

American Journal of Networks and Communications
2014; 3(5-1): 1-14
Published online July 30, 2014 (http://www.sciencepublishinggroup.com/j/ajnc)
doi: 10.11648/j.ajnc.s.2014030501.11
ISSN: 2326-893X (Print); ISSN: 2326-8964 (Online)

Complex modeling of matrix parallel algorithms
Peter Hanuliak

Dubnica Technical Institute, Sladkovicova 533/20, Dubnica nad Vahom, 018 41, Slovakia

Email address:
phanuliak@gmail.com

To cite this article:
Peter Hanuliak. Complex Modeling of Matrix Parallel Algorithms. American Journal of Networks and Communications. Special Issue:
Parallel Computer and Parallel Algorithms. Vol. 3, No. 5-1, 2014, pp. 1-14. doi: 10.11648/j.ajnc.s.2014030501.11

Abstract: Parallel principles are the most effective way how to increase performance in parallel computing (parallel
computers and algorithms too). In this sense the paper is devoted to a complex performance evaluation of matrix parallel
algorithms (MPA). At first the paper describes the typical matrix parallel algorithms and then it summarizes common
properties of them to complex performance modeling of MPA. To complex performance analysis we are able to take into
account all overheads influence performance of parallel algorithms (parallel computer architecture, parallel computation,
communication etc.). To be le to analyze MPA in their abstract form we have defined needed decomposition models of MPA.
For these decomposition strategies we derived analytical relation for defined complex performance criterions including
isoefficiency functions, which allow us to predict performance although for hypothetical parallel computer. In its
experimental part the paper considers the achieved results using defined complex performance criterions including
issoefficiency function for performance prediction also for hypothetical future parallel computers. Such idea of common
abstract analysis could be very useful in deriving complex performance criterions for groups of other similar parallel
algorithms (PA) as for example numerical integration PA, optimization PA etc.

Keywords: Parallel Computer, NOW, Grid, Parallel Algorithm (PA), Matrix PA, Decomposition Model,
Performance Modeling, Optimization, Overhead Function H (S, P), Inter Process Communication IPC,
Performance Prediction, Issoeficiency Function

1. Trends in Parallel Computing

Basic common properties in parallel computing (parallel
computers, parallel algorithms) computing, which are
reaching continuous demands to performance acceleration,
are as follows
� embedded parallel principles on various levels of

technical (hardware) and program support means
(software) [8]

� using of homogenous shared resources so in
computing nodes of parallel computers (processors,
cores, computers) as in parallel algorithms too [24]

� using of high speed communication networks
reducing communication latency [39]

� increased client/server computing on symmetrical
multiple processors or cores (SMP)

� trends to unified modeling of parallel computers
(shared memory, distributed memory) and in
parallel algorithms (shared memory, distributed
memory, hybrid)

� continuous demands to increase mobility and data

migration [23]
� the development of hardware neutral parallel

programming language, such as Java, provides a
virtual computational environment in which
computing nodes of parallel computer appear to be
homogenous

� continuous improvements in network technology
and communication middleware in order to use
shared parallel resources in unified manner (cloud
computing, Internet computing).

Current trends also in high performance computing
(HPC) are to use networks of workstations (NOW, SMP) as
a cheaper alternative to traditionally used massively
parallel multiprocessors or supercomputers and to profit
from unifying of both mentioned disciplines [19]. The
individual powerful computing nodes (workstations) could
be so single personal computer (PC) as parallel computers
based on modern SMP parallel computers implemented
within computing node of parallel computer [13, 15]. Based
on such modular NOW modules there were are realized
high integrated massive parallel computers named as Grid

2 Peter Hanuliak: Complex Modeling of Matrix Parallel Algorithms

systems [38]. A member of NOW module or Grid could be
any classic supercomputers [35].

2. Performance Evaluation in Parallel
Computing

To performance evaluation of parallel computers and
parallel algorithms we can use evaluation methods as
follows

� analytical
� application of queuing theory results [11, 21]
� order (asymptotic) analyze [12, 20]
� Petri nets [7]

� simulation methods [25]
� experimental

� benchmarks [28]
� modeling tools [32]
� direct measuring [9, 30].

Analytical method is a very well developed set of
techniques which can provide exact solutions very quickly,
but only for a very restricted class of models. For more
general models it is often possible to obtain approximate
results significantly more quickly than when using
simulation, although the accuracy of these results may be
difficult to determine.

Simulation is the most general and versatile means of
modeling systems for performance estimation. It has many
uses, but its results are usually only approximations to the
exact answer and the price of increased accuracy is much
longer execution times. They are still only applicable to a
restricted class of models (though not as restricted as analytic
approaches.) Many approaches increase rapidly their memory
and time requirements as the size of the model increases.

Evaluating system performance via experimental
measurements is a very useful alternative for computer
systems. Measurements can be gathered on existing
systems by means of benchmark applications that aim at
stressing specific aspects of computers systems. Even
though benchmarks can be used in all types of performance
studies, their main field of application is competitive
procurement and performance assessment of existing
systems and algorithms.

3. Parallel Algorithms
In principal we can divide parallel algorithms (PA) to the

following groups
� parallel algorithm using shared memory (PAsm).

These algorithms are developed for parallel
computers with shared memory as actual modern
symmetrical multiprocessors (SMP) or multicore
systems on motherboard

� parallel algorithm using distributed memory (PAdm).
These algorithms are developed for parallel
computers with distributed memory as actual NOW
system and their higher integration forms named as

Grid systems
� hybrid PA which combine using of both previous

PA (PAhyb). This trend support applied using of
NOW consisted from computing nodes based on
SMP parallel computers.

The main difference between PAsm and PAdm is in form
of inter process communication (IPC) among created
parallel processes [18, 33]. Generally we can say that IPC
communication in parallel system with shared memory can
use more communication possibilities (all the possibilities
of communication in shared memory) than in distributed
systems (only network communication).

