

American Journal of Networks and Communications
2014; 3(5-1): 15-28
Published online July 30, 2014 (http://www.sciencepublishinggroup.com/j/ajnc)
doi: 10.11648/j.ajnc.s.2014030501.12
ISSN: 2326-893X (Print); ISSN: 2326-8964 (Online)

Complex performance modeling of parallel algorithms
Peter Hanuliak, Juraj Hanuliak

Dubnica Technical Institute, Sladkovicova 533/20, Dubnica nad Vahom, 018 41, Slovakia

Email address:
phanuliak@gmail.com (P. Hanuliak)

To cite this article:
Peter Hanuliak, Juraj Hanuliak. Complex Performance Modeling of Parallel Algorithms. American Journal of Networks and
Communications. Special Issue: Parallel Computer and Parallel Algorithms. Vol. 3, No. 5-1, 2014, pp. 15-28.
doi: 10.11648/j.ajnc.s.2014030501.12

Abstract: Parallel principles are the most effective way how to increase parallel computer performance and parallel
algorithms (PA) too. In this sense the paper is devoted to a complex performance evaluation of chosen PA. At first the paper
describes very shortly PA and then it summarized basic concepts for performance evaluation of PA. To illustrate the analyzed
evaluation concepts the paper considers in its experimental part the results for real analyzed examples of discrete fast Fourier
transform (DFFT). These illustration examples we have chosen first due to its wide application in scientific and engineering
fields and second from its representation of similar group of PA. The basic form of parallel DFFT is the one-dimensional
(1-D), unordered, radix–2 algorithm which uses divide and conquer strategy for its parallel computation. Effective PA of
DFFT tends to computing one – dimensional FFT with radix greater than two and computing multidimensional FFT by using
the polynomial transfer methods. In general radix - q DFFT is computed by splitting the input sequence of size s into q
sequences each of them in size n/q, computing faster their q smaller DFFT’s, and then combining the results. So we do it for
actually dominant asynchronous parallel computers based on Network of workstations (NOW) and Grid systems.

Keywords: Parallel Computer, NOW, Grid, Parallel Algorithm (PA), Matrix PA, Decomposition, Performance Modeling,
Optimization, Issoeficiency Function, Numerical Integration, Discrete Fast Fourier Transform (DFFT),
Overhead Function

1. Introduction
Parallel and distributed computing has been evolved as

two separate research disciplines. Parallel computing has
addressed problems of communication and intensive
computation on highly-coupled computing nodes while
distributed computing has been concerned with
coordination, availability, timeliness, etc., of more likely
coupled computing nodes. Current trends, such as parallel
computing on networks of high performance computing
nodes (workstations) and Internet computing, suggest the
advantages of unifying these two research disciplines. In
relation to these trends we have developed a flexible model
of computation that supports both parallel and distributed
computing [11].

Parallel and distributed computing share the same basic
computational model consisting on physically distributed
parallel processes that operate concurrently and interact
with each other in order to accomplish a task as a whole. In
parallel computing, processes are assumed to be placed
closer to each other and they could communicate frequently

and hence the ratio of computation/communication of
parallel applications is usually much smaller than that in
distributed applications. On the other hand, distributed
computing focuses on parallel processes that could be
allocated in a wide area i. e., communication between some
parallel processes is assumed to be more costly than in
parallel computing.

A number of recent trends point to a convergence of
research in parallel and distributed computing. First,
increased communication bandwidth and reduced latency
make geographical distribution of computing nodes less of
a barrier to parallel computing. Second, the development of
architecture neutral programming language, such as Java,
provides a virtual computational environment in which
computing nodes appear to be homogenous. Finally,
increased client/server computing is adopting symmetrical
multiprocessor architecture (SMP), often multiple
processors or cores with a shared memory in a single
workstations. While such architectures are less scalable
than networks of computers, some parallel programs with
high communication traffic may execute on them more

16 Peter Hanuliak and Juraj Hanuliak: Complex Performance Modeling of Parallel Algorithms

efficiently. Another important trend is a convergence of
parallel and distributed computing is the potential of
Internet computing. With improvements in network
technology and communication middleware, one can view
the Internet as a huge of parallel and distributed computers.
Because connectivity on the Internet can be intermittent
variable of the bandwidth, the ability of processes as well
as data to migrate becomes critical. In turn, this requires a
satisfactory treatment of mobility.

2. Architectures of Parallel Computers
It is very difficult to classify all existed parallel

computers. We have tried to classify them from the point of
program developer [1, 9] to the two following basic groups
according Figure1.

• synchronous parallel computers. They are often used
under central control, that means under the global
clock synchronization (vector, array system etc.) or a
distributed local control mechanism (systolic systems
etc.). The typical architectures of this group of parallel
computers illustrate Figure 1 on its left side

• asynchronous parallel computers. They are composed
of a number of fully independent computing nodes
(processors, cores, and computers). To this group
belong mainly various forms of computer networks
(cluster), network of workstation (NOW) or more
integrated Grid modules based on NOW modules. The
typical architectures of asynchronous parallel
computers illustrate Figure 1 on its right side.

Figure 1. Suggested classification of parallel computers.

2.1. Dominant Parallel Computers

2.1.1. Network of Workstations
There has been an increasing interest in the use of

networks (Cluster) of workstations connected together by
high speed networks for solving large computation intensive
problems [5]. This trend is mainly driven by the cost
effectiveness of such systems as compared to massive
multiprocessor systems with tightly coupled processors and
memories (Supercomputers). Parallel computing on a cluster
of workstations connected by high speed networks has given
rise to a range of hardware and network related issues on any

given platforms [15, 26]. Load balancing, inter processor
communication (IPC), and transport protocol for such
machines are being widely studied [20, 21].

This trend is mainly driven by the cost effectiveness of
such systems as compared to massive multiprocessor
systems with tightly coupled processors and memories
(Supercomputers). With the availability of high
performance personal computers (workstation) and high
speed communication networks (Infiniband, Quadrics,
Myrinet), recent trends are to connect a number of such
workstations to solve complex problems in parallel on such
NOW modules [24, 28].

Figure 2. Illustration of NOW.

Principal example of NOW module is at Figure 2. The
individual workstations PCi are mainly powerful
workstations based on symmetrical multiprocessor or
multicore platform (SMP).

