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Abstract: Parallel principles are the most effective way how to increase performance in parallel computing (parallel 
computers and algorithms too). In this sense the paper is devoted to a complex performance evaluation of matrix parallel 
algorithms (MPA). At first the paper describes the typical matrix parallel algorithms and then it summarizes common 
properties of them to complex performance modeling of MPA. To complex performance analysis we are able to take into 
account all overheads influence performance of parallel algorithms (parallel computer architecture, parallel computation, 
communication etc.). To be le to analyze MPA in their abstract form we have defined needed decomposition models of MPA. 
For these decomposition strategies we derived analytical relation for defined complex performance criterions including 
isoefficiency functions, which allow us to predict performance although for hypothetical parallel computer. In its 
experimental part the paper considers the achieved results using defined complex performance criterions including 
issoefficiency function for performance prediction also for hypothetical future parallel computers. Such idea of common 
abstract analysis could be very useful in deriving complex performance criterions for groups of other similar parallel 
algorithms (PA) as for example numerical integration PA, optimization PA etc. 

Keywords: Parallel Computer, NOW, Grid, Parallel Algorithm (PA), Matrix PA, Decomposition Model,  
Performance Modeling, Optimization, Overhead Function H (S, P), Inter Process Communication IPC, 
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1. Trends in Parallel Computing 

Basic common properties in parallel computing (parallel 
computers, parallel algorithms) computing, which are 
reaching continuous demands to performance acceleration, 
are as follows 
� embedded parallel principles on various levels of 

technical (hardware) and program support means 
(software) [8] 

� using of homogenous shared resources so in 
computing nodes of parallel computers (processors, 
cores, computers) as in parallel algorithms too [24] 

� using of high speed communication networks 
reducing communication latency [39]  

� increased client/server computing on symmetrical 
multiple processors or cores (SMP) 

� trends to unified modeling of parallel computers 
(shared memory, distributed memory) and in 
parallel algorithms (shared memory, distributed 
memory, hybrid) 

� continuous demands to increase mobility and data 

migration [23] 
� the development of hardware neutral parallel 

programming language, such as Java, provides a 
virtual computational environment in which 
computing nodes of parallel computer appear to be 
homogenous 

� continuous improvements in network technology 
and communication middleware in order to use 
shared parallel resources in unified manner (cloud 
computing, Internet computing). 

Current trends also in high performance computing 
(HPC) are to use networks of workstations (NOW, SMP) as 
a cheaper alternative to traditionally used massively 
parallel multiprocessors or supercomputers and to profit 
from unifying of both mentioned disciplines [19]. The 
individual powerful computing nodes (workstations) could 
be so single personal computer (PC) as parallel computers 
based on modern SMP parallel computers implemented 
within computing node of parallel computer [13, 15]. Based 
on such modular NOW modules there were are realized 
high integrated massive parallel computers named as Grid 
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systems [38]. A member of NOW module or Grid could be 
any classic supercomputers [35]. 

2. Performance Evaluation in Parallel 
Computing 

To performance evaluation of parallel computers and 
parallel algorithms we can use   evaluation methods as 
follows 

� analytical 
� application of queuing theory results [11, 21] 
� order (asymptotic) analyze [12, 20] 
� Petri nets [7] 

� simulation methods [25] 
� experimental 

� benchmarks [28] 
� modeling tools [32] 
� direct measuring [9, 30]. 

Analytical method is a very well developed set of 
techniques which can provide exact solutions very quickly, 
but only for a very restricted class of models. For more 
general models it is often possible to obtain approximate 
results significantly more quickly than when using 
simulation, although the accuracy of these results may be 
difficult to determine.  

Simulation is the most general and versatile means of 
modeling systems for performance estimation. It has many 
uses, but its results are usually only approximations to the 
exact answer and the price of increased accuracy is much 
longer execution times. They are still only applicable to a 
restricted class of models (though not as restricted as analytic 
approaches.) Many approaches increase rapidly their memory 
and time requirements as the size of the model increases. 

Evaluating system performance via experimental 
measurements is a very useful alternative for computer 
systems. Measurements can be gathered on existing 
systems by means of benchmark applications that aim at 
stressing specific aspects of computers systems. Even 
though benchmarks can be used in all types of performance 
studies, their main field of application is competitive 
procurement and performance assessment of existing 
systems and algorithms. 

