Basic common characteristics are as following [8, 13]
• shared memory
• using shared memory for communication
• supported developing standard

� OpenMP
� OpenMP Threads
� Java

• typical architectures [37]
� symmetrical multiprocessors (SMP)
� supercomputers (massive SMP)

 American Journal of Networks and Communications 2014; 3(5-1): 70-84 71

� Grid
� meta computers
� others.

1.1.2. Parallel Computers with Distributed Memory
Basic common characteristics are as following [22, 33]
• no shared memory (distributed memory)
• computing node could have some form of local

memory where this memory in use only by connected
computing node

• cooperation and control of parallel processes only
using asynchronous message communication

• supported developing standard
� MPI (Message passing interface)
� PVM (Parallel virtual machine)
� Java

• typical architectures
� network of workstations (NOW)
� Grid
� meta computers
� others.

2. Parallel Algorithms

Description
(diagram)

Sequential
algorithm

Way of
computing

Problem

Parallel

Analyst

Abstract formalization

Practice

Aplication
informatics

Accuracy
of solving

Sequential

No

Complex
algorithm

End

No

Parallel
algorithm

Accuracy
of solving

No

Modification
of algorithm

Modification
of algorithm

Yes

Expert to
problem

Figure 1. Deriving process of parallel algorithm.

Users and programmers from a beginning of applied
computer using request more powerful computers and more
efficient applied algorithms. For a long time to effective
technologies belong implementations of parallel principles
so into computers as applied parallel algorithms. In this
way term parallel programming could relate to every
program, which contains more than one parallel process [21,
23]. This process represents single independent sequential
part of program. Basic attribute of parallel algorithms is to

achieve faster solution in comparison to quickest sequential
solution. The role of programmer is for the given parallel
computer and for the given application task to develop
parallel algorithm (PA). Fig. 1 demonstrates how to derive
parallel algorithm from existed sequential algorithms.

In last year’s there is increased interest of scientific
research into effective parallel algorithms. These trends to
parallel algorithms also support actual trends in
programming technologies to the development of modular
applied algorithms based on object oriented programming
(OOP). OOP algorithms are in their merits result of abstract
thinking toward parallel solutions for existed complex
problems.

2.1. General Classification of Parallel Algorithms

In general we supposed that potential effective parallel
algorithms according defined algorithm classification (Fig.
2) should be in the group P as classified polynomial
algorithms.

NP

NPC

NC

P

PC

Figure 2. Parallel algorithm classification.

Other used acronyms at Fig. 2 are as following [12]
• NP – general non polynomial group of all algorithms
• NC (Nick´s group). Group of effective polynomial

algorithms
• PC – polynomial complete. Group of polynomial

algorithms with high complexity
• NPC – non polynomial complete. This group consists

of non-polynomial algorithms with their high solving
complexity. The existence of any NPC algorithm in an
effective way makes it available to solve effective also
other NPC algorithms.

2.2. Parallel Processes

To derive PA we have to create conditions for potential
parallel activities through dividing the input problem
algorithm to its independent parts (decomposition model)
according Fig. 3. These individual parts could be as
following

• heavy parallel processes
• light parallel processes named as threads.

72 Michal Hanuliak and Juraj Hanuliak: Decomposition Models of Parallel Algorithms

Complex p
()

roblem
sequential algorithm

Decomposition

Parallel
proces s n

Parallel
proces 2s

Parallel
proces 1s

. . .

Figure 3. Illustration of decomposition process.

We will define standard process as developed sequential
algorithm or its independent part. In detail standard process
does not represent only some part of compiled program
because to its characterization belongs also register status
of processor. Illustration of such standard process is at Fig.
4.

Figure 4. Illustration of standard process.

Every standard process has therefore own system stack,
which contains process local data and in case of process
interruption also actual register status of processor. It is
obvious that we may have contemporary multiple numbers
of standard processes, which used together some program
part but their processes contexts (process local data) are
different. Needed tools to manage processes (initialization,
abort, synchronization, communication etc.) are within
cores of multitask operation systems in form of services.
Illustration of standard multi processes state is at Fig. 5.

Figure 5. Parallel algorithm based on multiple parallel processes.

But concept of generating standard processes with
individual address spaces is very time consuming. For
example in operation system UNIX a new process is
generating with operation fork(), which makes system call
in order to create child process with new own address space.
But in detail it means memory allocation, copying of data
segment and descriptor of origin (parent) process and
realization of child process stack. Therefore this concept we
named as heavy-weighted process. It is obvious that
heavy-weighted approach does not support effectiveness of
applied parallel processing and needed scalability of
parallel algorithms. In relation to it were necessary to
develop another less time consuming concept of process
generation named as light-weighted process. This lighten
conception of generating new processes under another
name as threads were implemented at various operation
systems, supported threads libraries and parallel developing
environments. Basic difference between standard process
and thread is that we can within standard process generate
additional new threads, which are together using the same
address space including descriptor declaration of origin
standard process.

2.3. Parallel Algorithms Classification

In principal parallel algorithms are dividing into two
following basic classes

• parallel algorithms with shared memory (PAsm). In this
case parallel processes can communicate through
shared variables using existed shared memory. For
control of parallel processes are used typical
synchronization tools as busy waiting, semaphores
and monitors to guarantee exclusive using of shared
resources only by single parallel process [10, 28]

• parallel algorithms with distributed memory (PAdm).
Distributed parallel algorithms have to
synchronization and cooperation of parallel processes
only network communication. The term distributed
(asynchronous) parallel algorithms defines, that
individual parallel processes are performed on
independent computing nodes of used parallel
computer with distributed memory [16, 31]

• mixed PA. Very perspective parallel algorithms which
are to use advantages of dominant parallel computers
based on NOW modules as following
� using of parallel processes with shared memory

in individual computing nodes of parallel
computer

� using of parallel processes based on distributed
memory in parallel computers with distributed
memory.