2.1.3. Grid Systems
Grid represents a new way of managing and organizing

of individual resources (processors, memory modules, I/O
devices etc.) [33]. Grids go out conceptually from a
structure of virtual parallel computer based on NOW
modules. We have illustrated at Figure 3 typical integrated
Grid module based on NOW modules. Any classic parallel
computer (massive multiprocessors as supercomputers etc.)
could be a member of any NOW module [29].

3. Parallel Algorithms
In principal we can divide parallel algorithms (PA) to the

following groups
• parallel algorithm using shared memory (PAsm). These

algorithms are developed for parallel computers with
shared memory as actual modern symmetrical
multiprocessors (SMP) or multicore systems on
motherboard

• parallel algorithm using distributed memory (PAdm).
These algorithms are developed for parallel computers
with distributed memory as actual NOW system and
their higher integration forms named as Grid systems

• hybrid PA which combine using of both previous PA
(PAhyb). This trend support applied using of NOW
consisted from computing nodes based on SMP
parallel computers.

 American Journal of Networks and Communications 2014; 3(5-1): 15-28 17

Figure 3. Grid as integration of NOW network.

The main difference between PAsm and PAdm is in form
of inter process communication (IPC) among created
parallel processes [12, 17]. Generally we can say that IPC
communication in parallel system with shared memory can
use more communication possibilities (all the possibilities
of communication in shared memory) than in distributed
systems (only network communication).

3.1. Developing Process of PA

The role of programmer is for the given parallel
computer and for given application problem to develop the
effective parallel algorithm. This task is more complicated
in those cases, in which we have to create the conditions for
any parallel activities in form of dividing the sequential
algorithm to their mutual independent parts named parallel
processes. Principally development of any parallel
algorithms (shared memory, distributed memory) includes
following activities [10, 18].

• decomposition - the division of the application
problem into a set of parallel processes and their data

• mapping - the way how created parallel processes and
data are distributed among the nodes of parallel
computer

• inter-process communication as a way of parallel
processes cooperation and synchronization

• tuning – performance optimization of developed
parallel algorithm

The most important step is to choose the best
decomposition method for given complex problem. To do
this it is necessary to understand the concrete complex
problem, shared data domain, the used algorithms and the
flow of control in given complex problem [13, 23].

Figure 4. Developing steps in parallel algorithms.

3.1.1. Decomposition models
Decomposition strategy defines potential dividing of

given complex problem to their independent parts (parallel
processes) in such a way, that they could be performed in a
parallel way through computing nodes of given parallel
computer. Existence of some decomposition method is
critical assumption to possible parallel algorithm. Potential
decomposition degree of given complex problem is crucial
for effectiveness of parallel algorithm [3, 7]. The chosen
decomposition method drives the rest of program
development. This is true is in case of developing new
application as in porting serial code. The decomposition
method tells us how to structure the code and data and
defines the communication topology [10, 25]. The used
decomposition models are as follows

• naturally parallel decomposition
• domain decomposition
• control decomposition

� manager/workers

De composition Syntesis
of solution

Parallel
solution Problem Processes

Parall el computer
Processors

or

workstations

Map ping

18 Peter Hanuliak and Juraj Hanuliak: Complex Performance Modeling of Parallel Algorithms

� functional
• divide-and-conquer strategy
• decomposition of big problems
• object oriented programming (OOP).
To the illustration of developing effective parallel

algorithm and the way of its complexity evaluating we used
applied problem of discrete fast Fourier Transform (DFFT).
In relation to it we illustrate the principle of divide and
conquer decomposition model (DM), which is used to
decompose DFFT.

Figure 5. Illustration of divide and conquer DM (n=8).

4. The Role of Performance
Modeling techniques allow to model contention both at

hardware and software levels by combining approximate
solutions and analytical methods [30]. We would like to
prefer analytical methods although the complexity of
parallel computers and parallel algorithms could limit the
applicability of these techniques. To the verification of
analytical results we would like to use simulation method or
in some cases experimental measuring.

4.1. Performance Evaluation Methods

To performance evaluation of parallel algorithms we can
use analytical approach to get under given constraints
analytical laws or some other derived analytical relations.
We can use following solution methods to get a function of
complex performance

• analytical
� order (asymptotic) analysis [2, 12]
� Petri nets [4]
� queuing theory [8, 14]

• simulation [19]
• experimental

� benchmarks [16]
� modeling tools [22]
� direct measuring [6, 27].

Analytical method is a very well developed set of
techniques which can provide exact solutions very quickly,
but only for a very restricted class of models. For more
general models it is often possible to obtain approximate
results significantly more quickly than when using
simulation, although the accuracy of these results may be
difficult to determine [31].

Simulation is the most general and versatile means of
modeling systems for performance estimation. It has many
uses, but its results are usually only approximations to the
exact answer and the price of increased accuracy is much

longer execution times. They are still only applicable to a
restricted class of models in spite of its computation and
time requirements.

Evaluating system performance via experimental
measurements is a very useful alternative for computer
systems. Measurements can be gathered on existing systems
by means of benchmark applications that aim at stressing
specific aspects of computers systems. Even though
benchmarks can be used in all types of performance studies,
their main field of application is competitive procurement
and performance assessment of existing parallel computers
and parallel algorithms.

5. Performance Evaluation Criterions of
PA

To evaluations of parallel algorithms there have been
developed several fundamental concepts. Tradeoffs among
these performance factors are often encountered in real-life
applications.

5.1. Basic Performance Concepts

5.1.1. Parallel Execution Time
We have defined parallel execution time T(s, p) as the

execution time performed by p computing nodes
(processors, cores, workstations) of given parallel computer
and s defines input size (load) of given problem. Then T(s,
1) defines execution time for classic sequential computer.

5.1.2. Speed Up
The speed up factor S(s, p) we can define as

),(

)1 ,(
),(

psT

sT
psS =

Speed up factor (dimensionless) is a measure obtained at
given complex algorithm using p computing nodes solving
given problem with its problem size s. Since S(s, p) ≤ p, we
would like to design algorithms that achieve S(s, p) ≈ p.