3. Parallel Algorithms 
In principal we can divide parallel algorithms (PA) to the 

following groups 
� parallel algorithm using shared memory (PAsm). 

These algorithms are developed for parallel 
computers with shared memory as actual modern 
symmetrical multiprocessors (SMP) or multicore 
systems on motherboard 

� parallel algorithm using distributed memory (PAdm). 
These algorithms are developed for parallel 
computers with distributed memory as actual NOW 
system and their higher integration forms named as 

Grid systems 
� hybrid PA which combine using of both previous 

PA (PAhyb). This trend support applied using of 
NOW consisted from computing nodes based on 
SMP parallel computers. 

The main difference between PAsm and PAdm is in form 
of inter process communication (IPC) among created 
parallel processes [18, 33]. Generally we can say that IPC 
communication in parallel system with shared memory can 
use more communication possibilities (all the possibilities 
of communication in shared memory) than in distributed 
systems (only network communication). 

2.1. Developing Steps of PA 

The role of programmer is for the given parallel 
computer and for given application problem to develop the 
effective parallel algorithm. This task is more complicated 
in those cases, in which we have to create the conditions for 
any parallel activities in form of dividing the sequential 
algorithm to their mutual independent parts named parallel 
processes. Principally development of any parallel 
algorithms (shared memory, distributed memory, hybrid) 
includes performing of the following activities [29, 34].  
� decomposition of a complex problem to a set of 

parallel processes including their data 
(decomposition model) 

� mapping – distribution of decomposed parallel 
processes to computing nodes of used parallel 
computer 

� inter process communication (IPC) to cooperation 
(data communications, synchronization, control) of 
performed parallel processes  

� performance optimization (tuning) of developed 
parallel algorithm (effective PA). 

The most important step is to choose for given complex 
problem optimal decomposition model. To do this there is 
necessary to understand given complex problem, shared 
data, applied sequential algorithms (SA) and the flow of SA 
control [4, 26]. 

3.1.1. Decomposition Models 
Decomposition model defines distribution of given 

complex problem to its independent parts (parallel 
processes) in such a way, that they could be performed in a 
parallel way via computing nodes of used parallel computer. 
Optimal selection of decomposition model and degree of 
parallelism are critical conditions to develop effective 
parallel algorithm. Potential decomposition of given 
complex problem is crucial for effectiveness of parallel 
algorithm [16]. The chosen decomposition model then 
drives the rest of effective parallel program development. 
This is true is in case of developing new applied PA as in 
porting serial code. The decomposition model defines 
structure of PA codes and their data and estimate the 
optimal topology of needed communication network [27, 
31]. The existed decomposition models we have been 
analyzed in [16]. 
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3.1.2. Mapping  
This step allocates created parallel processes to 

computing nodes of parallel computer for their parallel 
executions. There is necessary to achieve that every 
computing node should perform allocated parallel 
processes (one or more) with at least approximate input 
loads (load balancing) on real assumption of equal 
powerful computing nodes. Fulfillment of this condition 
contributes to optimal parallel execution time.  

3.1.3. Inter process Communication 
Inter process communication (IPC) represents a needed 

tool to cooperation of decomposed parallel processes. In 
general we can say that dominated parts of parallel 
algorithms are decomposed parallel processes (independent 
sequential parts) and inter process communication (IPC) 
among created parallel processes in performing of PA. We 
have been analyzed IPC communication in detail in [18]. 

3.1.4. Performance Optimization 
After verifying developed parallel algorithm on used 

parallel computer the further step is performance modeling 
and its optimization in order to develop effective PA. This 
step contents analysis of previous steps in such a way to 
minimize whole execution time latency of parallel 
computing T(s, p). Performed optimization of T(s, p) for 
given parallel algorithm depends mainly from following 
factors 
� allocation of balanced input load to used computing 

nodes of parallel computer (load balancing) [1, 36] 
� minimization of accompanying overheads amounts 

(parallelization, IPC, synchronization control of PA) 
[14, 22]. 

To do load balancing we need in case of obvious using of 
equally powerful computing nodes of PC results of load 

allocation for given developed PA. In dominated parallel 
computers (NOW, Grid) there are necessary to reduce 
(optimize) mainly number of inter process communications 
IPC (communication complexity) for example by 
considering of alternative existing decomposition model.  

