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Abstract: Parallel principles are the most effective way how to increase parallel computer performance and parallel 
algorithms (PA) too. In this sense the paper is devoted to a complex performance evaluation of chosen PA. At first the paper 
describes very shortly PA and then it summarized basic concepts for performance evaluation of PA. To illustrate the analyzed 
evaluation concepts the paper considers in its experimental part the results for real analyzed examples of discrete fast Fourier 
transform (DFFT). These illustration examples we have chosen first due to its wide application in scientific and engineering 
fields and second from its representation of similar group of PA. The basic form of parallel DFFT is the one-dimensional 
(1-D), unordered, radix–2 algorithm which uses divide and conquer strategy for its parallel computation. Effective PA of 
DFFT tends to computing one – dimensional FFT with radix greater than two and computing multidimensional FFT by using 
the polynomial transfer methods. In general radix - q DFFT is computed by splitting the input sequence of size s into q 
sequences each of them in size n/q, computing faster their q smaller DFFT’s, and then combining the results. So we do it for 
actually dominant asynchronous parallel computers based on Network of workstations (NOW) and Grid systems. 

Keywords: Parallel Computer, NOW, Grid, Parallel Algorithm (PA), Matrix PA, Decomposition, Performance Modeling, 
Optimization, Issoeficiency Function, Numerical Integration, Discrete Fast Fourier Transform (DFFT), 
Overhead Function 

 

1. Introduction 
Parallel and distributed computing has been evolved as 

two separate research disciplines. Parallel computing has 
addressed problems of communication and intensive 
computation on highly-coupled computing nodes while 
distributed computing has been concerned with 
coordination, availability, timeliness, etc., of more likely 
coupled computing nodes. Current trends, such as parallel 
computing on networks of high performance computing 
nodes (workstations) and Internet computing, suggest the 
advantages of unifying these two research disciplines. In 
relation to these trends we have developed a flexible model 
of computation that supports both parallel and distributed 
computing [11]. 

Parallel and distributed computing share the same basic 
computational model consisting on physically distributed 
parallel processes that operate concurrently and interact 
with each other in order to accomplish a task as a whole. In 
parallel computing, processes are assumed to be placed 
closer to each other and they could communicate frequently 

and hence the ratio of computation/communication of 
parallel applications is usually much smaller than that in 
distributed applications. On the other hand, distributed 
computing focuses on parallel processes that could be 
allocated in a wide area i. e., communication between some 
parallel processes is assumed to be more costly than in 
parallel computing.  

A number of recent trends point to a convergence of 
research in parallel and distributed computing. First, 
increased communication bandwidth and reduced latency 
make geographical distribution of computing nodes less of 
a barrier to parallel computing. Second, the development of 
architecture neutral programming language, such as Java, 
provides a virtual computational environment in which 
computing nodes appear to be homogenous. Finally, 
increased client/server computing is adopting symmetrical 
multiprocessor architecture (SMP), often multiple 
processors or cores with a shared memory in a single 
workstations. While such architectures are less scalable 
than networks of computers, some parallel programs with 
high communication traffic may execute on them more 
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efficiently. Another important trend is a convergence of 
parallel and distributed computing is the potential of 
Internet computing. With improvements in network 
technology and communication middleware, one can view 
the Internet as a huge of parallel and distributed computers. 
Because connectivity on the Internet can be intermittent 
variable of the bandwidth, the ability of processes as well 
as data to migrate becomes critical. In turn, this requires a 
satisfactory treatment of mobility. 

2. Architectures of Parallel Computers 
It is very difficult to classify all existed parallel 

computers. We have tried to classify them from the point of 
program developer [1, 9] to the two following basic groups 
according Figure1. 

• synchronous parallel computers. They are often used 
under central control, that means under the global 
clock synchronization (vector, array system etc.) or a 
distributed local control mechanism (systolic systems 
etc.). The typical architectures of this group of parallel 
computers illustrate Figure 1 on its left side 

• asynchronous parallel computers. They are composed 
of a number of fully independent computing nodes 
(processors, cores, and computers). To this group 
belong mainly various forms of computer networks 
(cluster), network of workstation (NOW) or more 
integrated Grid modules based on NOW modules. The 
typical architectures of asynchronous parallel 
computers illustrate Figure 1 on its right side. 

 

Figure 1. Suggested classification of parallel computers. 

2.1. Dominant Parallel Computers 

2.1.1. Network of Workstations 
There has been an increasing interest in the use of 

networks (Cluster) of workstations connected together by 
high speed networks for solving large computation intensive 
problems [5]. This trend is mainly driven by the cost 
effectiveness of such systems as compared to massive 
multiprocessor systems with tightly coupled processors and 
memories (Supercomputers). Parallel computing on a cluster 
of workstations connected by high speed networks has given 
rise to a range of hardware and network related issues on any 

given platforms [15, 26]. Load balancing, inter processor 
communication (IPC), and transport protocol for such 
machines are being widely studied [20, 21].  

This trend is mainly driven by the cost effectiveness of 
such systems as compared to massive multiprocessor 
systems with tightly coupled processors and memories 
(Supercomputers). With the availability of high 
performance personal computers (workstation) and high 
speed communication networks (Infiniband, Quadrics, 
Myrinet), recent trends are to connect a number of such 
workstations to solve complex problems in parallel on such 
NOW modules [24, 28]. 