2.1. Developing Steps of PA

The role of programmer is for the given parallel
computer and for given application problem to develop the
effective parallel algorithm. This task is more complicated
in those cases, in which we have to create the conditions for
any parallel activities in form of dividing the sequential
algorithm to their mutual independent parts named parallel
processes. Principally development of any parallel
algorithms (shared memory, distributed memory, hybrid)
includes performing of the following activities [29, 34].
� decomposition of a complex problem to a set of

parallel processes including their data
(decomposition model)

� mapping – distribution of decomposed parallel
processes to computing nodes of used parallel
computer

� inter process communication (IPC) to cooperation
(data communications, synchronization, control) of
performed parallel processes

� performance optimization (tuning) of developed
parallel algorithm (effective PA).

The most important step is to choose for given complex
problem optimal decomposition model. To do this there is
necessary to understand given complex problem, shared
data, applied sequential algorithms (SA) and the flow of SA
control [4, 26].

3.1.1. Decomposition Models
Decomposition model defines distribution of given

complex problem to its independent parts (parallel
processes) in such a way, that they could be performed in a
parallel way via computing nodes of used parallel computer.
Optimal selection of decomposition model and degree of
parallelism are critical conditions to develop effective
parallel algorithm. Potential decomposition of given
complex problem is crucial for effectiveness of parallel
algorithm [16]. The chosen decomposition model then
drives the rest of effective parallel program development.
This is true is in case of developing new applied PA as in
porting serial code. The decomposition model defines
structure of PA codes and their data and estimate the
optimal topology of needed communication network [27,
31]. The existed decomposition models we have been
analyzed in [16].

 American Journal of Networks and Communications 2014; 3(5-1): 1-14 3

3.1.2. Mapping
This step allocates created parallel processes to

computing nodes of parallel computer for their parallel
executions. There is necessary to achieve that every
computing node should perform allocated parallel
processes (one or more) with at least approximate input
loads (load balancing) on real assumption of equal
powerful computing nodes. Fulfillment of this condition
contributes to optimal parallel execution time.

3.1.3. Inter process Communication
Inter process communication (IPC) represents a needed

tool to cooperation of decomposed parallel processes. In
general we can say that dominated parts of parallel
algorithms are decomposed parallel processes (independent
sequential parts) and inter process communication (IPC)
among created parallel processes in performing of PA. We
have been analyzed IPC communication in detail in [18].

3.1.4. Performance Optimization
After verifying developed parallel algorithm on used

parallel computer the further step is performance modeling
and its optimization in order to develop effective PA. This
step contents analysis of previous steps in such a way to
minimize whole execution time latency of parallel
computing T(s, p). Performed optimization of T(s, p) for
given parallel algorithm depends mainly from following
factors
� allocation of balanced input load to used computing

nodes of parallel computer (load balancing) [1, 36]
� minimization of accompanying overheads amounts

(parallelization, IPC, synchronization control of PA)
[14, 22].

To do load balancing we need in case of obvious using of
equally powerful computing nodes of PC results of load

allocation for given developed PA. In dominated parallel
computers (NOW, Grid) there are necessary to reduce
(optimize) mainly number of inter process communications
IPC (communication complexity) for example by
considering of alternative existing decomposition model.

3.2. Complex Performance Evaluation Metrics

To evaluating parallel algorithms we have been defined
in [14] complex performance criterions of PA. Tradeoffs
among these performance factors are often encountered in
real applied PA. We summarize these criterions as follows
� complex parallel execution time T(s, p) including

overhead function h(s, p)
� complex speed up S(s, p)
� complex efficiency E(s, p)
� issoeficiency w(s).

4. Typical Matrix Parallel Algorithms
Some of the typical matrix parallel algorithms we have

been yet analyzed as follows
� parallel matrix multiplication [16]
� parallel fast discrete Fourier Transform (DFFT) in

[14].
We will short describe further typical MPA.

4.1. System of Linear Equations

System of n linear equations (SLE) with n variables x1,
x2, x3, ..., xn, in matrix form is defined as follows [3, 10]

A . X = B
where the matrix A is a square matrix of coefficients, B is
the vector of the right side and X is a vector of searching
unknown as follows

A =
�
��
�
a��, a�	, a�
, …	a�
a	�, a		, a	
, …	a	
																		…																		…																		…a
�, a
	, a

, …	a

�

��
� 										B =

�
��
a�,
��a	,
��. .. .a
,
���

�� 								X =
�
��
		X�
XX
 �

��	

4.1.1. Methods of SLE Solving

There is no known universal optimal method of solving
systems of linear equations. There are several different
ways of solving SLR whereby each of them at fulfillment
of defined assumption implies the option of the solution
method. In principle, we divide the available methods for
exact (finite) and iterative. There exist many various ways
how to solve system of linear equations. But there does not
exist any optimal way of solving it. The existed methods
can be divided into
� exact

� Cramer rule
� Gaussian elimination methods (GEM)
� GEM alternatives

� iterative

4.1.2. Typical Decomposition Models
To parallel solution of SLE by preferred Gauss

eliminated method (GEM) the decomposition models are as
follows [16]
� allocation of block strips

• gradually allocation of strips.
In the first allocation method strips are divided to set of

strips and to every computing node is assigned one block.
Illustration of these allocation methods is at Fig. 1.

4 Peter Hanuliak: Complex Modeling of Matrix Parallel Algorithms

Figure 1. Allocation of matrix data blocks.

Another alternative decomposition model with gradual
allocation of columns they are allocated columns to
individual computing nodes like the card are gradually
passing out at games to game participants. Illustration of
gradual assignment of columns is at Fig. 2.

Figure 2. Allocation of matrix columns.