5.1.3. Efficiency
The efficiency for processor system with p computing

nodes is defined by

),(

)1 ,(),(
),(

psTp

sT

p

psS
psE ==

The efficiency is always less than 1. A value of E(s, p)
approximately equal to 1 for given p, indicates that such
parallel computer, using p computing nodes runs
approximately p times faster than it does on sequential
computer.

5.1.4. The Isoefficiency Concept
The workload w of an algorithm often grows in the order

O(s), where s is the problem size. Thus, we denote the
workload w = w(s) as a function of problem size s. In
parallel computing is very useful to define an isoefficiency
function relating workload to parallel computer size p

 American Journal of Networks and Communications 2014; 3(5-1): 15-28 19

which is needed to achieve given fixed efficiency E (s, p).
Let h(s, p) be the total overhead function consisted from
existed overhead latencies involved in PA implementations.
This overhead function is a function of both parallel
computer size p and input problem size s. Then we can
define efficiency E(s, p) of a parallel algorithm as

),()(

)(
),(

pshsw

sw
psE

+
=

The workload w(s) corresponds to useful performed
parallel computations while the overhead function h(s, p)
represents latency times attributed to communication of
parallel processes, synchronization, waiting to shared
resources etc. In general, the overheads increase with
respect to increasing both values of parameters p and s. The
question is hinged on relative growth rates between w(s)
and h(s, p). With a fixed problem size the efficiency E(s, p)
decreases as p increase. The reason is that the overhead
function h(s, p) increases with p. With a fixed parallel
computer size, the overhead function h(s, p) grows slower
than the workload w(s). Thus the efficiency E(s, p)
increases with increasing problem size s for a fixed parallel
computer size. Therefore, one can expect to maintain a
constant efficiency E(s, p) if the workload w(s) is allowed
to grow properly with increasing parallel computer size p.

5.2. Complex Performance Modeling of PA

Complex performance modeling of PA we qualify as
modeling with considering overhead function h(s, p) in all
defined fundamental performance concepts T(s, p), S(s, p),
E(s, p) and w(s).

5.2.1. Complex Parallel Execution Time
Complex parallel execution time T(s, p)complex will be

defined as the whole parallel execution time included
overhead function h(s, p) as follows

p) h(s,),(),(+= psTpsT complex

5.2.2. Complex Speed Up Factor
The complex speed S(s, p)complex we can rewrite as

complex
complex psT

sT
psS

),(

)1 ,(
),(=

5.2.3. Complex Efficiency
Similarly the complex efficiency E(s, p)complex we can

rewrite as

complex

complex
complex psTp

sT

p

psS
psE

),(

)1 ,(),(
),(==

5.2.4. Isoefficiency Function
We rewrite equation for efficiency concept E(s, p) as E(s,

p) = 1/(1 - h(s, p) / w(s). In order to maintain a constant E(s,
p), the workload w(s) should grow in proportion to the
overhead h(s, p). This leads to the following relation

),(
),(1

),(
)(psh

psE

psE
sw

−
=

The factor C = E(s, p)/1 - E(s, p) is for a given efficiency
E(s, p) constant. We can then define the isoefficiency
function as follows

),()(pshCsw =

5.2.5. Overhead Function
Overhead function h (s, p) defines coincident overhead

latencies of given PA (shared memory, distributed memory,
hybrid).The typical existed overheads of PA are as follows

• communication latency T(s, p)comm
• parallelization latency T(s, p)par
• synchronization latency T(s, p)syn
• waiting latency to use shared resource T(s, p)wait
• influence of parallel computer architecture T(s, p)arch
• specific latency of given PA T(s, p)spec.
Taking into account all named overhead latencies the

overhead function h(s, p) is as follows

()∑= specarchsynparcomm psTpsTpsTpsTpsTpsh),(,),(,),(,),(,),(),(

and the complex parallel execution time will be defined as
follows

),(),(),(pshpsTpsT compcomplex +=

In general influence of at least most important overhead
latencies is necessary to take into account in performance
modeling of parallel algorithms because their influence to
complex parallel execution time T(s, p)complex could be
dominant. The illustration of such dominant influence of
communication overhead latency T(s, p)comm to own
parallel computation time T(s, p)comp is shown at Figure 6.

Figure 6. Illustration of dominant influence of T(s, p)comm to T(s, p)comp.

5.2.6. Modeling of PA Latencies

5.2.6.1. Own Parallel Computation Time
Own computation time T (s, p)comp of PA is given

through quotient of maximal time of running parallel
processes i. e. as product of complexity Cpp (complexity of
maximal parallel process) and a parameter tc as an average
value of defined performed computation units (instruction,

20 Peter Hanuliak and Juraj Hanuliak: Complex Performance Modeling of Parallel Algorithms

block of instructions etc.) divided by number of used
computing nodes p of used parallel computer. Parallel
computation execution time T(s, p)comp is then given as
follows

.

)p ,(
p

tC
sT cpp

comp =

In general execution time of sequential and parallel
algorithms are given through multiplicity product of
algorithm complexity Calg (dimensionless number of
considered computation units) and a parameter tc as an
average value of performed considered operations
(instructions, computing steps etc.).

For asymptotic complexity of parallel execution time T(s,
p)comp supposing well paralleled problems is then given as

0
.

lim)p ,(== ∞→ p

tC
sT cpp

pcomp

5.2.6.2. Modeling of Overhead Latencies
Overhead latencies are defined with its overhead

function h(s, p). For every concrete parallel algorithm
(shared memory, distributed memory, hybrid), or a similar
group of PA, we are able to define their overhead function
h(s, p) considering at least the most important overhead
latencies of given PA. The individual latencies of given PA
comes out from used decomposition model. Complex
modeling based on considering overhead function h(s, p) of
given PA opens unified complex modeling of any
developed parallel algorithm.

5.2.6.2.1. Modeling of Communication Latency
Inter process communication of parallel processes (IPC)

T(s, p)comm (communication latency) influences in a
decisive degree used decomposition model of PA.
Obviously it is higher in distributed computing than in
parallel one. For example world known parallel computing
model with shared memory PRAM (Parallel Random
Access Machine) does not consider communication latency.
To model communication latency we have applied theory
of complexity to inter process communication of parallel
processes in a similar way as in modeling computation
latency focusing to a number of performed communication
steps (communication complexity). Then communication
latency T(s, p)comm is given through number of performed
communication steps (communication complexity) for used
decomposition model of given PA. Every communication
step within parallel computer based on NOW module we
can characterized through two basic communication
parameters as follows

• communication parameter ts defined as parameter for
initialization of communication step (start up time)

• communication parameter tw as parameter for
transmission latency of considered data unit (typically
word).