 

Figure 2. Illustration of NOW. 

Principal example of NOW module is at Figure 2. The 
individual workstations PCi are mainly powerful 
workstations based on symmetrical multiprocessor or 
multicore platform (SMP). 

2.1.3. Grid Systems 
Grid represents a new way of managing and organizing 

of individual resources (processors, memory modules, I/O 
devices etc.) [33]. Grids go out conceptually from a 
structure of virtual parallel computer based on NOW 
modules. We have illustrated at Figure 3 typical integrated 
Grid module based on NOW modules. Any classic parallel 
computer (massive multiprocessors as supercomputers etc.) 
could be a member of any NOW module [29]. 

3. Parallel Algorithms 
In principal we can divide parallel algorithms (PA) to the 

following groups 
• parallel algorithm using shared memory (PAsm). These 

algorithms are developed for parallel computers with 
shared memory as actual modern symmetrical 
multiprocessors (SMP) or multicore systems on 
motherboard 

• parallel algorithm using distributed memory (PAdm). 
These algorithms are developed for parallel computers 
with distributed memory as actual NOW system and 
their higher integration forms named as Grid systems 

• hybrid PA which combine using of both previous PA 
(PAhyb). This trend support applied using of NOW 
consisted from computing nodes based on SMP 
parallel computers. 
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Figure 3. Grid as integration of NOW network. 

The main difference between PAsm and PAdm is in form 
of inter process communication (IPC) among created 
parallel processes [12, 17]. Generally we can say that IPC 
communication in parallel system with shared memory can 
use more communication possibilities (all the possibilities 
of communication in shared memory) than in distributed 
systems (only network communication). 

3.1. Developing Process of PA 

The role of programmer is for the given parallel 
computer and for given application problem to develop the 
effective parallel algorithm. This task is more complicated 
in those cases, in which we have to create the conditions for 
any parallel activities in form of dividing the sequential 
algorithm to their mutual independent parts named parallel 
processes. Principally development of any parallel 
algorithms (shared memory, distributed memory) includes 
following activities [10, 18]. 

• decomposition - the division of the application 
problem into a set of parallel processes and their data 

• mapping - the way how created parallel processes and 
data are distributed among the nodes of parallel 
computer 

• inter-process communication as a way of parallel 
processes cooperation and synchronization 

• tuning – performance optimization of developed 
parallel algorithm 

The most important step is to choose the best 
decomposition method for given complex problem. To do 
this it is necessary to understand the concrete complex 
problem, shared data domain, the used algorithms and the 
flow of control in given complex problem [13, 23]. 

 

Figure 4. Developing steps in parallel algorithms. 

3.1.1. Decomposition models 
Decomposition strategy defines potential dividing of 

given complex problem to their independent parts (parallel 
processes) in such a way, that they could be performed in a 
parallel way through computing nodes of given parallel 
computer. Existence of some decomposition method is 
critical assumption to possible parallel algorithm. Potential 
decomposition degree of given complex problem is crucial 
for effectiveness of parallel algorithm [3, 7]. The chosen 
decomposition method drives the rest of program 
development. This is true is in case of developing new 
application as in porting serial code. The decomposition 
method tells us how to structure the code and data and 
defines the communication topology [10, 25]. The used 
decomposition models are as follows 

• naturally parallel decomposition 
• domain decomposition 
• control decomposition 

� manager/workers 
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� functional 
• divide-and-conquer strategy 
• decomposition of big problems 
• object oriented programming (OOP). 
To the illustration of developing effective parallel 

algorithm and the way of its complexity evaluating we used 
applied problem of discrete fast Fourier Transform (DFFT). 
In relation to it we illustrate the principle of divide and 
conquer decomposition model (DM), which is used to 
decompose DFFT. 

 

Figure 5. Illustration of divide and conquer DM (n=8). 

4. The Role of Performance 
Modeling techniques allow to model contention both at 

hardware and software levels by combining approximate 
solutions and analytical methods [30]. We would like to 
prefer analytical methods although the complexity of 
parallel computers and parallel algorithms could limit the 
applicability of these techniques. To the verification of 
analytical results we would like to use simulation method or 
in some cases experimental measuring. 

4.1. Performance Evaluation Methods 

To performance evaluation of parallel algorithms we can 
use analytical approach to get under given constraints 
analytical laws or some other derived analytical relations. 
We can use following solution methods to get a function of 
complex performance 

• analytical 
� order (asymptotic) analysis [2, 12] 
� Petri nets [4] 
� queuing theory [8, 14] 

• simulation [19] 
• experimental 

� benchmarks [16] 
� modeling tools [22] 
� direct measuring [6, 27]. 

Analytical method is a very well developed set of 
techniques which can provide exact solutions very quickly, 
but only for a very restricted class of models. For more 
general models it is often possible to obtain approximate 
results significantly more quickly than when using 
simulation, although the accuracy of these results may be 
difficult to determine [31].  

Simulation is the most general and versatile means of 
modeling systems for performance estimation. It has many 
uses, but its results are usually only approximations to the 
exact answer and the price of increased accuracy is much 

longer execution times. They are still only applicable to a 
restricted class of models in spite of its computation and 
time requirements.  