4.2. Partial Differential Equations

Partial differential equations (PDE) are the equation
involving partial derivates of an unknown function with
respect to more than one independent variable. PDEs are of
fundamental importance in modeling all types of
continuous phenomena in nature. Typical examples are
weather forecasting, optimization of aerodynamic shapes,
fluid flow, and the like. Simple PDE can be solved directly,
but in general it is necessary to approximate the solution on
the extensive network of final points by iterative numerical
methods [18]. We will confine our attention to PDE with
two space independent variables x, y. The needed function
we denote as u (x, y). The considered partial derivations we
denote as uxx, uxy, uyy etc. For practical use the most
important PDE are two ordered equations as follows
� heat equation, ut = uxx
� wave equation, utt = uxx

� Laplace equation uxx + uyy = 0.
These three types are the basic types of general linear

second order PDR as in follows
uxx + b uxy +c uyy + d ux + e uy + f u + g = 0. This equation
could be transformed by changing the variables to one of
three basic equations, including the members of the lower
rows, provided that the coefficients a, b, c are not all equal
to zero. Variable b2 – 4 ac is refer to as discriminant
whereby its value determines the following basic groups
PDR of second order
� b2 – 4 ac > 0, hyperbolic (typical equation for

waves).
� b2 – 4 ac = 0, parabolic (typical of heat transfer)
� b2 – 4 ac < 0, elliptical (typical is the Laplace

equation) [6, 37].
Classification of more general types of PDE is not so

clear. When the coefficients are variable, then the type of
equation can be modified by changes in the analyzed area
and if it is intended at the same time with several equations,
each equation can generally be of a different type.
Simultaneously analyzed problem may be nonlinear or
equation requires more than second order [2, 23].
Nevertheless, the basic used classification of PDE is also
used when determining if it is not accurate. Specifically the
following types of PDEs are as follows
� hyperbolic. This group is characterized by time

dependent processes that are not stabilized at some
steady state

� parabolic. Group characterized by a time dependent
processes, which tend to the stabilization

� elliptical. Group describes the processes that have
reached steady state and are therefore time
independent. A typical example is the Laplace
equation.

Here we show how to solve in parallel way specific PDE
– Laplace equation in two dimensions – by means of a grid
computation method that employs finite difference method.
Although we focus on this specific problem, the same
techniques are used for solving other PDE (Laplace - three
dimensional, Poisson equation etc.), extensive
approximations calculations on various parallel computers
(supercomputers, massive, SMP, NOW, Grid) eventually
solving another similar complex problems.

4.2.1. Parallel Application of Iterative Algorithms
Here we show how to solve in parallel way specific PDE

– Laplace equation in two dimensions – by means of a grid
computation method that employs finite difference method.
Although we focus on this specific problem, the same
techniques are used for solving other PDE (Laplace - three
dimensional, Poisson equation etc.), extensive
approximations calculations on various parallel computers
(supercomputers, massive, SMP, NOW, Grid) eventually
solving another similar complex problems. Laplace
equation is a practical example of using iterative methods
to its solution. The equation for two dimensions is
following

Number of columns
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2
Computing nodes

Number of columns
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2
Computing nodes

 American Journal of Networks and Communications 2014; 3(5-1): 1-14 5

2 2
0

2 2x y

δ δ
δ δ

Φ Φ+ =

Figure 3. Grid approximation of Laplace equation.

Function Ф(x, y) could represent some unknown
potential, such as heat, stress etc. Given a two-dimensional
region and values for points of the region boundaries, the
goal is to approximate the steady-state solution Ф(x, y) for
points in the interior by the function u(x, y). We can do this
by covering the region with a grid of points (Fig. 1) and to
obtain the values of u(xi, yj) = ui,j.

Let us consider square region (a, b) x (a, b). For
coordinates of grid points is valid xi = i*h, yj = j*h, h = (b-a)
/ N for i,j = 0, 1, ..., N. We replace partial derivations of Ф
~ u(x, y) by the differences of ui,j. After substituting we
obtain final iteration formulae as

X i,j
(t+1) = (Xi-1,j

(t) + Xi+1,j
(t) + Xi,j-1

(t) + Xi,j+1
(t)) / 4

orits alternative version

X i,j
(t+1) = (4 Xi,j

(t) + Xi-1,j
(t) + Xi+1,j

(t) + Xi,j-1
(t) + Xi,j+1

(t)) / 8

Each interior point is initialized to some value. The
steady-state values of the interior points are then computed
by repeated iterations. In each iteration the new point value
is set to a combination of the previous values of
neighboring points. The computation terminates either after
a given number of iterations or when every new value is
within some acceptable difference Epsilon > 0 of the
previous value.

Figure 4. Convergence rate.

Illustration of convergence rate of iterative parallel
algorithms is at Fig. 4. For the convergence of Gauss-Seidel
iterative method is valid the same conditions as for Jacobi

iterative method whereby the Gauss-Seidel method
converges faster. Given condition is not only necessary but
only a sufficient one for the convergence of both methods.
In practice, we use both iterative methods also in case of
not satisfying of this condition based on them that
convergence is influenced also by selection of initial vector.

4.2.1.1. Communication Model
For Jacobi finite difference method a two-dimensional

grid is repeatedly updated by replacing the value at each
point with some function of the values at a small fixed
number of neighboring points. The common approximation
structure uses a four-point stencil to update each element
X i,j (Fig. 5.).

Figure 5. Communication model for 4 - points approximation

Similar for more accurate value of any point we can also
used more precise multipoint approximation relation, and
that for example through approximation of nine points
according the pencil at Fig. 6 with following relation

X i,j
(t+1) = (16 Xi-1,j

(t) + 16 Xi+1,j
(t) + 16 Xi,j-1

(t) + 16 Xi,j+1
(t)

- Xi-2,j
(t) - Xi+2,j

(t) - Xi,j-2
(t) - Xi,j+2

(t)) / 60

Figure 6. Stencil with nine points.

5. Complex analytical performance
modeling of MPA

For a complex performance analysis (including overhead
function) of matrix parallel algorithms (MPA) we will be
consider general shape of a square n x n matrix at Fig. 7.

6 Peter Hanuliak: Complex Modeling of Matrix Parallel Algorithms

Figure 7. Square matrix n x n.

The reason for preferred square matrix reducing of
parameter number (n = m) in derivation process of complex
analytical performance relations (execution time, speed up,
efficiency, isoefficiency etc.). Such more transparent
approach is supported with following additional reasons
� any rectangular matrix n x m could be transformed

into a square matrix n x n either by extending the
number of rows (where m < n) or column (if m > n)

� derivation process of performance relations will be
the same except for the fact that when considering
the complexity of the matrix instead of n2 (square
matrix) we have to consider product n. m .