2.3.1. Parallel Algorithms with Shared Memory
Typical activity graph of parallel algorithms with shared

memory PAsm is at Fig. 6. To control decomposed parallel
processes there is necessary synchronization mechanism as
follows

• semaphors

 American Journal of Networks and Communications 2014; 3(5-1): 70-84 73

• monitors
• busy waiting
• pathexpession
• critical region (CR)

� conditional critical region (CCR).

S nchr.y

Par. process Par. processPar. process Par. process

S nchr.y

Par. process Par. processPar. process Par. process

Figure 6. Illustration of parallel activities of PAsm.

2.3.2. Parallel Algorithms with Distributed Memory
Parallel algorithms with distributed memory PAdm are

parallel processes which are performing on asynchronous
computing nodes of given parallel computer. Therefore for
all needed cooperation of parallel processes we have
available only inter process communication IPC. The
principal illustration of parallel processes for PAdm is at Fig.
7.

Par.
process

. . .Par.
process

Par.
process

Par.
process

Figure 7. Illustration of parallel activities of PAdm.

3. The Role of Performance in Parallel
Computing

Quantitative evaluation and modeling of hardware and
software components of parallel systems are critical for the
delivery of high performance. Performance studies apply to
initial design phases as well as to procurement, tuning and
capacity planning analysis. As performance cannot be
expressed by quantities independent of the system
workload, the quantitative characterization of resource
demands of application and of their behavior is an
important part of any performance evaluation study [6, 27].
Among the goals of parallel systems performance analysis
are to assess the performance of a system or a system
component or an application, to investigate the match
between requirements and system architecture
characteristics, to identify the features that have a
significant impact on the application execution time, to
predict the performance of a particular application on a
given parallel system, to evaluate different structures of

parallel applications. In order to extend the applicability of
analytical techniques to the parallel processing domain,
various enhancements have been introduced to model
phenomena such as simultaneous resource possession, fork
and join mechanism, blocking and synchronization.
Modeling techniques allow to model contention both at
hardware and software levels by combining approximate
solutions and analytical methods. However, the complexity
of parallel systems and algorithms limit the applicability of
these techniques. Therefore, in spite of its computation and
time requirements, simulation is extensively used as it
imposes no constraints on modeling.

3.1. The Role of Performance in Parallel Computing

To the performance evaluation in parallel computing we
briefly review the techniques most commonly adopted for
the evaluation in parallel computing as follows

• analytical
� application of queuing theory results [11, 20]
� order (asymptotic) analysis [3, 15]
� Petri nets [7]

• simulation methods [24]
• experimental

� benchmarks [32]
� direct measuring [9, 29].

Analytical method is a very well developed set of
techniques which can provide exact solutions very quickly,
but only for a very restricted class of models. For more
general models it is often possible to obtain approximate
results significantly more quickly than when using
simulation, although the accuracy of these results may be
difficult to determine.

Simulation is the most general and versatile means of
modeling systems for performance estimation. It has many
uses, but its results are usually only approximations to the
exact answer and the price of increased accuracy is much
longer execution times. They are still only applicable to a
restricted class of models (though not as restricted as
analytic approaches.) Many approaches increase rapidly
their memory and time requirements as the size of the
model increases.

Evaluating system performance via experimental
measurements is a very useful alternative for computer
systems. Measurements can be gathered on existing
systems by means of benchmark applications that aim at
stressing specific aspects of computers systems. Even
though benchmarks can be used in all types of performance
studies, their main field of application is competitive
procurement and performance assessment of existing
systems and algorithms.

3.2. Performance Evaluation Metrics of Decomposition
Models

To evaluating decomposition models in parallel
algorithms we will be used defined complex basic concepts
in [15] as follows

74 Michal Hanuliak and Juraj Hanuliak: Decomposition Models of Parallel Algorithms

• parallel execution time T(s, p) as the execution time
performed by p computing nodes (processors, cores,
workstations) of given parallel computer and s defines
input size (load) of given problem

• speed up factor S(s, p) as

),(
)1 ,(

),(
psT

sT
psS =

• efficiency E(s, p) as

),(

)1 ,(),(
),(

psTp

sT

p

psS
psE ==

• the isoefficiency concept

).,(
1

)(psh
E

E
sw

−
=

4. Developing Process of Parallel
Algorithms

To exploit the parallel processing capability the
application program must be parallelized. The effective
way how to do it for a particular application problem
(decomposition model) belongs to the most important step
in developing an effective parallel algorithm [14, 18]. The
development of the parallel network algorithm according
Fig. 8 includes the developing activities as follow

• decomposition - the division of the application into a
set of parallel processes

• mapping - the way how processes and data are
distributed among the nodes

• inter process communication - the way of
corresponding and synchronization among individual
processes

• tuning - alternation of the working application to
improve performance (performance optimization).

Figure 8. Development steps in parallel algorithms.

To do these steps there is necessary to understand the
concrete application problem, the data domain, the used
algorithm and the flow of control in given application.
When designing a parallel program the description of the
high level algorithm must include, in addition to design a
sequential program, the method you intend to use to break
the application into processes or threads (decomposition

model) and distribute data to different nodes (mapping).
The chosen decomposition model drives the rest of
program development.

4.1. Decomposition Models

Developing of sequential algorithms implicitly supposed
existence of algorithm for given problem. Only later in
stage of practical programming they are defined and used
suitable data structures. In contrast to this classic
developing method suggestion of parallel algorithm should
include at beginning stage potential decomposition strategy
including distribution of input data to perform decomposed
parallel processes. Selection of suitable decomposition
strategy has cardinal influence to further development of
parallel algorithm.

Decomposition strategy defines potential dividing of
given complex problem to their independent parts (Parallel
processes) in such a way, that they could be performed in a
parallel way through computing nodes of given parallel
computer. Existence of some decomposition method is
critical assumption to possible parallel algorithm. Potential
decomposition degree of given complex problem is crucial
for effectivity of parallel algorithm [4, 17]. To this time
developed parallel algorithms and corresponding
decomposition strategies were mainly related to available
synchronous parallel computers based on classic massive
parallel computers (supercomputers and their innovations).
Developing parallel algorithms for actual dominant parallel
computers NOW and Grid require at least modified
decomposition strategies incorporating following priorities

• emphasis to functional parallelism of complex
problems

• minimization of inter process communication IPC.
The most important step is to choose the best

decomposition model for given complex problem. To do
this it is necessary to understand concrete application
problem, data domain, used algorithm and flow of control
in given complex problem. When designing a parallel
program the description of the high-level algorithm must
include, in addition to design a sequential program, the
method you intend to use to break the application into
processes and distribute data to different computing nodes.
The chosen decomposition models drive the rest of PA
development. This is true is in case of developing new
application as in porting serial code. The decomposition
method tells us how to structure the code and data and
defines the communication topology [25, 26].