Evaluating system performance via experimental 
measurements is a very useful alternative for computer 
systems. Measurements can be gathered on existing systems 
by means of benchmark applications that aim at stressing 
specific aspects of computers systems. Even though 
benchmarks can be used in all types of performance studies, 
their main field of application is competitive procurement 
and performance assessment of existing parallel computers 
and parallel algorithms. 

5. Performance Evaluation Criterions of 
PA 

To evaluations of parallel algorithms there have been 
developed several fundamental concepts. Tradeoffs among 
these performance factors are often encountered in real-life 
applications. 

5.1. Basic Performance Concepts 

5.1.1. Parallel Execution Time 
We have defined parallel execution time T(s, p) as the 

execution time performed by p computing nodes 
(processors, cores, workstations) of given parallel computer 
and s defines input size (load) of given problem. Then T(s, 
1) defines execution time for classic sequential computer. 

5.1.2. Speed Up 
The speed up factor S(s, p) we can define as 

),(

)1 ,(
),(

psT

sT
psS =  

Speed up factor (dimensionless) is a measure obtained at 
given complex algorithm using p computing nodes solving 
given problem with its problem size s. Since S(s, p) ≤ p, we 
would like to design algorithms that achieve S(s, p) ≈ p. 

5.1.3. Efficiency 
The efficiency for processor system with p computing 

nodes is defined by 
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p
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The efficiency is always less than 1. A value of E(s, p) 
approximately equal to 1 for given p, indicates that such 
parallel computer, using p computing nodes runs 
approximately p times faster than it does on sequential 
computer. 

5.1.4. The Isoefficiency Concept 
The workload w of an algorithm often grows in the order 

O(s), where s is the problem size. Thus, we denote the 
workload w = w(s) as a function of problem size s. In 
parallel computing is very useful to define an isoefficiency 
function relating workload to parallel computer size p 
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which is needed to achieve given fixed efficiency E (s, p). 
Let h(s, p) be the total overhead function consisted from 
existed overhead latencies involved in PA implementations. 
This overhead function is a function of both parallel 
computer size p and input problem size s. Then we can 
define efficiency E(s, p) of a parallel algorithm as 

),()(

)(
),(

pshsw

sw
psE

+
=  

The workload w(s) corresponds to useful performed 
parallel computations while the overhead function h(s, p) 
represents latency times attributed to communication of 
parallel processes, synchronization, waiting to shared 
resources etc. In general, the overheads increase with 
respect to increasing both values of parameters p and s. The 
question is hinged on relative growth rates between w(s) 
and h(s, p). With a fixed problem size the efficiency E(s, p) 
decreases as p increase. The reason is that the overhead 
function h(s, p) increases with p. With a fixed parallel 
computer size, the overhead function h(s, p) grows slower 
than the workload w(s). Thus the efficiency E(s, p) 
increases with increasing problem size s for a fixed parallel 
computer size. Therefore, one can expect to maintain a 
constant efficiency E(s, p) if the workload w(s) is allowed 
to grow properly with increasing parallel computer size p. 

5.2. Complex Performance Modeling of PA 

Complex performance modeling of PA we qualify as 
modeling with considering overhead function h(s, p) in all 
defined fundamental performance concepts T(s, p), S(s, p), 
E(s, p) and w(s). 

5.2.1. Complex Parallel Execution Time 
Complex parallel execution time T(s, p)complex will be 

defined as the whole parallel execution time included 
overhead function h(s, p) as follows 

p) h(s,  ),( ),( += psTpsT complex  

5.2.2. Complex Speed Up Factor 
The complex speed S(s, p)complex we can rewrite as 

complex
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5.2.3. Complex Efficiency 
Similarly the complex efficiency E(s, p)complex we can 

rewrite as 
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5.2.4. Isoefficiency Function 
We rewrite equation for efficiency concept E(s, p) as E(s, 

p) = 1/(1 - h(s, p) / w(s). In order to maintain a constant E(s, 
p), the workload w(s) should grow in proportion to the 
overhead h(s, p). This leads to the following relation 
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The factor C = E(s, p)/1 - E(s, p) is for a given efficiency 
E(s, p) constant. We can then define the isoefficiency 
function as follows 

),()( pshCsw =  

5.2.5. Overhead Function 
Overhead function h (s, p) defines coincident overhead 

latencies of given PA (shared memory, distributed memory, 
hybrid).The typical existed overheads of PA are as follows 

• communication latency T(s, p)comm 
• parallelization latency T(s, p)par 
• synchronization latency T(s, p)syn 
• waiting latency to use shared resource T(s, p)wait 
• influence of parallel computer architecture T(s, p)arch 
• specific latency of given PA T(s, p)spec. 
Taking into account all named overhead latencies the 

overhead function h(s, p) is as follows 

( )∑= specarchsynparcomm psTpsTpsTpsTpsTpsh ),(,),(,),(,),(,),(),(  

and the complex parallel execution time will be defined as 
follows  

),(),(),( pshpsTpsT compcomplex +=  

In general influence of at least most important overhead 
latencies is necessary to take into account in performance 
modeling of parallel algorithms because their influence to 
complex parallel execution time T(s, p)complex could be 
dominant. The illustration of such dominant influence of 
communication overhead latency T(s, p)comm  to own 
parallel computation time T(s, p)comp is shown at Figure 6. 