Illustration of defined communication parameters is at
Figure 7. These communication parameters ts, tw are

constants for concrete parallel computer [10].
The whole communication overhead latency is given

through two basic following functions
• function f1(ts) which represents the whole number of

communication initializations for given parallel
process

• function f2(tw) which correspondents to whole
performed data unit transmission (usually time of
word transmission for given parallel computer) in
given parallel process.

Figure 7. Illustration of communication parameters.

These two defined functions limit performance of used
parallel computer on defined NOW module of parallel
computer. Then using a superposition we can write for
communication latency in NOW module T(s, p)comm as
follows

)()(),(21 wscommNOW tftfpsT +=

To the practical illustration of communication overheads
we used discrete fast Fourier transform (DFFT)
representing typical matrix parallel algorithm with divide
and conquer decomposition model.

To derive the whole communication latency T(s, p)comm
in other dominant parallel computers based on integration
of NOW modules (network of NOW modules named as
Grid) we need to extend the considered two communication
functions f1(ts), f2(tw) in NOW module by third function
component f3(th), which will determine potential multiple
crossing used NOW modules of integrated parallel
computer. This third function is characterized through
multiplying hops parameter lh among NOW modules
(generally NOW networks) and average communication
latency time of jumped NOW modules with the same
communication speed or a sum of individual
communication latencies for jumped NOW modules with
their different communication speed. Then in general to the
whole communication latency in Grid is valid

∑
=

++=
u

i
hwswscommGRID lttftftfpsT

1
321),,()()(),(

In general communication latency time f3(ts, tw, lh) is
time to send data message with m words in one
communication step among integrated NOW modules with

 American Journal of Networks and Communications 2014; 3(5-1): 15-28 21

lh hops. The communication time for one communication
step is then given as ts+ m twlhth, where the new parameters
are.

• lh is the number of network hops
• m is the number of transmitted data units (usually

words)
• th is average communication time for one hop.
The new communication parameters th, lh depend from a

concrete architecture of Grid communication network and
used routing algorithm. In [11] we have developed unified
models which could help to establish these parameters for
dominant parallel computers. For the complex analytical
modeling there is necessary to derive for given parallel
algorithm or a group of similar algorithms (matrix parallel
algorithms) needed communication functions and that
always individually for any decomposition strategy)
isoefficiency function and defined technical parameters
(computational, communication) for used parallel computer
(NOW, Grid).

5.2.6.2.2. Modeling of Parallelization Latency
The parallelization latency T(s, p)par represents overhead

latency of PA though parallelization of given complex
problem. Its consequences are mostly projected as
additional communication complexity to T(s, p)comm.

5.2.6.2.3. Modeling of Synchronization Latency
The third part of h(s, p) function T(s, p)syn we can

eliminate through optimization of load balancing among
individual computing nodes of used parallel computer. For
this purpose we would measure performance of used
computing nodes for given developed parallel algorithm
and then based on these achieved results we are able to
redistribute better workload of computing nodes. This
activity we can repeat until we have optimal redistributed
input load (optimal load redistribution based on real
performance results).

5.2.6.2.4. Modeling of Influence of Parallel Computer
Architecture

The fourth part of h(s, p) overhead function T(s, p)arch
(influence of parallel computer architecture) we will model
with defined technical parameters tc, ts, tw, which are
constant for given parallel computer [10].

5.2.6.2.5. Modeling of Waiting Latency
The fifth part of h(s, p) overhead function T(s, p)wait

represents whole waiting times to use shared resources of
parallel computer (memory modules, communication channels,
I/O devices etc.). This kind of overhead latency is typical in
using shared technical resources in a massive way (shared
memory modules, communication channels, I/O devices etc.).
We can only limit it by optimal allocation of shared resources.
To model this overhead latency in an analytical way is a very
crucial problem. We have been modeling it in an analytical
way applied queuing theory results in combination with
experimental measurements [10, 11].

5.2.6.2.6. Modeling of Specified PA Latency
The sixth part of h(s, p) overhead function T(s, p)spec

(influence of specified PA) represents any other possible
specific overhead latency of given parallel algorithm.

5.2.6.3. Asymptotic Analytical Modeling of PA
Most of to this time known results in analytical modeling

of PA in the world for extended classical parallel computers
with shared memory (supercomputers, SMP and SIMD
systems) or parallel computers with distributed memory
based on some cluster of computing nodes mostly did not
consider existed overhead influences of PA supposing that
they are lower in comparison to the own computation
latency T(s, p)comp of performed computations . In this
sense analysis and modeling of complexity in parallel
algorithms (PA) were rationalized to the analysis of only
computation complexity of PA, that mean that the defined
function of control and communication overheads h(s, p)
were not a part of derived relations for the whole parallel
execution time.

The complexity function in the relation for isoefficiency
supposed, that dominate influence to the whole complexity
of PA has computation complexity of performed massive
computations. Such assumption has been proved to be true
mainly in using classical parallel computers in the world
(supercomputers, massive SMP – shared memory, SIMD
architectures etc.). To map mentioned assumption to the
relation for asymptotic isoefficiency w(s) means that

[] []compcompcomp psTpsTpshpsTsw),(max),(),(,),(max)(=<=

But in our unified complex modeling of PA possible
influence of any part of defined overhead function h(s, p)
could be dominant in a nonlinear way. Then for complex
isoefficiency function it is necessary to consider it as
follows

[]),(,),(max)(pshpsTsw comp=

6. Discrete Fourier Transform
The discrete Fourier transform (DFT) has played an

important role in the evolution of digital signal processing
techniques. It has opened new signal processing techniques
in the frequency domain, which are not easily realizable in
the analogue domain. The DFT is a linear transformation
that maps n regularly sampled points from a cycle of a
periodic signal, like a sine wave, onto an equal number of
points representing the frequency spectrum of the signal.
The discrete Fourier transform (DFT) is defined as [3, 7]

∑
−

=








−
=

1

0

21 N

j

N

jk
i

jk eX
N

Y
π

and the inverse discrete Fourier transform (IDFT) as

22 Peter Hanuliak and Juraj Hanuliak: Complex Performance Modeling of Parallel Algorithms

∑
−

=










=
1

0

2N

j

N

jk
i

jk eYX
π

for 0 ≤ k ≤ N-1. For N real input values X0, X1, X2, …, XN-1,
transforms generates N complex values Y0, Y1, Y2, …, YN-1.