Problem parallelization is very creative process, which
creates potential degree of parallelism. This is a way how to
divide complex problems to nondependent parts (Parallel
processes) in such a way, to make possible to perform PA in
parallel. The way of decomposition depends strongly from
used task algorithm and from data structures. It has
principal influences to performance and its communication
consequences. To this time developed decomposition
models and strategies seems to be close only to the in the
world used supercomputers and their innovated types

 American Journal of Networks and Communications 2014; 3(5-1): 70-84 75

(classic parallel computers). On other way the realization of
PA for in this time dominate parallel computers (SMP,
NOW, Grid) demand modified decomposition models and
strategies with respect to minimization of interposes
communication intensity (NOW, Grid) and deriving waiting
latency T(s, p)wait at using shared resources or at
insufficient their capacities

• naturally parallel decomposition
• domain decomposition
• control decomposition

� manager/workers
� functional

• divide-and-conquer strategy for
• decomposition of big problems
• object oriented programming (OOP).

4.1.1. Natural Parallel Decomposition
Natural parallel decomposition allows simple creating of

parallel processes whereby to their cooperation normally
there is necessary low amount of inter process
communication IPC. Also for parallel computation there is
normally not important sequence of individual solutions. As
a consequence there are not necessary any synchronization
of performed parallel processes during parallel computation.
Based on these attributes natural parallel algorithms allows
to achieve practical ideal p - multiple speed - up using p -
computation nodes of parallel computer (linear speed – up),
and that with minimal additional efforts at developing
parallel algorithms. Typical examples are numerical
integration parallel algorithms. Based on this example we
will illustrate in detail the role of decomposition models in
developing steps of parallel algorithms.

4.1.1.1. Numerical Integration
Numerical integration algorithms are typical examples

with implicitly latent decomposition strategy in which the
parallelism is the integral part of own algorithm. Standard
way of typical numerical integration algorithm (the
computation of π number) assumes that we divide the
interval <0, 1> to n identical subintervals whereby in each
subinterval we approximate its part of curve with rectangle.
Function values in middle of each subinterval determine
height of the rectangle. Number of selected subintervals
determines computation accuracy. The computed value of π
will be given as sum of surface area of defined individual
approximated rectangles. Illustration of numerical
integration applied to π computation is at Fig. 9. Concretely
for the calculation of the value π the following standard
formula is used

∫ +
=

1

0
21

4
dx

x
π

, where h = 1 / n is the width of the selected splitting
interval, xi = h (i - 0.5) are mid-ranges and n is the number
of selected intervals (accuracy). For computation of π we
can use an alternative following interpolating polynomial
[93]

∑∫∫
=

≅
+

==
n

i

ixfdx
x

dxxf
1

1

0
2

1

0

)(
1

4
)(π

or next possible relation

()
















 ++
≅ ∑

≤≤ N

N

iNi

1

5,0
1

4

0
2

π

Figure 9. Principle of numerical integration.

4.1.1.2. Decomposition Model
For the parallel way of numerical integration

computation we are used the property of latent
decomposition strategy in all natural parallel algorithms.
We divide the whole needed computation to its individual
parallel processes according to the Fig. 10 where are for
simplicity illustrated four parallel processes. For the
parallel computation of number π we then use these created
parallel processes.

0

0,5

1

1,5

2

2,5

3

3,5

4

f(x)

x

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 10. Decomposition model of numerical integration problems.

enter the desired number of subintervals n
compute the width w of each subinterval
for each subinterval
 find its centre x
 compute f(x) and the sum
end of cycle
multiply the sum with width to obtain π
return π

76 Michal Hanuliak and Juraj Hanuliak: Decomposition Models of Parallel Algorithms

The prospective parallel implementations on dominant
parallel computers (SMP, NOW, Grid) allow analysis of
communication load depending on input computation load
because input load is proportional to changes in load
communication.

4.1.1.3. Mapping of Parallel Processes
The individual independent processes we distribute

forcomputation in such way that every created parallel
process will be executed on different computing node of
parallel computer (mapping). After the parallel computation
in individual nodes of a network of workstations was
performed we need only to sum the partial results to get
final result. To manage this task we have to choose one of
the computing nodes to handle it. As well at the
computation begin the chosen node (let it be node 0) must
know the value of n (number of the strips in every process)
and then selected node 0 has to let it know to all other
computing nodes. Example of the parallel computation
algorithm (manager process) is then as following

if my node is 0

read the number n of strips desired and send it to all
other nodes

else
receive n from node 0

end if
for each strip assigned to this node

compute the height of rectangle (at midpoint) and sum
result

end for
if my node is not 0

send sum of result to node 0
else

receive results from all nodes and sum
multiple the sum by the width of the strips to get π

return

Sending values of n / p could be done in case of parallel
algorithm with distributed memory PAdm using MPI API
explained collective communication command Broadcast in
case of the same size of parallel processes or MPI
command Scatter in case of variable size of parallel
processes.