 

Figure 6. Illustration of dominant influence of T(s, p)comm to T(s, p)comp. 

5.2.6. Modeling of PA Latencies 

5.2.6.1. Own Parallel Computation Time 
Own computation time T (s, p)comp of  PA is given 

through quotient of maximal time of running parallel 
processes i. e. as product of complexity Cpp (complexity of 
maximal parallel process) and a parameter tc as an average 
value of defined performed computation units (instruction, 
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block of instructions etc.) divided by number of used 
computing nodes p of used parallel computer. Parallel 
computation execution time T(s, p)comp is then given as 
follows  

 
.

)p ,(
p

tC
sT cpp

comp =  

In general execution time of sequential and parallel 
algorithms are given through multiplicity product of 
algorithm complexity Calg (dimensionless number of 
considered computation units) and a parameter tc as an 
average value of performed considered operations 
(instructions, computing steps etc.).  

For asymptotic complexity of parallel execution time T(s, 
p)comp supposing well paralleled problems is then given as 

0
.

lim)p ,(  == ∞→ p

tC
sT cpp

pcomp  

5.2.6.2. Modeling of Overhead Latencies 
Overhead latencies are defined with its overhead 

function h(s, p). For every concrete parallel algorithm 
(shared memory, distributed memory, hybrid), or a similar 
group of PA, we are able to define their overhead function 
h(s, p) considering at least the most important overhead 
latencies of given PA. The individual latencies of given PA 
comes out from used decomposition model. Complex 
modeling based on considering overhead function h(s, p) of 
given PA opens unified complex modeling of any 
developed parallel algorithm. 

5.2.6.2.1. Modeling of Communication Latency  
Inter process communication of parallel processes (IPC) 

T(s, p)comm (communication latency) influences in a 
decisive degree used decomposition model of PA. 
Obviously it is higher in distributed computing than in 
parallel one. For example world known parallel computing 
model with shared memory PRAM (Parallel Random 
Access Machine) does not consider communication latency. 
To model communication latency we have applied theory 
of complexity to inter process communication of parallel 
processes in a similar way as in modeling computation 
latency focusing to a number of performed communication 
steps (communication complexity). Then communication 
latency T(s, p)comm is given through number of performed 
communication steps (communication complexity) for used  
decomposition model of given PA. Every communication 
step within parallel computer based on NOW module we 
can characterized through two basic communication 
parameters as follows 

• communication parameter ts defined as parameter for 
initialization of communication step (start up time) 

• communication parameter tw as parameter for 
transmission latency of considered data unit (typically 
word). 

Illustration of defined communication parameters is at 
Figure 7. These communication parameters ts, tw are 

constants for concrete parallel computer [10].   
The whole communication overhead latency is given 

through two basic following functions 
• function f1(ts) which represents the whole number of 

communication initializations for given parallel 
process 

• function f2(tw) which correspondents to whole 
performed data unit transmission (usually time of 
word transmission for given parallel computer) in 
given parallel process. 

 

Figure 7. Illustration of communication parameters. 

These two defined functions limit performance of used 
parallel computer on defined NOW module of parallel 
computer. Then using a superposition we can write for 
communication latency in NOW module T(s, p)comm as 
follows  

)()(),( 21 wscommNOW tftfpsT +=
 

To the practical illustration of communication overheads 
we used discrete fast Fourier transform (DFFT) 
representing typical matrix parallel algorithm with divide 
and conquer decomposition model.  

To derive the whole communication latency T(s, p)comm 
in other dominant parallel computers based on integration 
of NOW modules (network of NOW modules named as 
Grid) we need to extend the considered two communication 
functions f1(ts), f2(tw) in NOW module by third function 
component f3(th), which will determine potential multiple 
crossing used NOW modules of integrated parallel 
computer. This third function is characterized through 
multiplying hops parameter lh among NOW modules 
(generally NOW networks) and average communication 
latency time of jumped NOW modules with the same 
communication speed or a sum of individual 
communication latencies for jumped NOW modules with 
their different communication speed. Then in general to the 
whole communication latency in Grid is valid 

∑
=

++=
u

i
hwswscommGRID lttftftfpsT

1
321 ),,()()(),(  

In general communication latency time f3(ts, tw, lh) is 
time to send data message with m words in one 
communication step among integrated NOW modules with 
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lh hops. The communication time for one communication 
step is then given as ts+ m twlhth, where the new parameters 
are. 

• lh is the number of network hops 
• m is the number of transmitted data units (usually 

words) 
• th is average communication time for one hop. 
The new communication parameters th, lh depend from a 

concrete architecture of Grid communication network and 
used routing algorithm. In [11] we have developed unified 
models which could help to establish these parameters for 
dominant parallel computers. For the complex analytical 
modeling there is necessary to derive for given parallel 
algorithm or a group of similar algorithms (matrix parallel 
algorithms) needed communication functions and that 
always individually for any decomposition strategy) 
isoefficiency function and defined technical parameters 
(computational, communication) for used parallel computer 
(NOW, Grid). 

