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Abstract: Parallel principles are the most effective way himwincrease parallel computer performance and lgéral
algorithms (PA) too. In this sense the paper it to a complex performance evaluation of ché®enAt first the paper
describes very shortly PA and then it summarizesich@oncepts for performance evaluation of PA.llUstrate the analyzed
evaluation concepts the paper considers in itsrarpatal part the results for real analyzed exaspfaliscrete fast Fourier
transform (DFFT). These illustration examples weehahosen first due to its wide application in stifec and engineering
fields and second from its representation of simil@up of PA. The basic form of parallel DFFT l& tone-dimensional
(1-D), unordered, radix—2 algorithm which uses diévand conquer strategy for its parallel computatieffective PA of
DFFT tends to computing one — dimensional FFT wattix greater than two and computing multidimenald#T by using
the polynomial transfer methods. In general radik BFFT is computed by splitting the input sequeatsize s into q
sequences each of them in size n/q, computingrfdste q smaller DFFT’s, and then combining theutes. So we do it for
actually dominant asynchronous parallel computeset) on Network of workstations (NOW) and Grid eyst.

Keywor ds. Parallel Computer, NOW, Grid, Parallel Algorith®X), Matrix PA, Decomposition, Performance Modeling
Optimization, Issoeficiency Function, Numericaldgtation, Discrete Fast Fourier Transform (DFFT),
Overhead Function

1 Introducti and hence the ratio of computation/communication of
- Introauction parallel applications is usually much smaller thhat in

Parallel and distributed computing has been evoaed distributed applications. On the other hand, dsted
two separate research disciplines. Parallel comgutias CcOmMPuting focuses on parallel processes that caald
addressed problems of communication and intensivd!ocated in a wide area i. e., communication betsome
computation on highly-coupled computing nodes whildarallel processes is assumed to be more costly itha
distributed computing has been concerned witfarallel computing. ,
coordination, availability, timeliness, etc., of raolikely A number of recent trends point to a convergence of
coupled computing nodes. Current trends, such exigia research in parallel and distributed computing.stkir

computing on networks of high performance computindicréased communication bandwidth and reduced dgten
nodes (workstations) and Internet computing, sugtes make geographical distribution of computing nodess lof

advantages of unifying these two research disapliin & barrier to parallel computing. Second, the deprelent of
relation to these trends we have developed a fexitpdel  @rchitecture neutral programming language, suctaas,

of computation that supports both parallel andritisted ~ Provides a virtual computational environment in evhi
computing [11]. computing nodes appear to be homogenous. Finally,

increased client/server computing is adopting sytrioa
multiprocessor  architecture (SMP), often multiple
processors or cores with a shared memory in a esingl
with each other in order to accomplish a task ebale. In workstations. While such architectures are lesdabta

parallel computing, processes are assumed to keegla than networks of computers, some parallel prograitis
closer to each other and they could communicatgiémstly high communication traffic may execute on them more

Parallel and distributed computing share the saasich
computational model consisting on physically dsited
parallel processes that operate concurrently ateraict
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efficiently. Another important trend is a convergenof given platforms [15, 26]. Load balancing, inter g@esor

parallel and distributed computing is the potent@l communication (IPC), and transport protocol for hsuc

Internet computing. With improvements in networkmachines are being widely studied [20, 21].

technology and communication middleware, one cawvi  This trend is mainly driven by the cost effectiven®f

the Internet as a huge of parallel and distribemuiputers. such systems as compared to massive multiprocessor

Because connectivity on the Internet can be inttemti systems with tightly coupled processors and meraorie

variable of the bandwidth, the ability of processsswell (Supercomputers). With the availability of high

as data to migrate becomes critical. In turn, thtguires a performance personal computers (workstation) argh hi

satisfactory treatment of mobility. speed communication networks (Infiniband, Quadrics,
Myrinet), recent trends are to connect a numbesuith

2. Architectures of Paralléd Computers workstations to solve complex problems in parallelsuch
NOW modules [24, 28].

It is very difficult to classify all existed parall
computers. We have tried to classify them frompgbmt of Laboratory (SMP, NOW)
program developer [1, 9] to the two following bagioups

Myrinet (InfiniBand) switch

according Figurel. 12
e synchronous parallel computers. They are often used
under central control, that means under the global e lee || ee, e,
clock synchronization (vector, array system etc.po Fy
distributed local control mechanism (systolic sgsde v v +
etc.). The typical architectures of this group afgllel ‘ T2 pornet switch i

computers illustrate Figure 1 on its left side

» asynchronous parallel computers. They are composed
of a number of fully independent computing nodes Figure 2. lllustration of NOW.
(processors, cores, and computers). To this group
belong mainly various forms of computer networks Principal example of NOW module is at Figure 2. The
(cluster), network of workstation (NOW) or moreindividual workstations PC are mainly powerful
integrated Grid modules based on NOW modules. Thgorkstations based on symmetrical multiprocessor or
typical architectures of asynchronous parallemulticore platform (SMP).
computers illustrate Figure 1 on its right side.

2.1.3. Grid Systems

Grid represents a new way of managing and organizin
of individual resources (processors, memory modul€s
devices etc.) [33]. Grids go out conceptually frcan
structure of virtual parallel computer based on NOW
modules. We have illustrated at Figure 3 typicégnated
Grid module based on NOW modules. Any classic feral
computer (massive multiprocessors as supercompete)s
could be a member of any NOW module [29].