5.1. Basic Common Characteristics of MPA

Typical characteristics of matrix parallel algorithms are
regularities both in the program (matrix computational
activities) and also in data structure matrix (matrix
elements). Such regularity we refer to as a domain. Matrix
computational activities we will represent as T(s, p)comp
latency. Considering square matrix n x n sequential
computational complexity is given as n2. Common
characteristics of matrix parallel algorithms (MPA) are as
follows
� parallelization - matrix itself is well parallelized

theoretically up to level of its single data element.
But applying such a maximal degree of
parallelization could not be effective because of low
computation complexity for one matrix element.
Therefore we will consider basic matrix
decomposition models in group of matrix data
elements

� using of domain decomposition models in which
domain is represented by data matrix elements (data
domain)

� applied matrix date domain decomposition models
define that for parallel computation on decomposed
parts of matrix data elements there is necessary to
perform in a parallel way the whole computation as
in sequential matrix algorithms

� to do any computational operation on matrix there
is necessary to do this operation on every matrix
element or group of them. From performed analysis
comes out that at solving typical MPA parallel
matrix computations are performed as follow
� allocated matrix data part of given computing

node are repeatedly evaluated according used

PA (iteration PA). After every iterations step
there is necessary to perform IPC
communication to neighboring computing
nodes of shared matrix data elements

� allocated matrix data part of given computing
node in one computing step are reduced
according used PA to simpler matrix data part
(for example GEM PA). After every reduction
step there is necessary to perform IPC
communication to all other used computing
nodes.

Based on these conclusions to modeling of MPA there is
necessary to derive needed computational and
communication complexity.

5.1.1. Computational Matrix Complexity

5.1.1.1. Sequential
Sequential computational matrix complexity for

considered square matrix n x n is given as n2 (computation
on each matrix element). Then the used asymptotic
complexity is given as O(n2).

5.1.1.2. Parallel
Computational parallel matrix complexity Z(s, k) is

given as computational complexity of one decomposed
parallel process in k computing steps where parameter s we
have been defined [14] as working load of given problem.
For square matrix s = n2 (sequential matrix complexity).
Through matrix decomposition models we are creating p
parallel processes (matrix decomposition to p matrix parts)
the Z(s, k) will be given as a quotient of computational
sequential matrix complexity n2 and number of
decomposed parallel processes p as follows

2
(,) (,1)

n
Z s k Z s

p
=

where Z(s, 1) represent computational complexity in one
computation step. From derived relation the parallel
computation time complexity T(s, p)comp is given through
quotient of parallel computing time running time of one
parallel process (product of its complexity Z(s, 1)comp and a
constant tc1 as an average value of performed computation
operations) through number of decomposed parallel
processes p as follows

1

2 ..)1 ,(
)p ,(

p

tnsZ
sT ccomp

comp =

In MPA we are oft using mapping under the condition n
= p. Then we get for T(s, p)comp following simpler relation
as

 1..)1 ,()p ,(ccompcomp tnsZsT =

For this simpler relation asymptotic complexity is given
as O (n). At the same time in relation to ideally parallelized
MPA and under assumptions of theoretical unlimited

 American Journal of Networks and Communications 2014; 3(5-1): 1-14 7

number of computation nodes p mathematical limit of T(s,
p)comp is given as

0
..)1 ,(

lim)p ,(
1

2

== ∞→ p

tnsZ
sT

ccomp
pcomp

From this result we can see that a MPA the dominant
influence will have mainly communication complexity.
Therefore we will exanimate basic matrix decomposition
models and their consequences to defined complex
performance criterion.

5.2. Basic Matrix Decomposition Models

Supposed efficiency of parallel matrix algorithms
(shared memory, distributed memory, hybrid) required to
allocate a parallel process to more than one internal
element of the square matrix (data elements). Then for
decomposition of matrix elements to some groups of matrix
data elements we have in principal two basic
decomposition models as follows
� decomposition model of n x n matrix to square

blocks of matrix elements (parallel process).
Illustration example of matrix decomposition to p
blocks (B1, B2, …, Bp) is at Fig. 8 a. In this case the
decomposed blocks consist from at least four matrix
data elements.

� decomposition model of n x n to continual matrix
strips of matrix elements. Continual strips consist of
at least one matrix row or one matrix column.
Illustration example of matrix decomposition to p
strips (S1, S2, …, Sp) is at Fig. 8 b. In this case the
decomposed strips consist from at least one matrix
row.

Figure 8. Matrix decomposition models a) blocks b) strips.

5.2.1. Decomposition Model to Blocks
For mapping matrix elements in blocks a inter process

communication is performed on the four neighboring edges
of blocks, which it is necessary in computation flow to
exchange. Every parallel process therefore sends four
messages and in the same way they receive four messages
at the end of every calculation step (Fig. 9. a) supposing
that all needed data at every edge are sent as a part of any
message).

Figure 9. Communication decomposition models a) blocks b) strips.

Then the requested communication time for this
decomposition model is given as

)(8),(wscommb t
p

n
tpsT +=

using defined technical communication parameters [18] as
follows
� ts is defined parameter for communication

initialization
� tw is defined parameter for data unit latency.
This equation is correct for p ≥ 9, because only under

this assumption it is possible to build at least one square
because only then is possible to build one square block with
for communication edges. Using these variables for the
communication overheads in decomposition method to
blocks is correct

)(8),(),()p ,(wscommbcomm t
p

n
tpshpsTsT +===

Then the requested communication time for this
decomposition method is given as

)(8 wscomb t
p

n
tT +=

5.2.2. Matrix Decomposition to Strips
Decomposition method to rows or columns (strips) are

algorithmic the same and for their practical using is critical
the way how are the matrix elements putting down to
matrix. For example in C language are array elements put
down from right to left and from bottom to top (step by step
building of matrix rows).

In this way it is possible send very simple through
specification of the beginning address for a given row and
through a number of elements in row (addressing with
indexes). Let for every parallel process (strips) two
messages are send to neighboring processors and in the
same way two messages are received from neighboring
processors (Fig. 8 b) supposing that it is possible to
transmit for example one row to one message.
Communication time for a calculation step T(s, p)comms is
then given as

() 4),(wscomms tntpsT +=

8 Peter Hanuliak: Complex Modeling of Matrix Parallel Algorithms

Using these variables for the communication overheads
in decomposition method to strips is correct

)t(t 4),(),()p ,(ws npshpsTsT commscomm +===

The whole time to execute parallel algorithm T(s, p) for
decomposition to strips is then given in general as

 ws

2

)t(t4
.