If we use / 2 Niew π−= , that is w is N–th root of complex
number i in complex plane we get

∑
−

=

=
1

0

1 N

j

jk
jk wX

N
Y

and in inverse as

∑
−

=

−=
1

0

N

j

jk
jk wYX

Variable w is a basic part of DFFT computations and is
named as twiddle factor. Defined transformation equations
are on principle linear transformations.

A direct computation of the DFT or the IDFT requires N2
complex arithmetic operations. For example the time
required for just the complex multiplication in a 1024point
DFT is Tmult=1024 . 4. Treal, where we assumed that one
complex multiplication corresponds to four real
multiplications and the time required for one real
multiplication (Treal) is known for given computer. But with
this approach we could take into account only the
computation times and not also the overheads delays
connected with implantation on parallel way.

6.1. The Discrete Fast Fourier Transform

DFFT is a fast method of DFT computation with time
complexity O (N / 2 log2(N)) in comparison to sequential
DFT algorithm complexity as O(N2). For a quick
computation of the DFT is used adjustment of
Cooley-Tukey [7]. To come to final adjustment we start
with a modified form of the DFT.

∑
−

=

=
1

0

1 N

j

jk
jk wX

N
Y

In general demanded sum is divided to two parts using
decomposition strategy “divide-and-conquer”. Its principle
we describe with modification of origin sum to two
following pairs as

















+= ∑∑
−

=

+
+

−

=

1
2

0

)12(
12

1
2

0

2
2

1
N

j

kj
j

N

j

jk
jk wXwX

N
Y ,

where the first part of sum contents result part with even
indexes and second part with odd indexes. In this sense we
get



























+









= ∑∑

−

=
+

−

=

1
2

0

2
12

1
2

0

2
2

2

1

2

1

2

1
N

j

jk
j

N

j

kjk
jk wX

N
wwX

N
Y or

































+









= ∑∑

−

=





























−

+

−

=





























−

1
2

0

2

2

12

1
2

0

2

2

2

2

1

2

1

2

1

N

j

N

jk
i

j

N

j

k

N

jk
i

jk eX
N

weX
N

Y

ππ

Every part of sum means DFT on N/2 values with even
indexes and N/2 values with odd indexes. Then we can

formally write ()odd
k

evenk YwYY +=
2

1 for k=0, 1, 2,,

N-1, whereby Yeven is N/2 – point DFT on the values with
even indexes X0, X2, X4, … and Yodd is N/2 – point
transformation on values X1, X3, X5, ….Supposed that k is
limited to first 0, 1, …, N/2–1, N/2 values from whole
number of N values. The whole series we can divide to two
following parts

()odd
k

evenk YwYY +=
2

1

and

()odd
k

evenodd

N
k

evenN
k

YwYYwYY −=















+=








+








+ 2

1

2

1 2

2

,

because wk+N/2 = - wk, where 0 0 ≤ k < N/2. In this way we
can compute Yk and Yk+N/2 in a parallel way using two N/2
– point transformations according illustration at Figure 8.

Every from N/2 – point DFT we can again divide to next
parts, that is to two N/4 – point DFT. Applied
decomposition strategy could follows till to exhausting
dividing possibility for given N. Dividing factor is named
as radix - q, and that for dividing number higher than two.

Figure 8. Divide and conquer decomposition strategy for DFFT.

The difference in parallel execution times between the
direct implementation of the DFT and DFFT algorithm is

 American Journal of Networks and Communications 2014; 3(5-1): 15-28 23

significant for large N. Direct calculation of the DFT or
IDFT, according to the following program requires N2
complex arithmetic operations.

Program Direct_DFT;
var
 x, Y: array[0..Nminus1] of complex;
begin
 for k:=0 to N-1 do
 begin
 Y[k] :=x[0];
 for n:=1 to N-1 do
 Y[k] := Y[k] + Wnk * x[n];
 end;
end.
The difference in execution time between a direct

computation of the DFT and the new DFFT algorithm is
very high for large N. For example the time required for the
complex multiplication in a 1024-point FFT is Tmult = 0,5 .
N .log2(N) . 4 .Treal = 0,5 . 1024 .log2(1024) . 4 .Treal, where
the complex multiplication corresponds approximately to
four real multiplications.

6.2. Parallel Algorithms of Discrete Fast Fourier
Transform

Cooley and Tukey have developed the fast DFFT
algorithm which requires only O(N.log2(N)) operations.
The difference in execution time between a direct
computation of the DFT and the new DFFT algorithm is
very large for large N. For example the time required for
just the complex multiplication in a 1024-point FFT is
Tmult= 0,5.N log2(N).4.Treal = 0,5.1024. log2(1024).4. Treal,
where the complex multiplication corresponds
approximately to four real multiplications. The basic form
of parallel DFFT is the one-dimensional (1-D), unordered
and radix–2 algorithms (using divide and conquer strategy
according the principle at Figure 9). The effective parallel
computing of DFFT tends to computing one dimensional
DFFT with radix greater than two and computing
multidimensional FFT by using the polynomial transfer
methods. In general a radix-q DFFT is computed by
splitting the input sequence of size s into a q sequences of
size n/q each, computing faster the q smaller DFFT, and
then combining the result. For example, in a radix-4 FFT,
each step computes four outputs from four inputs, and the
total number of iterations is log4 s rather than log2 s. The
input length should, of course, be a power of four. Parallel
formulations of higher radix strategies (radix-3, radix-5)
1-D or multidimensional DFFT are similar to the basic
form because the underlying ideas behind all sequential
DFFT are the same [32]. An ordered DFFT is obtained by
performing bit reversal (permutation) on the output
sequence of an unordered DFFT. Bit reversal does not
affect the overall complexity of a parallel implementation.