Virtual
parallel computer

Synchronous Asynchronous

SIMD

Vector/Amsy

Systolic GRID

3. Paralld Algorithms

In principal we can divide parallel algorithms (P&)the
following groups
« parallel algorithm using shared memory (RAThese

Cthers

z 1]
] =
H T

Others

Figure 1. Suggested classification of parallel computers.

2.1. Dominant Parallel Computers algorithms are developed for parallel computerd wit
shared memory as actual modern symmetrical
2.1.1. Network of Workstations multiprocessors (SMP) or multicore systems on
There has been an increasing interest in the use of motherboard
networks (CIUSter) of workstations connected t(mj_ﬁthy . para||e| a|gorithm using distributed memory (B»
high speed networks for solving large computatiensive These algorithms are developed for parallel compute
problems [5]. This trend is mainly driven by thesto with distributed memory as actual NOW system and

effectiveness of such systems as compared to massiv  their higher integration forms named as Grid system
multiprocessor systems with tightly coupled prooessnd  « hybrid PA which combine using of both previous PA
memories (Supercomputers). Parallel computing oluster (PAnw). This trend support applied using of NOW

of workstations connected by high speed networksghzen consisted from computing nodes based on SMP
rise to a range of hardware and network relatatessn any parallel computers.
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Figure 3. Grid asintegration of NOW network.

The main difference between BAand PAy, is in form
of inter process communication (IPC) among created| Poeeicompuer brocesoreor _—
parallel processes [12, 17]. Generally we can bay IPC Probiem Processes workstations soluton
communication in parallel system with shared mencany
use more communication possibilities (all the poiises
of communication in shared memory) than in distiéou
systems (only network communication).

3.1. Developing Process of PA

The role of programmer is for the given parallel
computer and for given application problem to depehe Dezompositon

Mapping Syntesis

effective parallel algorithm. This task is more qdicated ofsatten

in those cases, in which we have to create theittonsl for
any parallel activities in form of dividing the sesptial
algorithm to their mutual independent parts namalfel  3.1.1. Decomposition models

processes. Principally development of any parallel Decomposition strategy defines potential dividing o
algorithms (shared memory, distributed memory)udes  given complex problem to their independent partsd(el
following activities [10, 18]. processes) in such a way, that they could be peedrin a
+ decomposition - the division of the applicationparallel way through computing nodes of given paral
problem into a set of parallel processes and @&  computer. Existence of some decomposition method is
 mapping - the way how created parallel processes aritical assumption to possible parallel algorithPatential
data are distributed among the nodes of parallelecomposition degree of given complex problem isieat
computer for effectiveness of parallel algorithm [3, 7]. Tlehosen
* inter-process communication as a way of parallelecomposition method drives the rest of program
processes cooperation and synchronization development. This is true is in case of developiryy
* tuning — performance optimization of developedapplication as in porting serial code. The decoritiprs
parallel algorithm method tells us how to structure the code and dath

The most important step is to choose the besfefines the communication topology [10, 25]. Thedus
decomposition method for given complex problem.do  decomposition models are as follows

this it is necessary to understand the concreteptm « naturally parallel decomposition
problem, shared data domain, the used algorithrdsttzs « domain decomposition
flow of control in given complex problem [13, 23]. « control decomposition

manager/workers

Figure 4. Developing stepsin parallel algorithms.



18 Peter Hanuliak and Juraj Hanuliak: Comp

functional

 divide-and-conquer strategy

» decomposition of big problems

 object oriented programming (OOP).

To the illustration of developing effective paralle
algorithm and the way of its complexity evaluatimg used
applied problem of discrete fast Fourier Transf¢bRFT).
In relation to it we illustrate the principle ofuille and

lexdterhnce Modeling of Parallel Algorithms

longer execution times. They are still only apdiieato a
restricted class of models in spite of its compatatnd
time requirements.

Evaluating system performance via experimental
measurements is a very useful alternative for caempu
systems. Measurements can be gathered on exigstenss
by means of benchmark applications that aim atsing
specific aspects of computers systems. Even though

conquer decomposition model (DM), which is used tdoenchmarks can be used in all types of performanaies,

decompose DFFT.

=iy

_ L)
minlnlninlnlnls

Figure 5. lllustration of divide and conquer DM (n=8).

4. The Role of Performance

Modeling techniques allow to model contention bath
hardware and software levels by combining approtéma
solutions and analytical methods [30]. We woulce lito
prefer analytical methods although the complexity o
parallel computers and parallel algorithms coutditlithe
applicability of these techniques. To the verificat of
analytical results we would like to use simulatioathod or
in some cases experimental measuring.

4.1. Performance Evaluation Methods

To performance evaluation of parallel algorithms caa
use analytical approach to get under given comdfai
analytical laws or some other derived analyticdhtrens.
We can use following solution methods to get a fimmcof
complex performance

» analytical

order (asymptotic) analysis [2, 12]
Petri nets [4]
queuing theory [8, 14]
» simulation [19]
» experimental
benchmarks [16]
modeling tools [22]
direct measuring [6, 27].

their main field of application is competitive ptsement
and performance assessment of existing parallepatars
and parallel algorithms.

5. Performance Evaluation Criterions of
PA

To evaluations of parallel algorithms there haverbe
developed several fundamental concepts. Tradeofting
these performance factors are often encountereehirife
applications.

5.1. Basic Performance Concepts

5.1.1. Parallel Execution Time

We have defined parallel execution time T(s, ptes
execution time performed by p computing nodes
(processors, cores, workstations) of given paratiehputer
and s defines input size (load) of given probletme T(s,
1) defines execution time for classic sequentiahgoter.