)p ,(n
p

tn
sT c ++=

In this case a communication time for one calculation
step does not depend on the number of used calculation
processors.

5.3. Complex Analytical Performance Modeling

To complex MPA performance modeling we have been
defined as deriving of evaluation criterions of IPA including
considering overhead function h(s, p). We summarized
derived analytical results as following

Shared results for both decomposition models (blocks,
strips)
� execution time of sequential square matrix

algorithm T(s, 1)

 1
2)1 ,(ccomp tnsT =

�
 execution time for own parallel computation time of

IPA parallel algorithms T(s, p)comp

1

2 .
),(

p

tn
psT c

calc =

� optimal conditions to selection of matrix
decomposition model for ts ,and for tw respectively

ws t
p

nt)
2

1(−> .)
2

1(sw t
p

nt −>

Different results for basic matrix decomposition models
(blocks, strips)

� overhead function for blocks h(s, p)b and for
strips h(s, p)s as follows

)(8),(wsb t
p

n
tpsh +=

)t(t 4),(ws npsh s +=

� complex parallel execution time for blocks T(s,
p)compb, and for strips T(s, p)comps

1

2

)(8
.

),(),()p ,(ws
c

ipcbcalccalcb t
p

n
t

p

tn
psTpsTsT ++=+=

1

2

)(4
.

),(),()p ,(ws
c

ipcscalccalcs tnt
p

tn
psTpsTsT ++=+=

� parallel speed up for blocks S(s, p)b, and for

strips S(s, p)s

)tt(p8),(

)1,(
),(

ws1
2

 1
2

nptn

tpn

psT

sT
psS

c

c

calcb
b

++
==

� efficiency for blocks E(s, p)b, and for strips E(s,
p)s

)tt(p8

),(
),(

ws1
2

 1
2

nptn

tn

p

psS
psE

c

cb
b

++
==

)(4

),(
),(

1
2

 1
2

wsc

cs
s

tntptn

tn

p

psS
psE

++
==

� constant C (needed constant in deriving an
isoefficiency function w (s)) and that for blocks
as Cb, and for strips as Cs in issoeficiency
function

)tt(p8),(1

),(

ws

1
2

np

tn

psE

psE
C c

b
+

=
−

=

)(p4),(1

),(1
2

ws

c
s

tnt

tn

psE

psE
C

+
=

−
=

Fig. 10 illustrates growth dependencies of parallel
computing time T(s, p)comp, communication time T(s, p)comm
and complex parallel execution time T(s, p)complex from
input load growth n (Square matrix dimension) at constant
number of computing node p = 256

Figure 10. Dependencies of T(s, p)complex,T(s, p)comm and T(s, p)comp from n
(p=256).

Fig. 11 illustrates growth dependencies of parallel
computing time T(s, p)comp, communication time T(s, p)comm.

and complex parallel execution time T(s, p)complex from
increasing number of computing node p at constant input
load n (Matrix dimension n = 512)

 American Journal of Networks and Communications 2014; 3(5-1): 1-14 9

Figure 11. Dependencies of T(s, p)complex, T(s, p)comm and T(s, p)comp from p
(n=512).

5.3.1. Issoeficiency Functions
Issoeficiency function w(s) is very important for

performance prediction of parallel algorithms PA. For
modeling of performance prediction in PA we are going to
derive for defined basic matrix decomposition models
(blocks, strips) corresponding analytical issoeficiency
functions w(s)b (Decomposition to blocks) and w(s)s
(decomposition to strips). For asymptotic complexity of
w(s) is valid following derived relation as

[]p)(s,h ,),(max)(calcpsTsw =

where defined workload s is a function of input load n.
For IPA it is given as s = n2. We have defined that for given
value efficiency E(s, p) following quotient of efficiencies
E(s, p) is constant

C
E

E =
−1

5.3.1.1. Canonical Matrix Decomposition Models
As basic matrix decomposition models we have defined

such matrix decomposition models to which there is
possible to reduce all other known matrix decomposition
models. Then the canonical matrix decomposition models
are as follows
� matrix decomposition model to blocks
� matrix decomposition model to strips.
For defined constants Cb (blocks) and Cs (strips) which

are integral parts of issoeficiency functions w(s)b (blocks)
and w(s) (strips) we have derived following relations

)tt(p8),(1

),(

ws

1
2

np

tn

psE

psE
C c

b
+

=
−

=

)(p4),(1

),(1
2

ws

c
s tnt

tn

psE

psE
C

+
=

−
=

To win a closed form of issoeficiency function w(s)b,
w(s)s we have used an approach in which we performed at
first the analysis of increasing input load influenced the
analyzed expression contained ts in relation to p so to keep
this growth constant (we supposed that tw = 0). Then for
constants Cb, Cs we get following expressions

s

c
b tp

tn
C

8
1

2

=
s

c
s t

tn
C

p4
1

2

=

From these expressions we can derive for searched
functions w(s)b = w(s)s = n2 from relations for Cb, Cs
following relations

1

2 8)(
c

s
bb t

t
pCnsw ==

1

2 p 4
)(

c

ss
s t

tC
nsw ==

With a similar approach we can analyze the influence
growth of input load caused another part of expression
from ts in relation to p so to keep this growth constant (we
supposed that ts = 0). Then after setting and performed
needed adjustments we get for searched functions w(s)b and
w(s)s following relations