6.3. Two-Dimensional 2D DFFT

Processing of images and signals often requires the

implementation of a multi-dimensional discrete fast Fourier
transform (DFFT).Simplest method of computation of two
dimensional DFFT (2D DFFT)is computation of one
dimensional DFFT (1D DFFT) on each row and then
follows computation of one dimensional DFFT for each
column. This illustrates Figure 9.

Figure 9. Two dimensional DFFT.

6.4. Analyzed Examples

6.4.1. One Element per Processor
This is the simplest example of complexity evaluation of

the DFFT. In this case we consider a p=s parallel processor
(d-dimensional hypercube architecture) to compute s-point
DFFT. A hypercube is a multidimensional mesh of
processors with exactly two processors in each dimension.
A d-dimensional hypercube consists of p=2d processors. In
a d-dimensional hypercube each processor is directly
connected to d other processors. In this case we can simply
derive that T(s, 1) = s log s and T(s, p) = log s. Then
speedup factor S(s, p) = p and system efficiency E(s, p) = 1.
Such a formulation of DFFT algorithm for a d-dimensional
hypercube calculation is cost optimal but for the higher
values of s and use of p=s processors could be only
hypothetical.

6.4.2. Multiple Elements per Processor
This is very real case of practical DFFT parallel

computations. In this example we examine implementing
the binary exchange algorithm to compute an s-point DFFT
on a hypercube with p processors, where p > s. Assume that
both s and p are powers of two. According the Figure 10,
we partition the sequences into blocks of s/p contiguous
elements and assign one block to each processor. Assume
that the hypercube is d-dimensional (p=2d) and s=2r. Figure
10 shows that elements with indices differing in their d (=2)
most significant bits e mapped onto different processors.
However, all elements with indices having the same r-d
most significant bits are mapped onto the same processor.
Hence, this parallel DFFT algorithm performs inter process
communication only during the first d = log p of the log s
iterations. There is no communication during the rested r –
d iterations.

Each communication operation exchanges s/p words of
data. Since all communications takes place between
directly-connected processors, the total communication
time does not depend on the type of routing. Thus the time
spent in communication in the DFFT algorithm is ts log p +
tw (s/p) log p, where ts is the message start up time and tw is

24 Peter Hanuliak and Juraj Hanuliak: Complex Performance Modeling of Parallel Algorithms

the per-word transfer time. These times are known for the
concrete parallel system. If a complex multiplication and
addition pair takes time tc, then the parallel run time for
s-point DFFT on a p-processor hypercube is as follows

p
p

s
tpts

p

s
tpsT wsccomplex logloglog),(++=

The expressions for complex speedup S(s, p)complex,
efficiency E(s, p)complex and defined constant C (part of
issoefficiency function) are given by the following
equations

psttppttss

ssp

psT

sst

psT

sT
psS

cwcs

complex

c

complex
complex

log)/(log)/(log

log

),(

log

),(

)1,(
),(

++
=

===

[]{ })/()/()log/(log1

1

),(
),(

 cwcs

complex
complex

ttstptsp

p

psS
psE

++
=

==

st

pt

sst

ppt

psE

psE
C

c

w

c

s

complex

complex

log

log

log

log

),(

),(1
+=

−
=

Figure 10. 16-point DFFT on four processors.

6.4.3. Multiple Elements per Processor with Routing

This is a most complicated, but very real, case in parallel
computing. It is typical for the parallel architectures, in
which the processors do not have enough direct connected
processor to compute the given parallel algorithm. Then the
communication of not direct connected processors or
computers is realized through a number (hop) of other
processors or communication switches according some
routing algorithm.

The time for sending a message of size m between
processors, that are lh hops apart is given by ts,+ thlh where
ts is the starting message time and th is the overhead time
for one hop. The values ts, th, lh depend from the
architecture of parallel system (mainly its interconnection

network) and routing strategy. If we can define these values
for a concrete parallel system and routing strategy, cost
performance tradeoffs are to be analyzed in a similar way
than in previous case.

6.4.3. Multiple Elements per Processor in NOW
An example of our experimental parallel computer based

on NOW we have illustrated at Figure 2. Based on this used
NOW module communication overheads depends on
topology of communication network and its communication
parameters (transmission speed, bandwidth, transmission
control etc.). To verify derived analytical results we have
performed some simulation experiments in NOW module
with DFFT’s PA. From performed experiments comes out
that for effective parallel computing of DFFT the use of
centralized massively parallel system should by preferred
to asynchronous parallel computers based on NOW
modules. At experimental testing we have used
workstations of NOW parallel computer as follows

• WS 1 – Pentium IV (f = 2.26 GHz)
• WS 2 - Pentium IV Xeon (2 proc., f = 2.2 GHz)
• WS 3 - Intel Core 2 Duo T 7400 (2 cores, f=2.16

GHz)
• WS 4 - Intel Core 2 Quad (4 cores, f = 2.5 GHz)
• WS 5 - Intel SandyBridge i5 2500S (4 cores, f=2.7

GHz).

7. Results
As scalable parallel computer we have defined any

parallel computer in which the efficiency can be kept fixed
as the number of computing nodes is increased, provided
that the problem size is also increased. The scalability of a
PA/parallel computer combination determines its capacity
to use an increased number of computing nodes p
effectively. We have considered the Cooley-Tukey
algorithm for one dimensional s-point DFFT to maintain
the same efficiency. Figure 11 illustrates the efficiency E(s,
p)complex of the binary exchange DFFT parallel algorithm as
a function of s on a 512 processors (computing nodes)
hypercube parallel computer with its following technical
parameters tc=2µs, tw= 4 µs and ts =25 µs. The threshold
point is given as tc / (tc + tw) = 0,33. The efficiency initially
increases rapidly with the problem size to the threshold, but
then the efficiency curve platens out beyond the threshold.
The binary exchange algorithm yields good performance on
a hypercube provided that the communication bandwidth
and the processing speed of the computing nodes are
balanced. Efficiencies below a certain threshold can be
maintained while increasing the problem size at a moderate
rate with an increasing number of processors. We can say
that the use of transpose algorithm will have much higher
overhead than the binary exchange algorithm due to
message start up time ts, but has a lower overhead due to
per-word transfer time tw. As a result, either of the two
algorithm formulations may be faster depending on the
relative values of ts and tw. In principle supercomputers and

 American Journal of Networks and Communications 2014; 3(5-1): 15-28 25

other architectures with common memory have ts very low
in comparison to typical NOW or Grid.