5.1.2. Speed Up
The speed up factor S(s, p) we can define as
T (s,2)
S(s, =
(s, p) T(sp)

Speed up factor (dimensionless) is a measure @utain
given complex algorithm using p computing nodevisgl
given problem with its problem size s. Since S|ss p, we
would like to design algorithms that achieve S§sy p.

5.1.3. Efficiency
The efficiency for processor system with p compmtin
nodes is defined by

S(s.p) . _T(s.)

E (s, =
&P = = T s )

Analytical method is a very well developed set of The efficiency is always less than 1. A value of,Hi)

techniques which can provide exact solutions vergldy,
but only for a very restricted class of models. Fuore
general models it is often possible to obtain agipnate
results significantly more quickly than when using
simulation, although the accuracy of these resulty be
difficult to determine [31].

Simulation is the most general and versatile mezns
modeling systems for performance estimation. It iasy
uses, but its results are usually only approxinmatito the
exact answer and the price of increased accuraoyizh

approximately equal to 1 for given p, indicatest thach
parallel computer, using p computing nodes runs
approximately p times faster than it does on setipien
computer.

5.1.4. The I soefficiency Concept

The workload w of an algorithm often grows in theer
O(s), where s is the problem size. Thus, we detite
workload w = w(s) as a function of problem sizelrs.
parallel computing is very useful to define an ffioency
function relating workload to parallel computer esip
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which is needed to achieve given fixed efficiencyskEp).
Let h(s, p) be the total overhead function condidtem
existed overhead latencies involved in PA impleragos.
This overhead function is a function of both paall

19

E(sp)

1-EGp P

w(s) =

The factor C = E(s, p)/1 - E(s, p) is for a givdiicency

computer size p and input problem size s. Then are c E(s, p) constant. We can then define the isoeffiye

define efficiency E(s, p) of a parallel algorithm a

w(s)

EP) = Senis p)

function as follows

w(s) =C h(s, p)

5.2.5. Overhead Function

The workload w(s) corresponds to useful performed Overhead function h (s, p) defines coincident ogath

parallel computations while the overhead functigs, ip)
represents latency times attributed to communinatié
parallel processes, synchronization, waiting to retha

resources etc. In general, the overheads increade w

respect to increasing both values of parametergisaThe
guestion is hinged on relative growth rates betwe€s)
and h(s, p). With a fixed problem size the efficgiE(s, p)
decreases as p increase. The reason is that thmbeade
function h(s, p) increases with p. With a fixed gil
computer size, the overhead function h(s, p) grelewer

than the workload w(s). Thus the efficiency E(s, p)

increases with increasing problem size s for adfigarallel
computer size. Therefore, one can expect to mairdai
constant efficiency E(s, p) if the workload w(s)akowed
to grow properly with increasing parallel compuere p.

5.2. Complex Performance Modeling of PA

Complex performance modeling of PA we qualify as

modeling with considering overhead function h(sjmpall
defined fundamental performance concepts T(s, (3), [9,
E(s, p) and w(s).

5.2.1. Complex Parallel Execution Time

Complex parallel execution time T(S, «fiex Will be
defined as the whole parallel execution time inellid
overhead function h(s, p) as follows

T(S:P)compiex =T 6.p )+ h(s, p)

5.2.2. Complex Speed Up Factor
The complex speed S(sfiexWe can rewrite as

S(s, p)con‘plex = ﬁ

5.2.3. Complex Efficiency
Similarly the complex efficiency E(S, @hpiex We can
rewrite as

S(s, p) T(s,1
E(S, p)complex = conplex = ( )

p pT(s, p) complex

5.2.4. | soefficiency Function

We rewrite equation for efficiency concept E(sap)E(s,
p) = 1/(1 - h(s, p) / w(s). In order to maintaica@nstant E(s,
p), the workload w(s) should grow in proportion ttee
overhead h(s, p). This leads to the following relat

latencies of given PA (shared memory, distributezinory,
hybrid).The typical existed overheads of PA aréodews

e communication latency T(S, dahm
parallelization latency T(s, p)

 synchronization latency T(s, 4

» waiting latency to use shared resource T(gp)

« influence of parallel computer architecture T($,R)

+ specific latency of given PAT(s, §de

Taking into account all named overhead latencies th
overhead function h(s, p) is as follows

hED =Y (TS P TEP)ar T Py s T(S e s TS Pigec)

and the complex parallel execution time will beided as

follows

T (S, p)compla( =T (S, p)con‘p + h(S, p)

In general influence of at least most importantrbead
latencies is necessary to take into account inop@dnce
modeling of parallel algorithms because their iafice to
complex parallel execution time T(s, «fex Could be
dominant. The illustration of such dominant inflaenof
communication overhead latency T(S,.oph to own
parallel computation time T(s, gy iS shown at Figure 6.

/

Communication
time

Execution time

Processing
time

MNumber of processors

Figure 6. lllustration of dominant influence of T(S, P)comm t0 T(S, P)comp.