5.2.6.2.2. Modeling of Parallelization Latency 
The parallelization latency T(s, p)par represents overhead 

latency of PA though parallelization of given complex 
problem. Its consequences are mostly projected as 
additional communication complexity to T(s, p)comm. 

5.2.6.2.3. Modeling of Synchronization Latency 
The third part of h(s, p) function T(s, p)syn we can 

eliminate through optimization of load balancing among 
individual computing nodes of used parallel computer. For 
this purpose we would measure performance of used 
computing nodes for given developed parallel algorithm 
and then based on these achieved results we are able to 
redistribute better workload of computing nodes. This 
activity we can repeat until we have optimal redistributed 
input load (optimal load redistribution based on real 
performance results). 

5.2.6.2.4. Modeling of Influence of Parallel Computer 
Architecture 

The fourth part of h(s, p) overhead function T(s, p)arch 
(influence of parallel computer architecture) we will model 
with defined technical parameters tc, ts, tw, which are 
constant for given parallel computer [10]. 

5.2.6.2.5. Modeling of Waiting Latency 
The fifth part of h(s, p) overhead function T(s, p)wait 

represents whole waiting times to use shared resources of 
parallel computer (memory modules, communication channels, 
I/O devices etc.). This kind of overhead latency is typical in 
using shared technical resources in a massive way (shared 
memory modules, communication channels, I/O devices etc.). 
We can only limit it by optimal allocation of shared resources. 
To model this overhead latency in an analytical way is a very 
crucial problem. We have been modeling it in an analytical 
way applied queuing theory results in combination with 
experimental measurements [10, 11]. 

 

5.2.6.2.6. Modeling of Specified PA Latency 
The sixth part of h(s, p) overhead function T(s, p)spec 

(influence of specified PA) represents any other possible 
specific overhead latency of given parallel algorithm. 

5.2.6.3. Asymptotic Analytical Modeling of PA  
Most of to this time known results in analytical modeling 

of PA in the world for extended classical parallel computers 
with shared memory (supercomputers, SMP and SIMD 
systems) or parallel computers with distributed memory 
based on some cluster of computing nodes mostly did not 
consider existed overhead influences of PA supposing that 
they are lower in comparison to the own computation 
latency T(s, p)comp of performed computations . In this 
sense analysis and modeling of complexity in parallel 
algorithms (PA) were rationalized to the analysis of only 
computation complexity of PA, that mean that the defined 
function of control and communication overheads h(s, p) 
were not a part of derived relations for the whole parallel 
execution time.  

The complexity function in the relation for isoefficiency 
supposed, that dominate influence to the whole complexity 
of PA has computation complexity of performed massive 
computations. Such assumption has been proved to be true 
mainly in using classical parallel computers in the world 
(supercomputers, massive SMP – shared memory, SIMD 
architectures etc.). To map mentioned assumption to the 
relation for asymptotic isoefficiency w(s) means that 

[ ] [ ]compcompcomp psTpsTpshpsTsw ),(max),(),(,),(max)( =<=  

But in our unified complex modeling of PA possible 
influence of any part of defined overhead function h(s, p) 
could be dominant in a nonlinear way. Then for complex 
isoefficiency function it is necessary to consider it as 
follows 

[ ]),(,),(max)( pshpsTsw comp=  

6. Discrete Fourier Transform 
The discrete Fourier transform (DFT) has played an 

important role in the evolution of digital signal processing 
techniques. It has opened new signal processing techniques 
in the frequency domain, which are not easily realizable in 
the analogue domain. The DFT is a linear transformation 
that maps n regularly sampled points from a cycle of a 
periodic signal, like a sine wave, onto an equal number of 
points representing the frequency spectrum of the signal. 
The discrete Fourier transform (DFT) is defined as [3, 7] 
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and the inverse discrete Fourier transform (IDFT) as 
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for 0 ≤ k ≤ N-1. For N real input values X0, X1, X2, …, XN-1, 
transforms generates N complex values Y0, Y1, Y2, …, YN-1. 

If we use  / 2 Niew π−= , that is w is N–th root of complex 
number i in complex plane we get 
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and in inverse as 
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Variable w is a basic part of DFFT computations and is 
named as twiddle factor. Defined transformation equations 
are on principle linear transformations. 

A direct computation of the DFT or the IDFT requires N2 
complex arithmetic operations. For example the time 
required for just the complex multiplication in a 1024point 
DFT is Tmult=1024 . 4. Treal, where we assumed that one 
complex multiplication corresponds to four real 
multiplications and the time required for one real 
multiplication (Treal) is known for given computer. But with 
this approach we could take into account only the 
computation times and not also the overheads delays 
connected with implantation on parallel way. 