Figure 11. The efficiency E(s, p)complex of the DFFT binary exchange
parallel algorithm.

However, this threshold is very low if the
communication bandwidth of the hypercube is low,
compared to the speed of its processors. Therefore it is
necessary to describe a different parallel formulation of
DFFT for interconnection network of computer network.
Such a formulation involves matrix transposition for an
array of s-input points and hence we called it the transpose
parallel algorithm. In principal we can say that the use of
transpose PA will have a much higher overhead than the
binary exchange algorithm due to message start up time ts,
but has a lower overhead due to per-word transfer time tw.
As a result, either of the two algorithm formulations may
be faster depending on the relative values of ts and tw. In
principle parallel computers with shared memory have ts
very low in comparison to typical dominant parallel
computers based on NOW and Grid.

The influence of matrix dimension for DFFT to the
communication overheads in computer network of personal
computers is illustrated at the Figure 12. From this picture
we can see that to more effective DFFT computing in
computer network there is necessary another transpose
algorithm.

Figure 12. The influence of the network load on the matrix dimension.

The performance results in parallel computer NOW
based on Ethernet we have graphically illustrated for 2D
FFT at the Figure 13. These results of 2D FFT parallel
algorithm document increasing of both computation and
communication parts in geometrically way with the
quotient value nearly four for analyzed matrix dimensions
and that in increasing matrix dimension mean to do twice
more computation on columns and twice more on rows.

Figure 13. Results in NOW for T(s, p)complex of 2DFFT for Ethernet.

At Figure 14 we have illustrated parallel speed up S(s,
p)complex of 1D DFFT parallel algorithm with binary data
exchange for defined workload s = 65 536 (s=n2 / p) as
function of number of computing nodes p. Character of S(s,
p)complex is sub linear i. e. always less as illustrated p curve
(ideal speed up without overheads) as a consequence of
overhead latencies (architecture, communication,
synchronization etc.) of used parallel computer.

Figure 14. Illustration of S (s, p)complex as factor of computing nodes number
p.

Figure 15 illustrates isoefficiency functions w(s)complex of
1D DFFT parallel algorithm. For lower values of E(s, p)
(0,1; 0,2; 0,3; 0,4; 0,45) to the threshold (E = 0,33) we have
used based on performed analysis in theoretical part
computed using following expression

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5000 10000 15000 20000 25000 30000 35000

s

E

Treshold

0

5000

10000

15000

20000

25000

30000

35000

40000

Execution
time
[ms]

Network nodes

64x64 128x128 256x256 512x512 1024x1024

64x64 327 150 141 133

128x128 1067 527 452 415

256x256 5759 2924 2912 2891

512x512 17215 8667 8624 8614

1024x1024 68841 34051 33931 33768

WS1 WS3 WS4 WS5

s=65536

0

200

400

600

800

1000

1200

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

p

S

S
p

26 Peter Hanuliak and Juraj Hanuliak: Complex Performance Modeling of Parallel Algorithms

pp
t

t
Csssw

c

s
complex loglog)(==

and the values above the threshold of efficiency function
were computed on following relation

pp
t

t
Csw tctwC

c

w
complex log)(/ =

Figure 15. Issoefficiency function w(s)complex of 1D DFFT (E =0,1; 0,2; 0,3;
0,4; 0,45).

Figure 16 illustrates issoefficiency functions w(s)complex
1D DFFT on hypercube parallel computer for the values of
E(s, p)complex = 0,5 and E(s, p)complex =0,55. From illustrated
curves at Figure 18 we can see in theoretical part of this
section predicted stormy growth of issoeficiency function
w(s)complex i.e stormy tendency of algorithm scalability for
analyzed parallel algorithm 1D DFFT with binary data
exchange past the threshold.

Figure 16. Issoefficiency function w(s)complex of 1D DFFT (E =0,5; 0,55).

Figure 17 illustrates influence of parallel computer
architecture to its algorithm scalability based on given
efficiency for E(s, p)complex = 0,4 according the derived
conclusions in theoretical part of this section. We

considered the Cooley-Tukey algorithm for one
dimensional s-point DFFT parallel algorithm with binary
data exchange. We can see that this parallel algorithm is
essentially better scalable for the hypercube parallel
architecture as for the mesh parallel computer. This implies
better architecture of communication network in hypercube
for parallel solution of 1D DFFT with binary data exchange
(lover communication latency). This verified resulting idea
documents important role of parallel computer architecture
to the whole performance of given parallel algorithm. The
scalability of an algorithm-architecture combination
determines its capacity to use effectively an increased
number of computing nodes p.

Figure 17. Influence of parallel computer architecture to scalability.

8. Conclusions
Performance evaluation as a discipline has repeatedly

proved to be critical for design and successful use of
parallel computers and parallel algorithms too. At the early
stage of design, performance models can be used to project
the system scalability and evaluate design alternatives. At
the production stage, performance evaluation
methodologies can be used to detect bottlenecks and
subsequently suggests ways to alleviate them. Analytical
methods (order analysis, queuing theory systems and Petri
nets), simulation, experimental measurements, and hybrid
modeling methods have been successfully used for the
evaluation of system and its components too. Via the
extended form of complex isoefficiency concept we have
illustrated its concrete using to predicate the performance in
applied matrix parallel algorithms.