We illustrate on this relative simple example parallel
algorithm in parallel language FORTRAN for parallel
computer with distributed memory. The algorithm extends
and modifies the starting serial algorithm for the specific
parallel implementation. To characterize shortly this
parallel algorithm, we note that number of computing
nodes of a parallel computer and identification of each
computing node performed procedures numnodes()
(number of computing nodes), mynode() (my computing
node) and my pid() (number of my parallel process). These
procedures allow the activation of any number of
computing nodes of a parallel system. Then if we allow
designated node, for example computing node 0, perform

management functions and certain partial computations,
while other nodes perform a substantial part of the rest of
computations for assigned subintervals, and communicated
obtained partial amounts specified computing node 0.
Procedures silence and crecv serve to ensure the required
collective data communications and the final summation of
achieved partial results.

f(x) = 4.0 /(1.0 + x*x)

integer n, i, p, me, mpid
real w, x, sum, pi
p = numnodes () return number of nodes
me = mynode () return number of my node
mpid = mypid () return id of my process
msglen = 4 estimate message length
allnds = -1 message name for all nodes
msgtp0 = 0 name for message 0
msgtp1 = 1 name for message 1
if (me .eg. 0) then if i am node 0
 read *, n read number of subintervals n

 callcsend (msgtp0,n,msglen,allnds,mpid) and send it to
all other nodes

else if I am any other node
 callcrecv (msgtp0, n, msglen) receive value n
end if
w = 1.0/n
sum = 0.0
do 10 i = me+1, n dividing subintervals among nodes
 x =w*(i-0.5)
 sum = sum + f(x) 10 continue
 if (me .ne. 0) then if I am not node 0
 callcsend (msgtp1, sum, 4, 0, mpid) send partial

result to node 0
 else if I am node 0
 do 20 i = 1, p-1 for every other used node
 callcrecv (msgtp1, temp, 4) receive partial result

to temp
sum = sum + temp and add it to sum

 20 continue
 pi = w*sum
compute final result
print *,pi and print it

endif
end

The disadvantage is that the implementation of the
central necessary routing communications through the
designated node 0 (manager node), and as a result there
may be a bottleneck which could negatively affect the
efficiency of the parallel algorithm implementation.

4.1.1.4. Performance Optimization
In the above example of numerical integration this

requirement leads to reduce the bottleneck, which is
inter-process communication (IPC) latency. This latency
should be minimized, since it could be used more effective
in useful computation of parallel algorithm. It is therefore

 American Journal of Networks and Communications 2014; 3(5-1): 70-84 77

very important to minimize the number of communicating
data messages proportionally to number of computational
operations, thereby minimizing also overall execution time
of a parallel algorithm. In computation of number π
demanded centralization of needed communication through
manager computing node 0 may come to computation
bottleneck for two following reasons

• manager computing node 0 node could simultaneously
receive data message only from one other computation
node

• summary of the partial results at manager node 0 is
done sequentially, in a sequential way, which is just a
prerequisite to come to bottleneck.

The outgoing point in mentioned both cases is to
consider using of collective communication commands of
standardized development environments as MPI API, and
that collective command Reduce or Gather. For some
parallel computers are available alternative global
summarization operation gssum(), just to eliminate such
bottlenecks. This operation in iterative manner always sums
partial results of two computing nodes, which both
computing nodes are exchanged. Each partial sum, which
receives one of computing node pair, is added to the
obtained sum in a given node, and this result is transmitted
to next computing node of defined communication chain.
In this way there is gradually obtained the total
accumulated amount of the computing nodes whereby
manager computing node 0 can perform the last sum and
print the final result. This procedure of global
summarization can be also programmed, but the sequence
of implemented appropriate procedures simplifies
implementation of parallel algorithms and contributes to its
effectiveness too.

In other applied tasks using a larger direct inter process
communication implementation of communication used,
for example form of asynchronous communication using
direct support of multitasking in a given node, thereby
achieving parallelism implementation of communication
activities other node. Of course, an example of reducing the
ratio of communication computing activity is not the only
task in optimizing the performance of parallel algorithms.
Available methods for optimizing performance are virtually
the same colorful as diverse mere parallel application tasks.
Inspired examples and procedures will therefore be
included in the illustrative application examples in the
following sections. Commonly used method and procedure
for the decomposition of the application tasks indirectly
implies the possibilities of optimizing its performance, i.e.,
optimization can also cause re-evaluation of strategies used
decomposition.

Then if we allow designated node, for example node 0,
perform management functions and certain partial
calculations while other nodes perform a substantial part of
the calculations for assigned subintervals, and
communicate obtained partial amounts to specified node 0.
Procedures silence and crecv serve to ensure the required
communication.

It is also important to note that for mentioned module is
required direct communication of every computing node
with other computing nodes as assumption of parallel
communication between multiple pairs of computing nodes.
In this approach the final sum can be obtained after
performing the second, third or even fourth cycle of the
communication chain. In fact we need only log2 p, where p
is the number of computing nodes of parallel computer,
cycles of communication chains compared to n data
messages at initial implementation. Used parallelism of
data message exchange will therefore increase efficiency of
parallel algorithms. For the implementation of an improved
approach for data messages communications it’s necessary
to replace following part

if (me .ne. 0) then

callcsend (msgtp1, sum, msglen, 0, mpid)
else

do 20 i = 1, p-1
 callcrecv (msgtp1, temp, msglen)
 sum = sum + temp
20 continue
pi = w*sum
print *, pi

endif
end
with next part

callgssum (sum, 1, temp)
if (me .eg. 0) then
 pi = w*sum
 print *, pi
endif

In other applied parallel algorithms there is possible at

using a larger direct inter process communication to
perform communication for example in form of
asynchronous communication using multitasking support in
a given node, thereby it is achieved parallelism of
performing communication with other computing node
activity. Of course described example of reducing ratio of
communication/ computing activity is not the only task in
optimizing the performance of parallel algorithms.
Available methods for performance optimizing are practical
so various as are diverse parallel application problems.

4.1.2. Domain Decomposition
Typical characteristic of many complex problems is

some regularity in sequential algorithms or in their data
structures (computational or data modularity). Existence of
such computational or data modules then represent domain
of computation or data. Decomposition strategy based on
such domain is substantial part of these complex problems
to generate parallel processes. Mostly such domain is
characterized by massive, discrete or static data structure.
Typical examples of computational domains are matrix
parallel multiplication and matrix parallel algorithms
representing for example with system of linear equations.

78 Michal Hanuliak and Juraj Hanuliak: Decomposition Models of Parallel Algorithms

These both matrix parallel algorithms we have chosen to
represent typical examples of matrix data decomposition
models.