6.1. The Discrete Fast Fourier Transform 

DFFT is a fast method of DFT computation with time 
complexity O (N / 2 log2(N)) in comparison to sequential 
DFT algorithm complexity as O(N2). For a quick 
computation of the DFT is used adjustment of 
Cooley-Tukey [7]. To come to final adjustment we start 
with a modified form of the DFT.  
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In general demanded sum is divided to two parts using 
decomposition strategy “divide-and-conquer”. Its principle 
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where the first part of sum contents result part with even 
indexes and second part with odd indexes. In this sense we 
get  
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Every part of sum means DFT on N/2 values with even 
indexes and N/2 values with odd indexes. Then we can 

formally write ( )odd
k

evenk YwYY +=
2

1  for k=0, 1, 2, ...., 

N-1, whereby Yeven is N/2 – point DFT on the values with 
even indexes X0, X2, X4, … and Yodd is N/2 – point 
transformation on values X1, X3, X5, ….Supposed that k is 
limited to first 0, 1, …, N/2–1, N/2 values from whole 
number of N values. The whole series we can divide to two 
following parts 
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because wk+N/2 = - wk, where 0 0 ≤ k < N/2. In this way we 
can compute Yk and Yk+N/2 in a parallel way using two N/2 
– point transformations according illustration at Figure 8. 

Every from N/2 – point DFT we can again divide to next 
parts, that is to two N/4 – point DFT. Applied 
decomposition strategy could follows till to exhausting 
dividing possibility for given N. Dividing factor is named 
as radix - q, and that for dividing number higher than two. 

 

Figure 8. Divide and conquer decomposition strategy for DFFT. 

The difference in parallel execution times between the 
direct implementation of the DFT and DFFT algorithm is 
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significant for large N. Direct calculation of the DFT or 
IDFT, according to the following program requires N2 
complex arithmetic operations. 

Program Direct_DFT; 
var 
 x, Y: array[0..Nminus1] of complex; 
begin 
 for k:=0 to N-1 do 
 begin 
  Y[k] :=x[0]; 
  for n:=1 to N-1 do 
   Y[k] := Y[k] + Wnk * x[n]; 
 end; 
end. 
The difference in execution time between a direct 

computation of the DFT and the new DFFT algorithm is 
very high for large N. For example the time required for the 
complex multiplication in a 1024-point FFT is Tmult = 0,5 . 
N .log2(N) . 4 .Treal = 0,5 . 1024 .log2(1024) . 4 .Treal, where 
the complex multiplication corresponds approximately to 
four real multiplications. 

6.2. Parallel Algorithms of Discrete Fast Fourier 
Transform 

Cooley and Tukey have developed the fast DFFT 
algorithm which requires only O(N.log2(N)) operations. 
The difference in execution time between a direct 
computation of the DFT and the new DFFT algorithm is 
very large for large N. For example the time required for 
just the complex multiplication in a 1024-point FFT is 
Tmult= 0,5.N log2(N).4.Treal = 0,5.1024. log2(1024).4. Treal, 
where the complex multiplication corresponds 
approximately to four real multiplications. The basic form 
of parallel DFFT is the one-dimensional (1-D), unordered 
and radix–2 algorithms (using divide and conquer strategy 
according the principle at Figure 9). The effective parallel 
computing of DFFT tends to computing one dimensional 
DFFT with radix greater than two and computing 
multidimensional FFT by using the polynomial transfer 
methods. In general a radix-q DFFT is computed by 
splitting the input sequence of size s into a q sequences of 
size n/q each, computing faster the q smaller DFFT, and 
then combining the result. For example, in a radix-4 FFT, 
each step computes four outputs from four inputs, and the 
total number of iterations is log4 s rather than log2 s. The 
input length should, of course, be a power of four. Parallel 
formulations of higher radix strategies (radix-3, radix-5) 
1-D or multidimensional DFFT are similar to the basic 
form because the underlying ideas behind all sequential 
DFFT are the same [32]. An ordered DFFT is obtained by 
performing bit reversal (permutation) on the output 
sequence of an unordered DFFT. Bit reversal does not 
affect the overall complexity of a parallel implementation. 

6.3. Two-Dimensional 2D DFFT 

Processing of images and signals often requires the 

implementation of a multi-dimensional discrete fast Fourier 
transform (DFFT).Simplest method of computation of two 
dimensional DFFT (2D DFFT)is computation of one 
dimensional DFFT (1D DFFT) on each row and then 
follows computation of one dimensional DFFT for each 
column. This illustrates Figure 9. 

 

Figure 9. Two dimensional DFFT. 

6.4. Analyzed Examples 

6.4.1. One Element per Processor 
This is the simplest example of complexity evaluation of 

the DFFT. In this case we consider a p=s parallel processor 
(d-dimensional hypercube architecture) to compute s-point 
DFFT. A hypercube is a multidimensional mesh of 
processors with exactly two processors in each dimension. 
A d-dimensional hypercube consists of p=2d processors. In 
a d-dimensional hypercube each processor is directly 
connected to d other processors. In this case we can simply 
derive that T(s, 1) = s log s and T(s, p) = log s. Then 
speedup factor S(s, p) = p and system efficiency E(s, p) = 1. 
Such a formulation of DFFT algorithm for a d-dimensional 
hypercube calculation is cost optimal but for the higher 
values of s and use of p=s processors could be only 
hypothetical. 

6.4.2. Multiple Elements per Processor 
This is very real case of practical DFFT parallel 

computations. In this example we examine implementing 
the binary exchange algorithm to compute an s-point DFFT 
on a hypercube with p processors, where p > s. Assume that 
both s and p are powers of two. According the Figure 10, 
we partition the sequences into blocks of s/p contiguous 
elements and assign one block to each processor. Assume 
that the hypercube is d-dimensional (p=2d) and s=2r. Figure 
10 shows that elements with indices differing in their d (=2) 
most significant bits e mapped onto different processors. 
However, all elements with indices having the same r-d 
most significant bits are mapped onto the same processor. 
Hence, this parallel DFFT algorithm performs inter process 
communication only during the first d = log p of the log s 
iterations. There is no communication during the rested r – 
d iterations. 