1

2 8)(
c

w
bb t

t
npCnsw ==

1

4)(
c

w
ss t

t
pnCsw =

Final derived analytical functions w(s)band w(s)s are as
follows












=

11

1
2

8,8 ,max)(
c

w
b

c

s
b

c
b t

t
pnC

t

t
pC

p

tn
sw












=

11

1
2

4,4 ,max)(
c

w
s

c

s
s

c
s

t

t
pnC

t

t
pC

p

tn
sw

5.3.1.2. Optimization of Issoefficiency Functions
Optimization of derived issoefficiency functions require

to search for dominant expressions in derived final relations
for w(s)b a w(s)s. For this purpose we have been done
comparison of individual expressions of w(s)b and w(s)s
with following conclusions
� the first expressions of w(s)b and w(s)s are the same

and therefore this expression will be the component
of final optimized w(s)opt. At the same time for this
expression at performed asymptotical analysis in
relation to parameter p the following limit is valid

0
.

lim 1
2

=→∞ p

tn c
p

and therefore the similar first expressions of
issoeficiency functions w(s)b and w(s)s we can omit
from searched w(s)opt

� in relation to the similarity of actually first
expressions of w(s)b and w(s)s (After omitting
expressions according previous conclusion) as

10 Peter Hanuliak: Complex Modeling of Matrix Parallel Algorithms

follows

11

48
c

s
s

c

s
b t

t
pC

t

t
pC ≥

This condition after reducing of shared expression
parts lead to inequality 2 Cb ≥ Cs. After setting and
following adjustments we get final condition as p ≥
1, which is valid on the whole range of spotted
values of parameter p. It means the with this
performed expression comparison we have got more
dominated expression which we let to the next three
comparisons (Two from w(s)b and one from w(s)s)

� in an analogous way we do comparison of third
expressions from original w(s)b and w(s)s
issoeficiency functions and that as follows

11

8 4
c

w
b

c

w
s t

t
pnC

t

t
pnC ≥

These conditions after reducing of shared expression
parts lead to following inequality Cs√p ≥ 2 Cb. After
setting and performed adjustments we get final
condition p ≥ 1, which is fulfilled on the whole
range of parameter p. With performed comparison
we have ignored further less expression and final
relation w(s)opt is actually as follows









=

11

8, 4max)(
c

s
b

c

w
sopt t

t
pC

t

t
pnCsw

� final comparison of remaining expression comes to
following expression comparison

11

 8 4
c

s
b

c

w
s t

t
pC

t

t
pnC ≥

This condition after reducing of shared expression
parts leads to following inequality Cs n tw ≥ 2 Cbts.
After setting and performed adjustments we come to
following inequality n2. tw

2 ≥ √p ts
2. This inequality

we are able to solve only for concrete values of
parameters n, p, ts, tw. For example using following
values of parameters ts = 35 µs, tw = 0,23 µs and
under assumption of in praxis frequent case of
choosing n = p we get simpler expression to
condition validity as n. √n ≥ 152,172or p. √p ≥
152,172. The smallest integer number which satisfies
given condition is p = n = 813. Satisfying this
condition for n or p, the final issoefficiency function
w(s)opt given with first expression and in opposite is
given with second expression of following final
optimized issoeficiency function w(s)opt

.8, 4max)(
11








=

c

s
b

c

w
sopt t

t
pC

t

t
pnCsw

5.3.1.3. Conclusions of Issoeficiency Functions

Then for the given concrete value of E(s, p) and for
given values of parameters p, n we can in analytical way
the thresholds, for which growth of isoefficiency function
means decreasing of efficiency of given parallel algorithm
with assumed typical decomposition strategies. This means
the minor scalability of the assumed algorithm. In case of
decomposition strategy the approach is similar to analyzed
practical used decomposition matrix strategies.

Based on analysis of computer technical parameters ts, tw,
tc for some parallel computers in the world they are valid
following inequalities ts>>tw>tc. Alike is valid that p ≤ n.
Using these inequalities it is necessary to analyze
dominancy influence of the all derived expressions.

Then the asymptotic issoefficiency function is limited
through dominancy conditions of second and third
expressions. From their comparison comes out
� based on real condition tw ≥ ts a third expression is

bigger or equal than a second expression and an
issoefficiency function is limited through the first
expression of w(s)opt. If we used following technical
parameters ts = 35 µs, tw= 0,23 µs this is true for n
≥ 813

� for n < 813 and for the same technical constants ts =
35 µs, tw= 0,23 µs issoefficiency function is limited
through a second expression of w(s)opt.

6. Results
We illustrate some of chosen performed tested results. To

practical illustrations we have used MPA algorithms for
iterative solving of Laplace PDE equation defined as follows
� four point iteration relation in which in one iteration

are performed five arithmertic operations (tc1 = 5 tc)
� communication model according Fig. 5.
For experimental testing we have used workstations of

NOW parallel computer (workstations WS 1 – WS 5) and
supercomputer as follows
� WS 1 – Pentium IV (f = 2,26 G Hz)
� WS 2 - Pentium IV Xeon (2 proc., f = 2,2 G Hz)
� WS 3 - Intel Core 2 Duo T 7400 (2 cores, f=2,16

GHz)
� WS 4 - Intel Core 2 Quad (4 cores, 2.5 GHz)
� WS 5 - Intel SandyBridge i5 2500S (4 cores, f=2.7

GHz)
� supercomputer Cray T3E in remote computing

node.
Comparison of decomposition model influence (D1 -

blocks, D2 - strips) is at Fig. 11. For comparison were
measured values recomputed to one iteration step.
Performed measurements have proved higher efficiency of
decomposition model to blocks for tested parallel computer
Cray T3E. Technical parameters of parallel computer Cray
T3E (ts = 3 µs, tw = 0,063 µs, tc = 0,011 µs).

 American Journal of Networks and Communications 2014; 3(5-1): 1-14 11

Figure 12. Comparison of T(s, p)complex for decomposition models (n=256).

Fig. 13 illustrate dependencies to optimal selection of
decomposition strategy for technical parameter tsi (ts1, ts2)
using verified technical parameters of supercomputer Cray
T3E for tw = 0,063 µs and n = 128, 256.

Figure 13. Influences ts for n = 128, 256

Figure 14. Comparison of T(s, p)complex for Jacobi and Gauss-Seidel IPA for
E=10-5.