4.1.2.1. Decomposition Methods for Matrix Multiplication
We will illustrate the role of optimal selection of

decomposition model on matrix multiplication. The
principle of matrix multiplication we illustrate for
simplicity for the matrixes A, B with numbers of rows and
columns k=2. The result matrix C = A x B is

The way of sequential calculation is following

Step 1:
compute all the values of the result matrix C for the
first row of matrix A and for all columns of the matrix B

Step 2 :
take the next row of matrix A and repeat step 1.
In this procedure we can see the potential possibility of

parallel computation that is the repetition of activities in the
step 1 always with another row of matrix A. Let consider
the calculation example of matrix multiplication on parallel
system. The basic idea of the possible decomposition
procedure illustrates Fig. 11.

Figure 11. Standard decomposition of matrix multiplication.

The procedure is as following
Step 1:
give to the i-th node horizontal column of the matrix A
with their names A´i and i-th vertical column of the
matrix B named as B´i

 Step 2:
compute all values of the result matrix C for A´i and B í
and named them as C´ii

 Step 3:
give to i-th computing node its value B´i to the node i-1
and get B´i+1 value from computing node i+1.
Repeat the steps 2 and 3 to the time till i-th node does

not computed C´i,i-1 values with Bí-1 columns and row A´i.
Then i-th node computed i-th row of the matrix C (Fig. 12.)
for the matrix B with the number k-columns. The
advantage of such chosen decomposition is the minimal
consume of memory cells. Every node has only three
values (rows and columns) from every matrix.

Figure 12. Illustration of the gradually calculation of matrix C.

This method is also faster as second possible way of
decomposition according Fig. 13.

Figure 13. Matrix decomposition model with columns of first matrix.

The procedure is following
Step 1:

give to the i-th node vertical column of the matrix A (A´ i)
and the horizontal row of the matrix B (B´i).

Step 2:
perform the ordinary matrix computation A´i and B í.
The result is the matrix C´i of type n x n. Every element
from C í is the particular element of the total sum which
corresponds to the result matrix C.

Step 3:
call the function of parallel addition GSSUM for the
creating of the result matrix C through corresponded
elements C´i. This added function causes increasing of
the calculation time, which strong depends on the
magnitude of the input matrixes (Fig. 14.).

Figure 14. Illustration of the gradually calculation of the elements C´i,j.

Let k be the magnitude of the rows or columns A, B and
U defines the total number of nodes. Then

.

.

.









=








⋅+⋅⋅+⋅
⋅+⋅⋅+⋅

=







×








2221

1211

2222122121221121

2212121121121111

2221

1211

2221

1211

cc

cc

babababa

babababa

bb

bb

aa

aa

C´
i , 1
 ... C´ C´ C´ C´ C´ C´

i , i - 2 i , i - 1 i , i i , i + 1 i , i + 2 i , k
...

A´
i C´× ⇒B´

i

=

C(1,1) C(1,2)

C(2,1) ad
di

tio
n C´ (1,1) C´ (1,2)

C´ (2,1)

3 3

3
C´ (1,1) C´ (1,2)

C´ (2,1)

2 2

1
C´ (1,1) 1 C´ (1,2)

C´ (2,1)

1

1

()
() kkkkkk

kk
bababaC

bababaC

2,12,12,12,11,11,12

,1,12,12,11,11,11
 . . . 1,1

 . . . 1,1
⋅++⋅+⋅=′

⋅++⋅+⋅=′
++++

 American Journal of Networks and Communications 2014; 3(5-1): 70-84 79

and the finally element of matrix C

4.1.2.2. Decomposition Matrix Models
Any matrix is a regular data structure (domain) for which

we can create parallel processes dividing matrix into strips
(rows, columns). In generation process of matrix parallel
processes there is necessary to tray allocate domain parts in
such a way that every computing node has roughly the
same number of strips (rows, columns). If the total number
of strips is divisible by the number of processors without
rest then all computing node will have the same number of
decomposed parts (load balance). Otherwise some
computing node has some strips extra.

Figure 15. Matching of data blocks.

Figure 16. Assigns columns.

Matrix allocation methods of decomposed strips (rows,
columns) for solving system of linear equations by Gauss

eliminated method (GEM) are as follows [5]
• allocation of block strips
• gradually allocation of strips.
In the first allocation method strips are divided to set of

strips and to every computing node is assigned one block.
Illustration of these allocation methods is at Fig. 15. At
another method with gradual allocation of columns they are
allocated columns to individual computing nodes like the
card are gradually passing out at games to game
participants. Illustration of gradual assignment of columns
is at Fig. 16.

4.1.3. Functional Decomposition
Functional decomposition strategies concentrate their

attention to find parallelism in distribution of sequential
computation stream in order to create independent parallel
processes. In comparison to domain decomposition we are
concerned to create potential alternative control streams of
concrete complex problem. In this way we are streaming in
functional decomposition to create so much as possible of
parallel threads. Illustration of functional decomposition is
at Fig. 17.

Figure 17. Illustration of functional decomposition.

The widely distributed functional strategies are as
following

• controlled decomposition
• manager / workers (server / clients).
Typical parallel algorithms are complex optimization

problems, which are connected with consecutive searching
of massive data structures.

4.1.3.1. Control Decomposition
Control decomposition as an alternative of functional

decomposition concentrates to given complex problems as
sequence of individual activities (operations, computing
steps, control activities etc.), from which we are able to
derive multiple control processes. For example we can
consider searching tree, which respond to game moves
where branch factor is changed from node to node. Any
static allocation of tree is not possible or activates

() MkMkkUkUU babaC ,1,11)1(,11)1(,1 . . . 1,1 ⋅++⋅=′ +−+−

() ()∑
=

′=
U

i
iCC

1

1,11,1

Number of columns
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2
Computing nodes

Number of columns
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2
Computing nodes

80 Michal Hanuliak and Juraj Hanuliak: Decomposition Models of Parallel Algorithms

unbalanced load.
So in this way this decomposition method supposed

irregular structure controlled decomposition which is soft
connected with complex problems in artificial intelligence
and similar non numerical applications. Secondary it’s very
natural to look at any complex problem as collection of
modules, which represent needed functional parts of given
algorithm.