To derive complex isoefficiency function in analytical
way it is necessary to derive al typical used criterion for
performance evaluation of parallel algorithms including
their overhead function h(s, p). Based on these relations we
are able to derive complex issoefficiency function as real
criterion to evaluate and predict performance of parallel
algorithms also for theoretical (not existed) parallel
computers. So in this way we can say that this process
includes complex performance evaluation including

0

10000

20000

30000

40000

50000

60000

70000

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

p

W

E=0,1

E=0,2

E=0,3

E=0,4

E=0,45

0,00E+00

5,00E+07

1,00E+08

1,50E+08

2,00E+08

2,50E+08

3,00E+08

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00

p

W

E=0,5

E=0,55

 American Journal of Networks and Communications 2014; 3(5-1): 15-28 27

performance prediction.
This paper continues in applying complex analytical

modeling to another group of matrix parallel algorithms
(MPA) which is characterized by decreasing number of
decomposed matrix elements (decreasing of complexity) in
process of parallel execution. To present this group of MPA
we have chosen discrete fast Fourier transform (DFFT) as
Pa with its intensive communication complexity. On
various real examples of the DFFT we have described
complexity determination of PA not only for illustrated
DFFT PA but also for other similar MPA. The considered
complex analyzed examples we have been evaluated so on
classic massive parallel computers (hypercube, mesh) as on
actually dominant parallel computers NOW and Grid. It is
obvious that in some cases using of network of
workstations (NOW) or its higher integration parallel
computers named as Grid (integrated network of NOW
networks) could be less effective than on innovated classic
massive parallel computers but NOW and Grid belong to
more flexible and perspective parallel computers.

Acknowledgements
This work was done within the project “Modeling,

optimization and prediction of parallel computers and
algorithms” at University of Zilina, Slovakia. The author
gratefully acknowledges help of project supervisor Prof. Ing.
Ivan Hanuliak, PhD.

References
[1] Abderazek A. B., Multicore systems on chip - Practical

Software/Hardware design, Imperial college press, pp. 200,
2010

[2] Arora S., Barak B., Computational complexity - A modern
Approach, Cambridge University Press, pp. 573, 2009

[3] Casanova H., Legrand A., Robert Y., Parallel algorithms,
CRC Press, 2008

[4] Desel J., Esperza J., Free Choise Petri Nets, Cambridge
University Press, UK, pp. 256, 2005

[5] Dubois M., Annavaram M., Stenstrom P., Parallel Computer
Organization and Design, pp. 560, 2012

[6] Dubhash D.P., Panconesi A., Concentration of measure for
the analysis of randomized algorithms, Cambridge
University Press, UK, 2009

[7] Edmonds J., How to think about algorithms, Cambridge
University Press, UK, pp. 472, 2010

[8] Gelenbe E., Analysis and synthesis of computer systems,
Imperial College Press, pp. 324, 2010

[9] Hager G., Wellein G., Introduction to High Performance
Computing for Scientists and Engineers, pp. 356, July 2010

[10] Hanuliak P., Analytical method of performance prediction in
parallel algorithms, The Open Cybernetics and Systemics
Journal, Vol. 6, Bentham, UK, pp. 38-47, 2012

[11] Hanuliak M., Unified analytical models of parallel and
distributed computing, American J. of Networks and
Communication, Science PG, Vol. 3, No. 1, USA, pp. 1-12,
2014

[12] Hanuliak M., Hanuliak I., To the correction of analytical
models for computer based communication systems,
Kybernetes, Vol. 35, No. 9, UK, pp. 1492-1504, 2006

[13] Hanuliak M., Performance modeling of Nov and Grid
parallel computers, AD ALTA – Vol. 3, issue 2, Hradec
Kralove, Czech republic, pp. 91-96, 2013

[14] Harchol-BalterMor, Performance modeling and design of
computer systems, Cambridge University Press, UK, pp.
576, 2013

[15] Hwang K. and coll., Distributed and Parallel Computing,
Morgan Kaufmann, pp. 472, 2011

[16] John L. K., Eeckhout L., Performance evaluation and
benchmarking, CRC Press, 2005

[17] Kshemkalyani A. D., Singhal M., Distributed Computing,
University of Illinois, Cambridge University Press, UK, pp.
756, 2011

[18] Kirk D. B., Hwu W. W., Programming massively parallel
processors, Morgan Kaufmann, pp. 280, 2010

[19] Kostin A., Ilushechkina L., Modeling and simulation of
distributed systems, Imperial College Press, pp. 440, 2010

[20] Kumar A., Manjunath D., Kuri J., Communication
Networking , Morgan Kaufmann, pp. 750, 2004

[21] Kushilevitz E., Nissan N., Communication Complexity,
Cambridge University Press, UK, pp. 208, 2006

[22] Kwiatkowska M., Norman G., and Parker D., PRISM 4.0:
Verification of Probabilistic Real-time Systems, In Proc. of
23rd CAV’11, Vol. 6806, Springer, pp. 585-591, 2011

[23] Le Boudec Jean-Yves, Performance evaluation of computer
and communication systems, CRC Press, pp. 300, 2011

[24] McCabe J., D., Network analysis, architecture, and design
(3rd edition), Elsevier/ Morgan Kaufmann, pp. 496, 2010

[25] Meerschaert M., Mathematical modeling (4-th edition),
Elsevier, pp. 384, 2013

[26] Misra Ch. S.,Woungang I., Selected topics in
communication network and distributed systems, Imperial
college press, pp. 808, 2010

[27] Miller S., Probability and Random Processes, 2nd edition,
Academic Press, Elsevier Science, pp. 552, 2012

[28] Peterson L. L., Davie B. C., Computer networks – a system
approach, Morgan Kaufmann, pp. 920, 2011

[29] Resch M. M., Supercomputers in Grids, Int. J. of Grid and
HPC, No.1, pp. 1-9, 2009

[30] Riano l., McGinity T.M., Quantifying the role of complexity
in a system´s performance, Evolving Systems, Springer
Verlag, pp. 189–198, 2011

[31] Ross S. M., Introduction to Probability Models, 10th edition,
Academic Press, Elsevier Science, pp. 800, 2010

28 Peter Hanuliak and Juraj Hanuliak: Complex Performance Modeling of Parallel Algorithms

[32] Takahashi D., Kanada Y.: High-performance radix-2, 3 and
5 parallel 1-D complex FFT algorithms for
distributed-memory parallel computers, J. of
Supercomputing, 15, Kluwer Academic Publishers, The
Netherlands, pp. 207-228, 2000

[33] Wang L., Jie Wei., Chen J., Grid Computing: Infrastructure,
Service, and Application, CRC Press, 2009 www pages

[34] www.top500.org

[35] www.intel.com

[36] www.spec.org.