At Fig. 14 we have presented measurement results of the
whole solving time for both developed parallel algorithms
(Jacobi, Gauss-Seidel) with the number of processors p = 8
and for various values of input workload n (Matrix

dimensions) for E=10-5. From comparisons of these
measurements come out that for great number of
workstations (p=8) are the whole solving times
approximately the same. The reasons are that lower
computation complexity at Gauss-Seidel method
(Computation) is eliminated through greater
communication complexity in its parallel algorithm
practically double higher than Jacobi IPA.

This figure illustrates continually percent spreading of
the individual overheads (Initialization, computation,
communication, gathering) for Jacobi parallel algorithm
with the given number of workstations p = 4 for various
values of workload n (matrix dimensions) and for
accuracy E=0,001. From comparisons we can see raising
trend of computation in dependence of accuracy E.

Generally for the problems with increasing
communication complexity through using great number of
processors p based on Ethernet NOW we come to the point
(Threshold that parallel computing is no more effective,
that means we are without any speed-up. It is evident that
for the given problem, given parallel algorithms and given
parallel computer to find such a threshold (no speed-up) is
very important.

The individual parts of the whole execution parallel time
are illustrated at Fig. 15 for Jacobi iterative parallel
algorithm for 4 workstations and for E = 0,001.

Figure 15. Percentage comparison of T (s, p)complex for its components
(E=0,001).

Figure 16. Comparison of T (s, p)complex parts for p=4 (E=0,001).

n=256

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120 140 160 180 200 220 240 260
p

T
[µs]

D1

D2

n=128, 256

0

2

4

6

8

10

12

14

16

9 29 49 69 89 109 129 149 169 189 209 229 249
p

ts
[µs]

ts1

ts2

12 Peter Hanuliak: Complex Modeling of Matrix Parallel Algorithms

The influence of number of workstations at given
accuracy E=0,001 to the individual parts of the whole
solving time for pre Jacobi iterative parallel algorithm for
various sizes of input workload (matrix dimensions from 64
x 64 to the size 512 x 512) illustrates Fig. 16 for the
number of workstations p = 4. From the comparisons come
out percent sinking of computations at the bigger number
of workstations (parallel speed-up though the higher
number of workstations) at the moderate percent raising of
network communication overheads.

Fig. 17 illustrates the times of individual parts of the
whole solving time as a function of input workload n
(Square matrix dimensions) for number of workstations
p=4 and for accuracy E=0,001. From comparison of these
both graphs comes out higher contribution through the
number of working stations than the raising overheads of
the network communication.

Figure 17. Influence of computing nodes to T(s, p)comm, (E=0,001).

Fig. 18 illustrate influence of number of workstations
NOW to quicker solutions of both distributed parallel
algorithms (Gauss-Seidel parallel algorithm) for matrix
dimensions 512x512 and various analyzed accuracies of
Epsilon.

Figure 18. Influence of workstation number for Gauss-Seidel IPA.

Derived analytical issoeficiency functions allow us to
predict parallel computer performance also for theoretical
not existed ones. We have illustrated at Fig. 19

isoefficiency functions for individual constant values of
efficiency (E = 0,1 to 0,9) for n < 152 using the published
technical parameters tc, ts, tw communication constants of
used NOW (tc= 0,021 µs, ts = 35 µs, tw= 0,23 µs,).

Figure 19. Isoefficiency functions w(s) for n < 152

Fig. 20 illustrates isoefficiency functions for individual
constant values of efficiency (E = 0,1 to 0,9) for n = 1024
and for communication parameters of parallel computer
Cray T3E (tc= 0,011µs, ts = 3 µs, tw= 0,063 µs,).

Figure 20. Isoefficiency functions w(s) (n = 1024).

From both pictures (Fig. 19 and Fig. 20) we can see that
to keep a given value of efficiency we need step by step
increasing number of computing processors and higher
value of workload (useful computation) to balance higher
communication overheads.

7. Conclusions
Performance evaluation as a discipline has repeatedly

proved to be critical for design and successful use in
parallel computing. At the early stage of design,
performance models can be used to project the system
scalability and evaluate alternative solutions. At the
production stage, performance evaluation methodologies

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

0 200 400 600 800 1000
p

w
E=0,1

E=0,2

E=0,3

E=0,4

E=0,5

E=0,6

E=0,7

E=0,8

E=0,9

0,0E+00

2,0E+06

4,0E+06

6,0E+06

8,0E+06

1,0E+07

1,2E+07

1,4E+07

1,6E+07

1,8E+07

2,0E+07

0 200 400 600 800 1000p

w

E=0,1

E=0,2

E=0,3

E=0,4

E=0,5

E=0,6

E=0,7

E=0,8

E=0,9

 American Journal of Networks and Communications 2014; 3(5-1): 1-14 13

can be used to detect bottlenecks and subsequently suggests
ways to alleviate them. Queuing networks has been
established in modeling of parallel computers [5, 17].
Extensions of complexity theory to parallel computing have
been successfully used for the evaluation of parallel
algorithms and communication complexity too. Via
extended form of isoefficiency concept for parallel
algorithms we have demonstrated its applied using to
performance prediction in typical matrix parallel algorithms
(MPA).

To derive isoefficiency function in analytical way it is
necessary to derive al typical used criterion for
performance evaluation of parallel algorithms including
their overhead function (parallel execution time, speed up,
efficiency). Based on this knowledge we are able to derive
issoefficiency function as real criterion to evaluate and
predict performance of parallel algorithms also for future
hypothetical parallel computers. So in this way we can say
that this process includes complex performance evaluation
including performance prediction.

Due to the dominant using of parallel computers based
on NOW modules and their high integration named as Grid
there has been great interest in performance prediction of
parallel algorithms in order to achieve effective parallel
algorithms (optimized). Therefore this paper summarizes
the used methods for complexity analysis which can be
applicable to all types of parallel computers (supercomputer,
NOW, Grid).
This paper finalizes applying of complex analytical

modeling to the whole group of matrix parallel algorithms
which are characterized by domain decomposition models.
To present this group of MPA we have modeled abstract
matrix using basic decomposition models with supposed
intensive communication complexity. In such a way
performed complex modeling could be inspiring also to
other PA or even a group of PA. The complex analyzed
examples we have been evaluated so on classic massive
supercomputers (hypercube, mesh) as on dominant parallel
computers represented by NOW module.