5.2.6. Modeling of PA Latencies

5.2.6.1. Own Parallel Computation Time

Own computation time T (s, @y, of PA is given
through quotient of maximal time of running parhlle
processes i. e. as product of complexity Complexity of
maximal parallel process) and a parametastan average
value of defined performed computation units (instion,
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block of instructions etc.) divided by number ofeds constants for concrete parallel computer [10].
computing nodes p of used parallel computer. Rdrall The whole communication overhead latency is given
computation execution time T(s, ) is then given as through two basic following functions

follows  function f(ty) which represents the whole number of
communication initializations for given parallel
p e function #£(t,) which correspondents to whole

_ _ _ performed data unit transmission (usually time of
In general execution time of sequential and pdralle  word transmission for given parallel computer) in

algorithms are given through multiplicity productf o given parallel process.

algorithm complexity g (dimensionless number of

considered computation units) and a parameteast an Time

average value of performed considered operations /
(instructions, computing steps etc.). Tk,

For asymptotic complexity of parallel execution diffi(s,
P)eomp SUPPOsing well paralleled problems is then given a
t

C,-
T (5P comp =liM o —2—=0

5.2.6.2. Modeling of Overhead Latencies T 7 A T _—

Overhead latencies are defined with its overhead sesage lendt
function h(s, p). For every concrete parallel ailion Figure 7. lllustration of communication parameters.
(shared memory, distributed memory, hybrid), oiirailar
group of PA, we are able to define their overhaattfion
h(s, p) considering at least the most importantriosed
latencies of given PA. The individual latenciesgofen PA
comes out from used decomposition model. Comple
modeling based on considering overhead functiond)(ef
given PA opens unifi_ed complex modeling of any TS P)oarmow = f1 (t) + F, ()
developed parallel algorithm.

These two defined functions limit performance oédis
parallel computer on defined NOW module of parallel
computer. Then using a superposition we can wite f
ommunication latency in NOW module T(S,.q)h as
ollows

To the practical illustration of communication oveads

Inter process communication of parallel proceste€) \r'ée regzﬁ'gn dt'sci::e;le m;?rsi:( ;?;{é?rm t;?i?r?:rvn;m/(ggﬁ)
T(S, Plomm (cOmmunication latency) influences in a P 9 yp P 9

decisive degree used decomposition model of PAe.m_? cznq_uertiecorﬁploatlon mod_el.t_ lat T
Obviously it is higher in distributed computing than 0 derive the whole communication latency T(Sor

. in other dominant parallel computers based on ratégn
parallel one. For example world known parallel coipy
model with shared memory PRAM (Parallel Rando of NOW modules (network of NOW modules named as

Access Machine) does not consider communicatiemtat rTbnd) we need to extend the considered two comnatioic

To model communication latency we have applied rheo functions f(t), fZ(tW). in N.OW mod_ule by thir_d funct_ion
of complexity to inter process communication of giket component Atn), which will determine potentlal multiple
processes in a similar way as in modeling compurati crossing useq NQW modules_ of mtegrgted parallel
latency focusing to a number of performed commuitoa fnour::?lljt?r:' Tr?(')s sthlrgre:rlrjwr;(tzgfnl alfno%harilcct)ei/r\llzegoms
steps (communication complexity). Then communicatio plying PSP h 9 L
latency T(s, Qb is given through number of performed (generally NOW networks) and average communication
communication steps (communication complexity) dsed gfnnniﬁntgteior?f J:mepeedd NO?W amocsilljlris V(\;'fth ::givistiun;?
decomposition model of given PA. Every communiaatio L pee . .
step within parallel computer based on NOW modute Wcommumcatlon latencies for jumped NOW modules with

can characterized through two basic communicatiowﬁglgT;rner:tjﬁfcrgtr:;:]n;acgfcn ?rrl)eGer?d -irsh\?:"ljn gererghe
parameters as follows y

e communication parametey defined as parameter for u
initialization of communication step (start up time T(S P)eommern = f1 () + 1, (t,) +Z fy (.t 1)
e communication parameter,, t as parameter for i=1
transmission latency of considered data unit (3ibic
word).
Illustration of defined communication parametersats
Figure 7. These communication parametegsti are

5.2.6.2.1. Modeling of Communication Latency

In general communication latency time(tf t,, ) is
time to send data message with m words in one
communication step among integrated NOW moduleb wit
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In hops. The communication time for one communicatiors.2.6.2.6. Modeling of Specified PA Latency

step is then given agttm t,l.t,, where the new parameters

are.
* | is the number of network hops

The sixth part of h(s, p) overhead function T(S,d)
(influence of specified PA) represents any othessjie
specific overhead latency of given parallel aldorit

e m is the number of transmitted data units (usually

words)

 t,is average communication time for one hop.

The new communication parameteyslt depend from a
concrete architecture of Grid communication netwari
used routing algorithm. In [11] we have developedfied
models which could help to establish these parasdte
dominant parallel computers. For the complex arGit
modeling there is necessary to derive for givenalper
algorithm or a group of similar algorithms (matparallel

5.2.6.3. Asymptotic Analytical Modeling of PA

Most of to this time known results in analytical deding
of PA in the world for extended classical paratieimputers
with shared memory (supercomputers, SMP and SIMD
systems) or parallel computers with distributed mgm
based on some cluster of computing nodes mostlhyndid
consider existed overhead influences of PA suppgosiat
they are lower in comparison to the own computation
latency T(s, phmp Of performed computations . In this

algorithms) needed communication functions and thd&ense analysis and modeling of complexity in pekall
always individually for any decomposition strategy)algorithms (PA) were rationalized to the analysisonly

isoefficiency function and defined technical partane
(computational, communication) for used parallehpater
(NOW, Grid).

5.2.6.2.2. Modeling of Parallelization Latency

computation complexity of PA, that mean that théindel
function of control and communication overheads, Ipjs
were not a part of derived relations for the whoéaallel
execution time.