4.1.3.2. Decomposition Strategy Manager / Workers
Another alternative of functional decomposition is the

strategy manager / workers. In this case there is used one
parallel process as control one (manager). Manager process
then sequentially and continuously generates needed
parallel processes (workers) to their performing in
controlled computing nodes. The illustration of parallel
structure of decomposition model manager / workers is at
Fig. 18. One of the possible applied solutions illustrates Fig.
19.

Main
par. process

Worker WorkerWorker Worker

Main
par. process

Worker WorkerWorker Worker

Figure 18. Manager / worker parallel structure.

Manager process controls computation sequence in
relation to sequential finishing allocated parallel processes
from individual workers. This decomposition strategy is
suitable mainly in such cases in which given problem does
not content static data or known fixed number of
computations. In such cases there is necessary to
concentrate to control aspects of individual parts of
complex problems. From performed analysis then comes
out needed communication sequence to achieve demanded
time sequences of created parallel processes. Dividing
degree of given complex problem coincide with number of
computing nodes of parallel computer, with parallel
computer architecture and with performance knowledge of
computing nodes. One of important element of previous
steps is allocation algorithm. It is more effective to allocate
parallel process to first free computing node (worker) in
comparison to some defined sequence order of allocation.

Q of
par. processes

ueue Q of
results

ueue

Main parallel
process

Worker Worker Worker

Figure 19. Illustration of manager / workers strategy.

4.1.4. Divide and Conquer Decomposition Model
Divide and conquer strategy decomposed complex

problem into subtasks of the same size but it iteratively
keeps repeating this process to obtain yet smaller parts of
given complex problems. In that sense this decomposition
model iteratively applies the problem partitioning technique
as we can see it at Fig. 20. Divide and conquer is
sometimes called recursive partitioning. Typically complex
problem size is an integer power of 2 and the divide and
conquer strategy halves complex problem into two equal
parts at each iteration step.

Figure 20. Illustration of divide and conquer strategy (n=8).

Every from N / 2 – point DFT we can again divide to
next parts, that is to two N / 4 – point DFT. Applied
decomposition strategy could follows till to exhausting
dividing possibility for given N (one point value). Dividing
factor is named as radix - q, and that for dividing number
higher than two. We have applied decomposition model of
divide-and-conquer strategy for parallel solution of fast
discrete Fourier transform (DFFT) in [15].

4.1.5. Decomposition Models for Complex Problems
To decompose complex problem there is in many cases

necessary to use more than one decomposition strategy.
This is true mainly in hierarchical structure of concrete
complex problem. The hierarchical character of complex
problem means that we are looking to such complex
problem as set of various hierarchical levels whereby it

 American Journal of Networks and Communications 2014; 3(5-1): 70-84 81

would be useful to apply at every existed level another
decomposition model. This approach we are naming as
multilayer decomposition.

To effective using of multilayer decomposition
contributes new generation of common parallel computers
based on implementation of the order more than thousand
computing nodes (processors, cores). Secondly unifying
trends of high performance parallel computing (HPC)
based on massive parallel computers (massive SMP,
supercomputers) and distributed computing (NOW, Grid)
open to programmers new horizons.

To the typical complex problems belong weather
prognosis, fluid flow, structural analysis of substance
building, nanotechnologies, high physics energies, artificial
intelligence, symbolic processing, knowledge economic etc.
Multilayer decomposition model makes it available to
decompose complex problem at first to simpler modules
and then in second phase to apply suitable decomposition
model only to given decomposed part.

4.1.6. Object Oriented Decomposition
Object oriented decomposition is integral part of object

oriented programming (OOP). Actually it presents modern
way of parallel program development. OOP beside
increased demand to abstract thinking of programmer
contents decomposition of complex problem to independent
parallel modules named as objects [35]. In this way object
oriented approach looks at complex problem as collection
of abstract data structures (objects), where integral parts of
objects are also build object functions as other form of
parallel processes. In the same way OOP creates bridge
between sequential computers and modern parallel
computers based on SMP, NOW and Grid. Illustration of
object structure is at Fig. 21.

.

.

.

Obje tc

D ta objea ct

Procedure 1

Procedure 2

Procedure n

Figure 21. Object structure.

4.1.7. Mapping
This step allocates created parallel processes to

computing nodes of parallel computer for their parallel
execution. There is necessary to achieve that every
computing node should perform allocated parallel
processes (one or more) with at least approximate input

loads (load balancing) on real assumption of equal
powerful computing nodes. Fulfillment of this condition
contributes to optimal parallel solution latency.

4.1.8. Inter Process Communication
In general we can say that dominated elements of

parallel algorithms are their sequential parts (Parallel
processes) and analyzed inter process communication (IPC)
among performed parallel processes using high speed
communication networks [2, 37].

4.1.8.1. Inter Process Communication in Shared Memory
Any concrete communication mechanism make use

existence of shared memory which allows every parallel
process to story communicating data at some addressed
memory place and then another parallel process to read
stored data (shared variable). It looks very simple but there
is necessary to guarantee that in the same time can use the
addressed memory place only one parallel process. These
needed control mechanism are named as synchronization
tools. The typical synchronization tools are as following

• busy waiting
• semaphores
• conditional critical regions (CCR)
• monitors
• path expressions.

4.1.8.2. Inter Process Communication in Distributed
Memory

Inter process communication (IPC) for parallel algorithm
with distributed memory (PAdm) is defined within
supporting developing standards as following

• MPI (Message passing interface)
� point to point (PTP) communication commands

o send commands
o receive commands

� collective communication commands
o data distribution commands
o data gathering commands

• PVM (Parallel virtual machine)
• Java (Network communication support)
• other.

NIC NIC

Par.
process i

Par.
process j

Computing
node i

communication channel

Data
 message

Data
message

Computing
node j

Figure 22. Illustration of MPI network communication.