Acknowledgements
This work was done within the project “Complex

performance modeling, optimization and prediction of
parallel computers and algorithms” at University of Zilina,
Slovakia. The author gratefully acknowledges help of
project supervisor Prof. Ing. Ivan Hanuliak, PhD.

References
[1] Arora S., Barak B., Computational complexity - A modern

Approach, Cambridge University Press, pp. 573, 2009

[2] Bahi J. H., Contasst-Vivier S., Couturier R., Parallel
Iterative algorithms: From Sequential to Grid Computing,
CRC Press, USA, 2007

[3] Bronson R., Costa G. B., Saccoman J. T., Linear Algebra -

Algorithms, Applications, and Techniques, 3rd Edition,
Elsevier Science & Technology, Netherland, pp. 536, 2014

[4] Casanova H., Legrand A., Robert Y., Parallel algorithms,
CRC Press, USA, 2008

[5] Dattatreya G. R., Performance analysis of queuing and
computer network, University of Texas, Dallas, USA,
pp.472, 2008

[6] Davis T. A., Direct methods for sparse Linear Systems,
Cambridge University Press, United Kingdom, pp. 184,
2006

[7] Desel J., Esperza J., Free Choise Petri Nets, Cambridge
University Press, United Kingdom, pp. 256, 2005

[8] Dubois M., Annavaram M., Stenstrom P., Parallel Computer
Organization and Design, Cambridge university press,
United Kingdom, pp. 560, 2012

[9] Dubhash D.P., Panconesi A., Concentration of measure for
the analysis of randomized algorithms, Cambridge
University Press, United Kingdom, 2009

[10] Edmonds J., How to think about algorithms, Cambridge
University Press, United Kingdom, pp. 472, 2010

[11] Gelenbe E., Analysis and synthesis of computer systems,
Imperial College Press, pp. 324,2010

[12] Goldreich O., P, NP, and NP - Completeness, Cambridge
University Press, United Kingdom, pp. 214, 2010

[13] Hager G., Wellein G., Introduction to High Performance
Computing for Scientists and Engineers, CRC Press, USA,
pp. 356, 2010

[14] Hanuliak P., Hanuliak J., Complex performance modeling
of parallel algorithms , American J. of Networks and
Communication, Science PG, Vol. 3, USA, 2014

[15] Hanuliak M., Modeling of parallel computers based on
network of computing nodes, American J. of Networks and
Communication, Science PG, Vol. 3, USA, 2014

[16] Hanuliak M., Hanuliak J., Decomposition models of parallel
algorithms, American J. of Networks and Communication,
Science PG, Vol. 3, USA, 2014

[17] Hanuliak M., Hanuliak I., To the correction of analytical
models for computer based communication systems,
Kybernetes, Vol. 35, No. 9, UK, pp. 1492-1504, 2006

[18] Hanuliak J., Modeling of communication complexity in
parallel computing, American J. of Networks and
Communication, Science PG, Vol. 3, USA, 2014

[19] Hanuliak M., Unified analytical models in parallel and
distributed computing, AJNC (Am. J. of Networks and
Comm.), SciencePG, Vol. 3, No. 1, USA, pp. 1-12, 2014

[20] Hanuliak J., Hanuliak I., To performance evaluation of
distributed parallel algorithms, Kybernetes, Volume 34, No.
9/10, United Kingdom, pp. 1633-1650, 2005

[21] Hillston J., A Compositional Approach to Performance
Modeling, University of Edinburg, Cambridge University
Press, United Kingdom, pp. 172 pages, 2005

[22] Hwang K. and coll., Distributed and Parallel Computing,
Morgan Kaufmann, USA, 472 pages, 2011

14 Peter Hanuliak: Complex Modeling of Matrix Parallel Algorithms

[23] Kshemkalyani A. D., Singhal M., Distributed Computing,
University of Illinois, Cambridge University Press, United
Kingdom, pp. 756 pages, 2011

[24] Kirk D. B., Hwu W. W., Programming massively parallel
processors, Morgan Kaufmann, USA, pp. 280, 2010

[25] Kostin A., Ilushechkina L., Modeling and simulation of
distributed systems, Imperial College Press, United
Kingdom, pp. 440, 2010,

[26] Kshemkalyani A. D., Singhal M., Distributed Computing,
University of Illinois, Cambridge University Press, UK, pp.
756, 2011

[27] Kushilevitz E., Nissan N., Communication Complexity,
Cambridge University Press, United Kingdom, pp. 208,
2006,

[28] Le Boudec Jean-Yves, Performance evaluation of computer
and communication systems, CRC Press, USA, pp. 300,
2011

[29] Levesque John, High Performance Computing:
Programming and applications, CRC Press, USA, pp. 244,
2010

[30] Lilja D. J., Measuring Computer Performance, University of
Minnesota, Cambridge University Press, United Kingdom,
pp. 280, 2005

[31] McCabe J., D., Network analysis, architecture, and design
(3rd edition), Elsevier/ Morgan Kaufmann, USA, pp. 496,
2010

[32] Meerschaert M., Mathematical modeling (4-th edition),
Elsevier, pp. 384, 2013

[33] Misra Ch. S.,Woungang I., Selected topics in
communication network and distributed systems, Imperial
college press, United Kingdom, pp. 808, United Kingdom

[34] Peterson L. L., Davie B. C., Computer networks – a system
approach, Morgan Kaufmann, USA, pp. 920, 2011

[35] Resch M. M., Supercomputers in Grids, Int. J. of Grid and
HPC, No.1, pp. 1 - 9, 2009

[36] Riano l., McGinity T.M., Quantifying the role of complexity
in a system´s performance, Evolving Systems, Springer
Verlag, Germany, pp. 189 – 198, 2011

[37] Shapira Y., Solving PDEs in C++ - Numerical Methods in a
Unified Object-Oriented Approach (2nd edition), Cambridge
University Press, United Kingdom, pp. 800, 2012

[38] Wang L., Jie Wei., Chen J., Grid Computing: Infrastructure,
Service, and Application, CRC Press, USA, 2009 www
pages

[39] www.top500.org.