The complexity function in the relation for isoeféncy

The parallelization latency T(s, g)represents overhead supposed, that dominate influence to the whole ¢exity

latency of PA though parallelization of given cospl
problem.
additional communication complexity to T(S¢ddh

5.2.6.2.3. Modeling of Synchronization Latency

The third part of h(s, p) function T(s, sp) we can
eliminate through optimization of load balancing carg
individual computing nodes of used parallel computer

of PA has computation complexity of performed meessi

Its consequences are mostly projected a&smputations. Such assumption has been proved taibe

mainly in using classical parallel computers in therld
(supercomputers, massive SMP — shared memory, SIMD
architectures etc.). To map mentioned assumptiothéo
relation for asymptotic isoefficiency w(s) meanatth

W(9 =Max{T(s Deomp: (S P <T(S Peormp] =MaXT(S Poorp|

this purpose we would measure performance of used

computing nodes for given developed parallel athori But in our unified complex modeling of PA possible
and then based on these achieved results we agetabl influence of any part of defined overhead functigs, p)
redistribute better workload of computing nodes.isTh could be dominant in a nonlinear way. Then for ctexp

activity we can repeat until we have optimal retistted

isoefficiency function it is necessary to consideras

input load (optimal load redistribution based oralre follows

performance results).

5.2.6.2.4. Modeling of Influence of Parallel Computer
Architecture
The fourth part of h(s, p) overhead function T(%ycp
(influence of parallel computer architecture) wdl wiodel
with defined technical parameters t; t,, which are
constant for given parallel computer [10].

5.2.6.2.5. Modeling of Waiting Latency

The fifth part of h(s, p) overhead function T(S,qp)
represents whole waiting times to use shared ressunf
parallel computer (memory modules, communicaticanokels,
I/O devices etc.). This kind of overhead latencyyjsical in
using shared technical resources in a massive slagred
memory modules, communication channels, /O detes3.
We can only limit it by optimal allocation of shdreesources.
To model this overhead latency in an analytical vgag very
crucial problem. We have been modeling it in anlydical
way applied queuing theory results in combinatioith w
experimental measurements [10, 11].

W(s) = max [T (s, Peory N (5, P

6. Discrete Fourier Transform

The discrete Fourier transform (DFT) has played an
important role in the evolution of digital signalogessing
techniques. It has opened new signal processitmitpees
in the frequency domain, which are not easily ezddie in
the analogue domain. The DFT is a linear transftiona
that maps n regularly sampled points from a cydleao
periodic signal, like a sine wave, onto an equahiper of
points representing the frequency spectrum of theas
The discrete Fourier transform (DFT) is defined3a<]

f X -e_Zﬁ[LNkJ

J

and the inverse discrete Fourier transform (IDFY) a
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¢, o0
X =Y Ve
j=0
for 0< k< N-1. For N real input valuesgXXy, Xo, ..., Xn.1,
transforms generates N complex valugs¥y, Yo, ..., Yy

If we usew = e "'V that is w is N—th root of complex

number i in complex plane we get

and in inverse as

Variable w is a basic part of DFFT computations &nd
named as twiddle factor. Defined transformationagipms
are on principle linear transformations.

A direct computation of the DFT or the IDFT reqsiris?
complex arithmetic operations. For example the tim
required for just the complex multiplication in 824point

DFT is T,=1024 . 4. J.a, Where we assumed that one
real
realand

complex multiplication corresponds to four
multiplications and the time required for one
multiplication (T.ea) is known for given computer. But with
this approach we could take into account only th

computation times and not also the overheads delays Y+

connected with implantation on parallel way.

6.1. The Discrete Fast Fourier Transform

DFFT is a fast method of DFT computation with time

complexity O (N / 2 log(N)) in comparison to sequential
DFT algorithm complexity as O@ For a quick
computation of the DFT is used adjustment
Cooley-Tukey [7]. To come to final adjustment wearst
with a modified form of the DFT.

iNzlx w
N<

In general demanded sum is divided to two partagusi
decomposition strategy “divide-and-conquer”. Itépiple
we describe with modification of origin sum to two
following pairs as

(o)

Yy

N

LA} LA
2 2

2 jk (2j+1)k
2 KXo WY Xopaw ’
=0 =0

N
-1

YkN

where the first part of sum contents result pathweiven
indexes and second part with odd indexes. In #iss we
get

Complexdrerdnce Modeling of Parallel Algorithms

Every part of sum means DFT on N/2 values with even
indexes and N/2 values with odd indexes. Then we ca

formally write Y, = %(Y + kaodd ) for k=0, 1, 2, ....,

even
N-1, whereby ¥enis N/2 — point DFT on the values with
even indexes ¥ X, X4 ... and Yy is N/2 — point
transformation on values XXz, Xs, ....Supposed that k is
limited to first 0, 1, ..., N/2-1, N/2 values from wlb
number of N values. The whole series we can ditadsvo
éollowing parts

e k+E

+W 2 Y

Y,

N even

o5

2

% = % (Yeven - WkYodd),

)

because "% = - W, where 0 G k < N/2. In this way we
can compute Yand Y. in a parallel way using two N/2
point transformations according illustration &jure 8.
Every from N/2 — point DFT we can again divide &xn
Parts, that is to two N/4 — point DFT. Applied
decomposition strategy could follows till to exhiwog
dividing possibility for given N. Dividing factorsinamed
as radix - g, and that for dividing number highwar two.

Xo 4 . Ya
e\ .
: W DFFT(3) :
Xe. _ WA v
Xy : : ;; Y
o LA .
. / \ DFFT(5) 3
Xe 1 .

Figure 8. Divide and conquer decomposition strategy for DFFT.

The difference in parallel execution times betwéles
direct implementation of the DFT and DFFT algoritlisn
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significant for large N. Direct calculation of tHeFT or
IDFT, according to the following program require$ N
complex arithmetic operations.
Program Direct_DFT;
var
X, Y: array[0..Nminusl] of complex;
begin
for k:=0 to N-1 do
begin
Y[K] :=x[0];
for n:=1to N-1 do
Y[K] := Y[K] + Wnk * x[n];
end;
end.