Each communication operation exchanges s/p words of 
data. Since all communications takes place between 
directly-connected processors, the total communication 
time does not depend on the type of routing. Thus the time 
spent in communication in the DFFT algorithm is ts log p + 
tw (s/p) log p, where ts is the message start up time and tw is 
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the per-word transfer time. These times are known for the 
concrete parallel system. If a complex multiplication and 
addition pair takes time tc, then the parallel run time for 
s-point DFFT on a p-processor hypercube is as follows 

p
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s
tpsT wsccomplex logloglog),( ++=  

The expressions for complex speedup S(s, p)complex, 
efficiency E(s, p)complex and defined constant C (part of 
issoefficiency function) are given by the following 
equations 
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Figure 10. 16-point DFFT on four processors. 

6.4.3. Multiple Elements per Processor with Routing 

This is a most complicated, but very real, case in parallel 
computing. It is typical for the parallel architectures, in 
which the processors do not have enough direct connected 
processor to compute the given parallel algorithm. Then the 
communication of not direct connected processors or 
computers is realized through a number (hop) of other 
processors or communication switches according some 
routing algorithm.  

The time for sending a message of size m between 
processors, that are lh hops apart is given by ts,+ thlh where 
ts is the starting message time and th is the overhead time 
for one hop. The values ts, th, lh depend from the 
architecture of parallel system (mainly its interconnection 

network) and routing strategy. If we can define these values 
for a concrete parallel system and routing strategy, cost 
performance tradeoffs are to be analyzed in a similar way 
than in previous case.  

6.4.3. Multiple Elements per Processor in NOW 
An example of our experimental parallel computer based 

on NOW we have illustrated at Figure 2. Based on this used 
NOW module communication overheads depends on 
topology of communication network and its communication 
parameters (transmission speed, bandwidth, transmission 
control etc.). To verify derived analytical results we have 
performed some simulation experiments in NOW module 
with DFFT’s PA. From performed experiments comes out 
that for effective parallel computing of DFFT the use of 
centralized massively parallel system should by preferred 
to asynchronous parallel computers based on NOW 
modules. At experimental testing we have used 
workstations of NOW parallel computer as follows 

• WS 1 – Pentium IV (f = 2.26 GHz) 
• WS 2 - Pentium IV Xeon (2 proc., f = 2.2 GHz) 
• WS 3 - Intel Core 2 Duo T 7400 (2 cores, f=2.16 

GHz) 
• WS 4 - Intel Core 2 Quad (4 cores, f = 2.5 GHz) 
• WS 5 - Intel SandyBridge i5 2500S (4 cores, f=2.7 

GHz). 

7. Results 
As scalable parallel computer we have defined any 

parallel computer in which the efficiency can be kept fixed 
as the number of computing nodes is increased, provided 
that the problem size is also increased. The scalability of a 
PA/parallel computer combination determines its capacity 
to use an increased number of computing nodes p 
effectively. We have considered the Cooley-Tukey 
algorithm for one dimensional s-point DFFT to maintain 
the same efficiency. Figure 11 illustrates the efficiency E(s, 
p)complex of the binary exchange DFFT parallel algorithm as 
a function of s on a 512 processors (computing nodes) 
hypercube parallel computer with its following technical 
parameters tc=2µs, tw= 4 µs and ts =25 µs. The threshold 
point is given as tc / (tc + tw) = 0,33. The efficiency initially 
increases rapidly with the problem size to the threshold, but 
then the efficiency curve platens out beyond the threshold. 
The binary exchange algorithm yields good performance on 
a hypercube provided that the communication bandwidth 
and the processing speed of the computing nodes are 
balanced. Efficiencies below a certain threshold can be 
maintained while increasing the problem size at a moderate 
rate with an increasing number of processors. We can say 
that the use of transpose algorithm will have much higher 
overhead than the binary exchange algorithm due to 
message start up time ts, but has a lower overhead due to 
per-word transfer time tw. As a result, either of the two 
algorithm formulations may be faster depending on the 
relative values of ts and tw. In principle supercomputers and 
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other architectures with common memory have ts very low 
in comparison to typical NOW or Grid. 

 

Figure 11. The efficiency E(s, p)complex of the DFFT binary exchange 
parallel algorithm. 

However, this threshold is very low if the 
communication bandwidth of the hypercube is low, 
compared to the speed of its processors. Therefore it is 
necessary to describe a different parallel formulation of 
DFFT for interconnection network of computer network. 
Such a formulation involves matrix transposition for an 
array of s-input points and hence we called it the transpose 
parallel algorithm. In principal we can say that the use of 
transpose PA will have a much higher overhead than the 
binary exchange algorithm due to message start up time ts, 
but has a lower overhead due to per-word transfer time tw. 
As a result, either of the two algorithm formulations may 
be faster depending on the relative values of ts and tw. In 
principle parallel computers with shared memory have ts 
very low in comparison to typical dominant parallel 
computers based on NOW and Grid. 