82 Michal Hanuliak and Juraj Hanuliak: Decomposition Models of Parallel Algorithms

To create needed synchronization tools in MPI we have
available only existed network communication of
connected computing nodes. Typical MPI network
communication is at Fig. 22. Based on existed
communication links MPI contains synchronization
command Barrier.

4.1.9. Performance Tuning
After verifying developed parallel algorithm on concrete

parallel system the further step is performance modeling
and optimization (effective PA). This step contents analysis
of previous steps in such a way to minimize whole latency
of parallel computing T(s, p). Performed optimization of
T(s, p) for given parallel algorithm depends mainly from
following factors

• allocation of balanced input load to used computing
nodes of parallel computer (load balancing) [19]

• minimization of accompanying overheads amounts
(parallelization, inter process communication IPC,
control of PA) [30].

To do load balancing we need in case of obvious using of
equally powerful computing nodes of PC results of load
allocation for given developed PA. In dominated
asynchronous parallel computers (NOW, Grid) there are
necessary to reduce (optimize) mainly number of inter
process communications IPC (communication load) for
example through using of alternative existing
decomposition model.

5. Chosen Illustration Results

Figure 23. Computation and communication latencies for epsilon=10-5.

We illustrate some of chosen performed tested results.
For experimental testing we have used workstations of
NOW parallel computer as follows

• WS 1 – Pentium IV (f = 2,26 G Hz)
• WS 2 - Pentium IV Xeon (2 proc., f = 2,2 G Hz)
• WS 3 - Intel Core 2 Duo T 7400 (2 cores, f=2,16

GHz)
• WS 4 - Intel Core 2 Quad (4 cores, 2.5 GHz)
• WS 5 - Intel Sandy Bridge i5 2500S (4 cores, f=2,7

GHz).

5.1. Numerical Integration

We have measured defined performance evaluation
metrics in NOW parallel computer with Ethernet
communication network and previous defined specification
of used workstations. The individual latencies of complex
execution time for accuracy epsilon=10-5 are illustrated at
Fig. 23.

From this figure we can see that for used computation
loads communication latencies (initialization, network load)
are dominant.

From Fig. 24 we can see that with decreasing order of
epsilon (higher computation accuracy) growths needed
computing time in a linear way caused with linear raise of
needed computations.

Figure 24. Computation latency for various accuracy (epsilon =10-5 - 10-9).

From Fig. 25 we can see that increased input
computation loads could result in dominating influence of
computation time. This is caused by low increased
communication load, which remains nearly constant.

Figure 25. Dominancy of computation latency for epsilon = 10-9.

0%

20%

40%

60%

80%

100%

Execution
parts
[%]

Network nodes

Epsilon = 0.00001

Computation
Network load
Initialisation

Computation 7 2 2 1

Network load 8 6 3 3

Initialisation 9 0 0 0

WS1 WS3 WS4 WS5

0%

20%

40%

60%

80%

100%

Execution
parts
[%]

Network nodes

Epsilon = 0.000000001

Computation
Network load
Initialisation

Computation 73836 17850 15810 11066

Network load 10 5 4 3

Initialisation 9 0 0 0

WS1 WS3 WS4 WS5

 American Journal of Networks and Communications 2014; 3(5-1): 70-84 83

Based on these results we know that dominate influence
to the whole complexity of analyzed parallel algorithm has
computation latency T(s, p)comp in comparison to
communication latency T(s, p)comm. To map mentioned
assumption to the relation for asymptotic isoefficiency w(s)
means that

[] []compcompcommcomp psTpsTpsTpsTsw),(max),(),(,),(max)(=<=

Such parallel algorithms are very effective also at using
dominant parallel computers with distributed memory
(NOW, Grid).

5.2. Parallel Multiplication

The comparison on analyzed decomposition models for
parallel multiplication in part 4.1.2.1. for various number of
computing nodes of parallel computer illustrates Fig. 26.
The first chosen decomposition model (decomposition 1)
goes straightforward to the calculation of the individual
elements of the result matrix C through multiplication of
the corresponding matrix elements A and B. The second
decomposition model (decomposition 2) for the getting the
final elements of the matrix C besides multiplication of the
corresponded matrix elements A and B demand the
additional addition of the particular results, which causes
the additional time complexity in comparison to the first
used method. This additional time complexity depends
strong on the magnitude of the input matrixes. On this
example of matrix multiplication we can see potential
crucial influence of decomposition model to complexity of
parallel algorithms.

Figure 26. Influence of decomposition models in parallel multiplication.

6. Conclusions and Perspectives
Performance modeling in parallel computing as a

discipline has repeatedly proved to be critical for design
and successful use of parallel computers and parallel
algorithms too. At the early stage of design, performance
models can be used to project the system scalability and
evaluate design alternatives. At the production stage,
performance evaluation methodologies can be used to
detect bottlenecks and subsequently suggests ways to

alleviate them. Analytical methods (order analysis, queuing
theory systems, Petri-nets), simulation and experimental
measurements have been successfully used for the
evaluation of parallel computers and parallel algorithms
too.

On the given illustrative examples of chosen parallel
algorithms (numerical integration, matrix multiplication)
we have been demonstrated great influence of selection of
decomposition model to their potential effectiveness. This
is very important mainly in using dominant parallel
computers (NOW, Grid) where the dominant influence used
to have communication complexity of parallel algorithms.
Therefore according the latest trends in parallel computing
based on developing of mixed parallel algorithms (shared
memory, distributed memory) there are important optimal
decisions in developing PA which parts would be executed
on SMP computing nodes and which on NOW modules.
Via the extended form of complex isoefficiency concept we
have illustrated its concrete using to predicate the
performance in applied matrix parallel algorithms. To
derive complex isoefficiency function in analytical way it is
necessary to derive al typical used criterion for
performance evaluation of parallel algorithms including
their overhead function h(s, p). Based on these relations we
are able to derive complex issoefficiency function as real
criterion to evaluate and predict performance of parallel
algorithms also for theoretical (not existed) parallel
computers. So in this way we can say that this process
includes complex performance evaluation including
performance prediction.