The difference in execution time between a direct

computation of the DFT and the new DFFT algorithan i
very high for large N. For example the time reqdifer the
complex multiplication in a 1024-point FFT is,J; = 0,5 .

N .[0g(N) . 4 .Tea= 0,5 . 1024 .log1024) . 4 .Tea, Where
the complex multiplication corresponds approximated
four real multiplications.

6.2. Parallel Algorithms of Discrete Fast Fourier
Transform
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implementation of a multi-dimensional discrete flastrier
transform (DFFT).Simplest method of computationved
dimensional DFFT (2D DFFT)is computation of one
dimensional DFFT (1D DFFT) on each row and then
follows computation of one dimensional DFFT for leac
column. This illustrates Figure 9.

Columns transformation

Rows transformation

— k»

N I

—
L~

[

| I

Iy| [,

X

L m

%

Figure 9. Two dimensional DFFT.

6.4. Analyzed Examples

6.4.1. One Element per Processor

This is the simplest example of complexity evalatbf
the DFFT. In this case we consider a p=s paraiietgssor
(d-dimensional hypercube architecture) to compepeiat
DFFT. A hypercube is a multidimensional mesh of
processors with exactly two processors in each wfma.

Cooley and Tukey have developed the fast DFFRA d-dimensional hypercube consists of p=2d proasssn

algorithm which requires only O(N.lg@N)) operations.
The difference
computation of the DFT and the new DFFT algorittam i
very large for large N. For example the time regdifor

just the complex multiplication in a 1024-point FRY

Tmue= 0,5.N log(N).4.Treal = 0,5.1024. 16¢1024).4. Teq

where the complex multiplication
approximately to four real multiplications. The lzaform
of parallel DFFT is the one-dimensional (1-D), wtened
and radix—2 algorithms (using divide and conqueatsgy
according the principle at Figure 9). The effectpazallel

computing of DFFT tends to computing one dimendiona
radix greater than two and computing

DFFT with

a d-dimensional hypercube each processor is djrectl

in execution time between a direcconnected to d other processors. In this case weiozply

derive that T(s, 1) = s log s and T(s, p) = logTken
speedup factor S(s, p) = p and system efficiensy B)(= 1.
Such a formulation of DFFT algorithm for a d-dimemsl
hypercube calculation is cost optimal but for thghkr

correspondsvalues of s and use of p=s processors could be only

hypothetical.

6.4.2. Multiple Elements per Processor

This is very real case of practical DFFT parallel
omputations. In this example we examine implenmgnti
the binary exchange algorithm to compute an s-dokFfT

C

multidimensional FFT by using the polynomial tramsf O @hypercube with p processors, where p > s.mAeghat

methods. In general a radix-g DFFT is computed b
splitting the input sequence of size s into a queaqges of
size n/q each, computing faster the q smaller DFRFH
then combining the result. For example, in a radikFT,
each step computes four outputs from four inputs, the
total number of iterations is lgg rather than lggs. The
input length should, of course, be a power of fRarallel
formulations of higher radix strategies (radix-adix-5)
1-D or multidimensional DFFT are similar to the ioas
form because the underlying ideas behind all setplen
DFFT are the same [32]. An ordered DFFT is obtaibed

poth s and p are powers of two. According the FEgLO,
we partition the sequences into blocks of s/p gouatiis
elements and assign one block to each processsunfes
that the hypercube is d-dimensional (f=&@nd s=2 Figure
10 shows that elements with indices differing iaithd (=2)
most significant bits e mapped onto different pesces.
However, all elements with indices having the samte
most significant bits are mapped onto the sameegssmr.
Hence, this parallel DFFT algorithm performs inpeocess
communication only during the first d = log p oktlog s
iterations. There is no communication during theted r —
iterations.

performing bit reversal (permutation) on the outpufj h — . h y ds of
sequence of an unordered DFFT. Bit reversal dogs ng E4Ch communication operation exchanges s/p words o

affect the overall complexity of a parallel implemtation. ~ data. Since all communications takes place between
directly-connected processors, the total commuicioat

time does not depend on the type of routing. Thestime
) ] ] ] spent in communication in the DFFT algorithmgifog p +
Processing of images and signals often requires tqvtva (s/p) log p, where, is the message start up time apdst

6.3. Two-Dimensional 2D DFFT
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the per-word transfer time. These times are knowvrttfe  network) and routing strategy. If we can definesthgalues
concrete parallel system. If a complex multiplioatiand for a concrete parallel system and routing stratemgt
addition pair takes time,tthen the parallel run time for performance tradeoffs are to be analyzed in a aimiay
s-point DFFT on a p-processor hypercube is asvallo than in previous case.