The influence of matrix dimension for DFFT to the 
communication overheads in computer network of personal 
computers is illustrated at the Figure 12. From this picture 
we can see that to more effective DFFT computing in 
computer network there is necessary another transpose 
algorithm.  

 

Figure 12. The influence of the network load on the matrix dimension. 

The performance results in parallel computer NOW 
based on Ethernet we have graphically illustrated for 2D 
FFT at the Figure 13. These results of 2D FFT parallel 
algorithm document increasing of both computation and 
communication parts in geometrically way with the 
quotient value nearly four for analyzed matrix dimensions 
and that in increasing matrix dimension mean to do twice 
more computation on columns and twice more on rows. 

 

Figure 13. Results in NOW for T(s, p)complex of 2DFFT for Ethernet. 

At Figure 14 we have illustrated parallel speed up S(s, 
p)complex of 1D DFFT parallel algorithm with binary data 
exchange for defined workload s = 65 536 (s=n2 / p) as 
function of number of computing nodes p. Character of S(s, 
p)complex is sub linear i. e. always less as illustrated p curve 
(ideal speed up without overheads) as a consequence of 
overhead latencies (architecture, communication, 
synchronization etc.) of used parallel computer. 

 

Figure 14. Illustration of S (s, p)complex as factor of computing nodes number 
p. 

Figure 15 illustrates isoefficiency functions w(s)complex of 
1D DFFT parallel algorithm. For lower values of E(s, p) 
(0,1; 0,2; 0,3; 0,4; 0,45) to the threshold (E = 0,33) we have 
used based on performed analysis in theoretical part 
computed using following expression 
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Figure 15. Issoefficiency function w(s)complex of 1D DFFT (E =0,1; 0,2; 0,3; 
0,4; 0,45). 

Figure 16 illustrates issoefficiency functions w(s)complex 
1D DFFT on hypercube parallel computer for the values of 
E(s, p)complex = 0,5 and E(s, p)complex =0,55. From illustrated 
curves at Figure 18 we can see in theoretical part of this 
section predicted stormy growth of issoeficiency function 
w(s)complex i.e stormy tendency of algorithm scalability for 
analyzed parallel algorithm 1D DFFT with binary data 
exchange past the threshold. 

 

Figure 16. Issoefficiency function w(s)complex of 1D DFFT (E =0,5; 0,55). 

Figure 17 illustrates influence of parallel computer 
architecture to its algorithm scalability based on given 
efficiency for E(s, p)complex = 0,4 according the derived 
conclusions in theoretical part of this section. We 

considered the Cooley-Tukey algorithm for one 
dimensional s-point DFFT parallel algorithm with binary 
data exchange. We can see that this parallel algorithm is 
essentially better scalable for the hypercube parallel 
architecture as for the mesh parallel computer. This implies 
better architecture of communication network in hypercube 
for parallel solution of 1D DFFT with binary data exchange 
(lover communication latency). This verified resulting idea 
documents important role of parallel computer architecture 
to the whole performance of given parallel algorithm. The 
scalability of an algorithm-architecture combination 
determines its capacity to use effectively an increased 
number of computing nodes p. 

 

Figure 17. Influence of parallel computer architecture to scalability. 

8. Conclusions 
Performance evaluation as a discipline has repeatedly 

proved to be critical for design and successful use of 
parallel computers and parallel algorithms too. At the early 
stage of design, performance models can be used to project 
the system scalability and evaluate design alternatives. At 
the production stage, performance evaluation 
methodologies can be used to detect bottlenecks and 
subsequently suggests ways to alleviate them. Analytical 
methods (order analysis, queuing theory systems and Petri 
nets), simulation, experimental measurements, and hybrid 
modeling methods have been successfully used for the 
evaluation of system and its components too. Via the 
extended form of complex isoefficiency concept we have 
illustrated its concrete using to predicate the performance in 
applied matrix parallel algorithms.  

To derive complex isoefficiency function in analytical 
way it is necessary to derive al typical used criterion for 
performance evaluation of parallel algorithms including 
their overhead function h(s, p). Based on these relations we 
are able to derive complex issoefficiency function as real 
criterion to evaluate and predict performance of parallel 
algorithms also for theoretical (not existed) parallel 
computers. So in this way we can say that this process 
includes complex performance evaluation including 
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performance prediction. 
This paper continues in applying complex analytical 

modeling to another group of  matrix parallel algorithms 
(MPA) which is characterized by decreasing number of 
decomposed matrix elements (decreasing of complexity) in 
process of parallel execution. To present this group of MPA 
we have chosen discrete fast Fourier transform (DFFT) as 
Pa with its intensive communication complexity. On 
various real examples of the DFFT we have described 
complexity determination of PA not only for illustrated 
DFFT PA but also for other similar MPA. The considered 
complex analyzed examples we have been evaluated so on 
classic massive parallel computers (hypercube, mesh) as on 
actually dominant parallel computers NOW and Grid. It is 
obvious that in some cases using  of network of 
workstations (NOW) or its higher integration parallel 
computers named as Grid (integrated network of NOW 
networks) could be less effective than on innovated classic 
massive parallel computers but NOW and Grid belong to 
more flexible and perspective parallel computers. 
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