Acknowledgements
This work was done within the project “Complex modeling,

optimization and prediction of parallel computers and
algorithms” at University of Zilina, Slovakia. The authors
gratefully acknowledge help of project supervisor Prof. Ing.
Ivan Hanuliak, PhD.

References
[1] Abderazek A. B., Multicore systems on chip - Practical

Software/Hardware design, Imperial college press, pp. 200,
2010

[2] Arie M.C.A. KosterArie M.C.A., Munoz Xavier, Graphs
and Algorithms in Communication Networks,
Springer-Verlag, Germany, pp. 426, 2010

[3] Arora S., Barak B., Computational complexity - A modern
Approach, Cambridge University Press, United Kingdom,
pp. 573, 2009

[4] Bahi J. H., Contasst-Vivier S., Couturier R., Parallel
Iterative algorithms: From Seguential to Grid Computing,
CRC Press, USA, 2007

[5] Bronson R., Costa G. B., Saccoman J. T., Linear Algebra -
Algorithms, Applications, and Techniques, 3rd Edition,
Elsevier Science & Technology, Netherland, pp. 536, 2014

T
im

e
[s

]

Number of compute nodes

0,0 5,0 10,0

10,0

20,0

30,0

40,0

50,0

15,0

Decompos it i on 1
Decompos it i on 2

84 Michal Hanuliak and Juraj Hanuliak: Decomposition Models of Parallel Algorithms

[6] Dattatreya G. R., Performance analysis of queuing and
computer network, University of Texas, Dallas, USA, pp.
472, 2008

[7] Desel J., Esperza J., Free Choise Petri Nets, Cambridge
University Press, United Kingdom, pp. 256, 2005

[8] Dubois M., Annavaram M., Stenstrom P., Parallel Computer
Organization and Design, Cambridge university press,
United Kingdom,pp. 560, 2012

[9] Dubhash D.P., Panconesi A., Concentration of measure for
the analysis of randomized algorithms, Cambridge
University Press, United Kingdom, 2009

[10] Edmonds J., How to think about algorithms, Cambridge
University Press, United Kingdom, pp. 472, 2010

[11] Gelenbe E., Analysis and synthesis of computer systems,
Imperial College Press, United Kingdom, pp. 324, 2010

[12] GoldreichOded, P, NP, and NP - Completeness, Cambridge
University Press, United Kingdom, pp. 214, 2010

[13] Hager G., Wellein G., Introduction to High Performance
Computing for Scientists and Engineers, CRC Press, USA,
pp. 356, 2010

[14] Hanuliak P., Complex modeling of matrix parallel
algorithms, American J. of Networks and Communication,
Science PG, Vol. 3, USA, 2014

[15] Hanuliak P., Hanuliak J., Complex performance modeling of
parallel algorithms, American J. of Networks and
Communication, Science PG, Vol. 3, USA, 2014

[16] Hanuliak P., Hanuliak I., Performance evaluation of iterative
parallel algorithms, Kybernetes, Volume 39, No.1/ 2010,
United Kingdom, pp. 107- 126, 2010

[17] Hanuliak P., Analytical method of performance prediction in
parallel algorithms, The Open Cybernetics and Systemics
Journal, Vol. 6, Bentham,United Kingdom, pp. 38-47, 2012

[18] Hanuliak P., Complex performance evaluation of parallel
Laplace equation, AD ALTA – Vol. 2, issue 2, Magnanimitas,
Hradec Kralove, Czech republic, pp. 104-107, 2012

[19] Harchol-BalterMor, Performance modeling and design of
computer systems, Cambridge University Press, United
Kingdom, pp. 576, 2013

[20] Hillston J., A Compositional Approach to Performance
Modeling, University of Edinburg, Cambridge University
Press,United Kingdom, pp.172, 2005

[21] Hwang K. and coll., Distributed and Parallel Computing,
Morgan Kaufmann, USA, pp. 472, 2011

[22] Kshemkalyani A. D., Singhal M., Distributed Computing,
University of Illinois, Cambridge University Press, United
Kingdom, pp. 756, 2011

[23] Kirk D. B., Hwu W. W., Programming massively parallel
processors, Morgan Kaufmann, USA, pp. 280, 2010

[24] Kostin A., Ilushechkina L., Modeling and simulation of
distributed systems, Imperial College Press, United
Kingdom, pp. 440, 2010

[25] Kumar A., Manjunath D., Kuri J., Communication
Networking, Morgan Kaufmann, USA, pp. 750, 2004

[26] Kushilevitz E., Nissan N., Communication Complexity,
Cambridge University Press, United Kingdom, pp. 208,
2006

[27] Le Boudec Jean-Yves, Performance evaluation of computer
and communication systems, CRC Press, USA, pp. 300,
2011

[28] Levesque John, High Performance Computing:
Programming and applications, CRC Press, USA, pp. 244,
2010

[29] Lilja D. J., Measuring Computer Performance, Cambridge
University Press, United Kingdom, pp. 280, 2005

[30] McCabe J., D., Network analysis, architecture, and design
(3rd edition), Elsevier/ Morgan Kaufmann, USA, pp. 496,
2010

[31] Misra Ch. S.,Woungang I., Selected topics in
communication network and distributed systems, Imperial
college press, United Kingdom, pp. 808, 2010

[32] Paterson D. A., Hennessy J. L., Computer Organisation and
Design, Morgan Kaufmann, USA, pp. 912, 2009

[33] Peterson L. L., Davie B. C., Computer networks – a system
approach, Morgan Kaufmann, USA, pp. 920, 2011

[34] Resch M. M., Supercomputers in Grids, Int. J. of Grid and
HPC, No.1, pp. 1 - 9, 2009

[35] Shapira Y., Solving PDEs in C++ - Numerical Methods in a
Unified Object-Oriented Approach (2nd edition), Cambridge
University Press, United Kingdom, pp. 800, 2012

[36] Wang L., Jie Wei., Chen J., Grid Computing: Infrastructure,
Service, and Application, CRC Press, USA, 2009
www pages

[37] www.top500.org.