6.4.3. Multiple Elements per Processor in NOW
An example of our experimental parallel computeseoh
on NOW we have illustrated at Figure 2. Based dubed
The expressions for complex speedup S(Somfpld« NOW module communication overheads depends on
efficiency E(S, pdmpiex and defined constant C (part of topology of communication network and its commutiara
issoefficiency function) are given by the following parameters (transmission speed, bandwidth, tras&mis
equations control etc.). To verify derived analytical resuit® have
performed some simulation experiments in NOW module

T (S P) conplex :tc%Iog s+ tslog p+tw%Iog p

S(S: P) complex = T __tslogs _ with DFFT’s PA. From performed experiments comes ou
T(S Peompex T (S P)compiex that for effective parallel computing of DFFT theeuof
_ pslogs centralized massively parallel system should byfepred
slog s+ (t./t.) plog p+(t,/t.) slog p to asynchronous parallel computers based on NOW
modules. At experimental testing we have used
E (s, p) _ S(5 P)oompec _ workstations of NOW parallel computer as follows
1 complex p « WS 1-—Pentium IV (f = 2.26 GHz)
1 « WS 2 - Pentium IV Xeon (2 proc., f = 2.2 GHz)
= 1+{(log p/log s) [(tsp/tc s)+ (tw/tc)]} . \(/;V|-S|)3 - Intel Core 2 Duo T 7400 (2 cores, f=2.16
z
c- 1-E(S, P)oomplex _ tsplog p L twlogp e WS 4 - Intel Core 2 Quad (4 cores, f=2.5 GHz)
T OE(s, P) complex " teslogs  telogs « WS 5 - Intel SandyBridge i5 2500S (4 cores, f=2.7
GHz).
N =
om0 X Y
N ARSI ESSy e [-Redllts
X‘\\\\/%X\/ 5{ \*><:Y As scalable parallel computer we have defined any
st KT 5 /><:Y' parallel computer in which the efficiency can betkixed
sioe Xs Y= . . . .
Y AN TP as the number of computing nodes is increased,igedv
e 0 RSN T T that the problem size is also increased. The siigfatl a
e RO ORI PA/parallel computer combination determines itsacity
e Xa SRR I =<y, to use an increased number of computing nodes p
wo Xood L L vt effectively. We have considered the Cooley-Tukey
o X_-///XX\\;L f \*:><:Y algorithm for one dimensional s-point DFFT to maint
e R e Y the same efficiency. Figure 11 illustrates thecéfficy E(s,
- );:/ \§W&>/&><:: o P)eompiex OF the binary exchange DFFT parallel algorithm as
v Xosd VN g a function of s on a 512 processors (computing sjode
e hypercube parallel computer with its following teatal
Figure 10. 16-point DFFT on four processors. parameterst2us, §= 4 us andst=25 ps. The threshold

point is given as.t/ (. + t,) = 0,33. The efficiency initially
increases rapidly with the problem size to theshodd, but
This is a most complicated, but very real, casgairallel then the efficiency curve p-Iatens. out beyond thesthold.
computing. It is typical for the parallel architests, in The binary exchan.ge algorithm yields goqd p.erformam-
which the processors do not have enough directemiad a hypercube proylded that the communlcau.on baruthwid
processor to compute the given parallel algoritfiben the an;:i thed pIrEof(f:_e_ssmg S%e?d of thet(:_orrl;r)]utlnr? |gog;S are
communication of not direct connected processors (S)ra anced. iciencies below a certan thresho

computers is realized through a number (hop) ofmth maintained while increasing the problem size atoalenate

processors or communication switches according sonﬁﬁte with an increasing number of processors. Weszy

routing algorithm. at the use of transpose algorithm will have mhigfher

The time for sending a message of size m betweechVerhead than th(_a binary exchange algorithm due to
processors, that arg hops apart is given byt 4, where message start up timg but has a lower overhead due to

ts is the starting message time apdstthe overhead time per-word transfer timeyt As a result, either Of. the two
for one hop. The valuesy tt, I, depend from the algorithm formulations may be faster depending ba t

architecture of parallel system (mainly its interaection relative values ofstand . In principle supercomputers and

6.4.3. Multiple Elements per Processor with Routing
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other architectures with common memory haveety low

in comparison to typical NOW or Grid.

The performance results in parallel computer NOW
based on Ethernet we have graphically illustrated 2D
FFT at the Figure 13. These results of 2D FFT pelral
algorithm document increasing of both computation a
communication parts in geometrically way with the

0.35 1 Treshold

041 quotient value nearly four for analyzed matrix dirsiens
and that in increasing matrix dimension mean tawice
more computation on columns and twice more on rows.

02 06464 B 128x128 0 256256 00512612 W 1024x1024
0.15 4
01 40000
0.05 350001
0 ; ; ; ; ; ; 30000
0 5000 10000 15000 20000 25000 30000 35000 2
s Execution
time 20000
[ms]
Figure 11. The efficiency E(S, p)compie Of the DFFT binary exchange 150001
parallel algorithm. 100001
. . . 50“)’
However, this threshold is very low if the ol
communication bandwidth of the hypercube is low, — - - - -
compared to the speed of its processors. Therefoie mi28as | 1067 527 w2 a5
necessary to describe a different parallel fornmtatof O260% | 5750 2004 2012 2091
. . 512612 17215 8667 8624 8614
DFFT for interconnection network_of computer netiwor immm o |zt | sma | e
Such a formulation involves matrix transpositiorr fn Network nodes

array of s-input points and hence we called ittthaspose
parallel algorithm. In principal we can say tha¢ tise of
transpose PA will have a much higher overhead than
binary exchange algorithm due to message starimm tf,
but has a lower overhead due to per-word transfes t,.
As a result, either of the two algorithm formulasomay
be faster depending on the relative values;@nd §,. In
principle parallel computers with shared memory ehav
very low in comparison to typical
computers based on NOW and Grid.
The influence of matrix dimension for DFFT to the
communication overheads in computer network of qeab

Figure 13. Resultsin NOW for T(s, p)compiex Of 2DFFT for Ethernet.

At Figure 14 we have illustrated parallel speedS{p,

overhead

latencies

(architecture,
synchronization etc.) of used parallel computer.

P)compiex Of 1D DFFT parallel algorithm with binary data
exchange for defined workload s = 65 536 {s£p) as
function of number of computing nodes p. Charaofes(s,
P)complex IS SUb linear i. e. always less as illustratedupve
dominant paraIIeI(ideaI speed up without overheads) as a consequaince

communication,

computers is illustrated at the Figure 12. Frors hicture $=65536 :g
we can see that to more effective DFFT computing in | gme
computer network there is necessary another traespo -
algorithm. _—
-
——WK? —s—WKE L VIKG - ////
7Coon P —
- -
BCO00 » -
. P
50000 _/ ///
: - 0 o D8 & % @ 3 48 52 5B o0 T 7 G2 86 %0 14
B /.f"' P
Eg atmn y i
= o » / Figure 14. lllustration of S(S, p)complex @s factor of computing nodes number
rd p-
“C0o0 //
. . L Figure 15 illustrates isoefficiency functions wW(spiex of
e o o S 1D DFFT parallel algorithm. For lower values of Ef9
— W3 185 72 E0) 13682 0173 (0,1; 0,2; 0,3; 0,4; 0,45) to the threshold (E 33),we have
i I i3 8 16187 B33 used based on performed analysis in theoreticat par
VB 200 FES] 3348 13097 6807 d . f ” A )
Matrix dimension [mxmn]| CompUte USIng 0 OWIng expreSSIon

Figure 12. The influence of the network load on the matrix dimension.
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considered the Cooley-Tukey algorithm for one
dimensional s-point DFFT parallel algorithm withnary
data exchange. We can see that this parallel &hgoris
essentially better scalable for the hypercube [mral
architecture as for the mesh parallel computers ithplies
better architecture of communication network in éngube
for parallel solution of 1D DFFT with binary datachange
(lover communication latency). This verified reguitidea
documents important role of parallel computer aectiure

t
W(S)complex = slogs = Ct_j plog p

and the values above the threshold of efficienayction
were computed on following relation

t
W(S)complex = Ct_w pCtW/tc Iog ]
c

to the whole performance of given parallel alganthTrhe
W / scalability of an algorithm-architecture combinatio
o000 determines its capacity to use effectively an iasesl
/ number of computing nodes p.
X f —+—Eq1
4000 —+E02 E=04
/ -
30000 B04 120000
/ —¥%— E045] W
20000 L 100000 1
10000 /-/././l/l/l/l 80000 Hypercube
T > —— HYp
K g e A g Mesh
e S 60000
PP LS EE L PSS
40000 y |
p

Figure 15. I ssoefficiency function w(S)compiex Of 1D DFFT (E =0,1; 0,2; 0,3; 20000

0,4; 0,45).

a ¥
C 500

1000 1500 2000 2500

Figure 16 illustrates issoefficiency functions Ww{s)iex
1D DFFT on hypercube parallel computer for the galof
E(S, Plompex= 0,5 and E(S, Pympiex=0,55. From illustrated
curves at Figure 18 we can see in theoretical giathis
section predicted stormy growth of issoeficiencydtion
W(S)omplex i€ Stormy tendency of algorithm scalability for
analyzed parallel algorithm 1D DFFT with binary alat
exchange past the threshold.

Figure 17. Influence of parallel computer architecture to scalability.

8. Conclusions

Performance evaluation as a discipline has replyated
proved to be critical for design and successful o$e
parallel computers and parallel algorithms tooth& early

Figure 16. Issoefficiency function W(Scompiex Of 1D DFFT (E =0,5; 0,55).

W 300818 stage of design, performance models can be uspject
the system scalability and evaluate design altermt At
2508408 the  production  stage, performance  evaluation
methodologies can be used to detect bottlenecks and
2005% subsequently suggests ways to alleviate them. Ainaly
L5068 505 | methods (order analysis, queuing theory systemsPaatid
8- E05 nets), simulation, experimental measurements, a#uich
10008 modeling methods have been successfully used fer th
evaluation of system and its components too. Via th
50007 / extended form of complex isoefficiency concept vaveéh
N R NP S SO | iIIusIt_raéed its_ concr(TlteI u'lsing. tr(]) predicate thdgraerance in
e N applied matrix parallel algorithms.
FEPESEC SIS FFES To derive complex isoefficiency function in anatgi
P way it is necessary to derive al typical used dote for

performance evaluation of parallel algorithms inlihg
their overhead function h(s, p). Based on thessiogls we

Figure 17 illustrates influence of parallel compute are able to derive complex issoefficiency functams real

architecture to its algorithm scalability based given

criterion to evaluate and predict performance ofalbel

efficiency for E(S, pbmpex = 0,4 according the derived algorithms alsol for. theoretical (not existed)_ platal
conclusions in theoretical part of this section. Weomputers. So in this way we can say that this gsec

includes complex performance evaluation including
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performance prediction. [11]
This paper continues in applying complex analytical

modeling to another group of matrix parallel alons

(MPA) which is characterized by decreasing numbkr o

decomposed matrix elements (decreasing of comp)exit [12]

process of parallel execution. To present this grauMPA

we have chosen discrete fast Fourier transform [DFS

Pa with its intensive communication complexity. On[13]

various real examples of the DFFT we have described

complexity determination of PA not only for illuated
DFFT PA but also for other similar MPA. The consiete 14
classic massive parallel computers (hypercube, Jraessbn
actually dominant parallel computers NOW and Glids %15]

0
workstations (NOW) or its higher integration paehll
computers named as Grid (integrated network of NOWAE]
massive parallel computers but NOW and Grid beltng [17]
more flexible and perspective parallel computers.

complex analyzed examples we have been evaluated so
obvious that in some cases using of network
networks) could be less effective than on innovatedsic
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