3.2. Complex Performance Evaluation Metrics 

To evaluating parallel algorithms we have been defined 
in [14] complex performance criterions of PA. Tradeoffs 
among these performance factors are often encountered in 
real applied PA. We summarize these criterions as follows 
� complex parallel execution time T(s, p) including 

overhead function h(s, p) 
� complex speed up S(s, p) 
� complex efficiency E(s, p) 
� issoeficiency w(s). 

4. Typical Matrix Parallel Algorithms 
Some of the typical matrix parallel algorithms we have 

been yet analyzed as follows 
� parallel matrix multiplication [16] 
� parallel fast discrete Fourier Transform (DFFT) in 

[14]. 
We will short describe further typical MPA.  

4.1. System of Linear Equations 

System of n linear equations (SLE) with n variables x1, 
x2, x3, ..., xn, in matrix form is defined as follows [3, 10]  

A . X = B 
where the matrix A is a square matrix of coefficients, B is 
the vector of the right side and X is a vector of searching 
unknown as follows 
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�
��
�
a��, a�	, a�
, …	a�
a	�, a		, a	
, …	a	
																		…																		…																		…a
�, a
	, a

, …	a

�

��
� 										B =

�
��
a�,
��a	,
��. .. .a
,
���

�� 								X =
�
��
		X�
X	. .. .X
 �

��	 

 
4.1.1. Methods of SLE Solving 

There is no known universal optimal method of solving 
systems of linear equations. There are several different 
ways of solving SLR whereby each of them at fulfillment 
of defined assumption implies the option of the solution 
method. In principle, we divide the available methods for 
exact (finite) and iterative. There exist many various ways 
how to solve system of linear equations. But there does not 
exist any optimal way of solving it. The existed methods 
can be divided into 
� exact 

� Cramer rule 
� Gaussian elimination methods (GEM) 
� GEM alternatives 

� iterative 

4.1.2. Typical Decomposition Models  
To parallel solution of SLE by preferred Gauss 

eliminated method (GEM) the decomposition models are as 
follows [16] 
� allocation of block strips  

• gradually allocation of strips. 
In the first allocation method strips are divided to set of 

strips and to every computing node is assigned one block. 
Illustration of these allocation methods is at Fig. 1. 
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Figure 1. Allocation of matrix data blocks. 

Another alternative decomposition model with gradual 
allocation of columns they are allocated columns to 
individual computing nodes like the card are gradually 
passing out at games to game participants. Illustration of 
gradual assignment of columns is at Fig. 2. 

 

Figure 2. Allocation of matrix columns. 

4.2. Partial Differential Equations 

Partial differential equations (PDE) are the equation 
involving partial derivates of an unknown function with 
respect to more than one independent variable. PDEs are of 
fundamental importance in modeling all types of 
continuous phenomena in nature. Typical examples are 
weather forecasting, optimization of aerodynamic shapes, 
fluid flow, and the like. Simple PDE can be solved directly, 
but in general it is necessary to approximate the solution on 
the extensive network of final points by iterative numerical 
methods [18]. We will confine our attention to PDE with 
two space independent variables x, y. The needed function 
we denote as u (x, y). The considered partial derivations we 
denote as uxx, uxy, uyy etc. For practical use the most 
important PDE are two ordered equations as follows 
� heat equation, ut = uxx 
� wave equation, utt = uxx 

� Laplace equation uxx + uyy = 0. 
These three types are the basic types of general linear 

second order PDR as in follows 
uxx + b uxy +c uyy + d ux + e uy + f u + g = 0. This equation 
could be transformed by changing the variables to one of 
three basic equations, including the members of the lower 
rows, provided that the coefficients a, b, c are not all equal 
to zero. Variable b2 – 4 ac is refer to as discriminant 
whereby its value determines the following basic groups 
PDR of second order 
� b2 – 4 ac > 0, hyperbolic (typical equation for 

waves). 
� b2 – 4 ac = 0, parabolic (typical of heat transfer) 
� b2 – 4 ac < 0, elliptical (typical is the Laplace 

equation) [6, 37]. 
Classification of more general types of PDE is not so 

clear. When the coefficients are variable, then the type of 
equation can be modified by changes in the analyzed area 
and if it is intended at the same time with several equations, 
each equation can generally be of a different type. 
Simultaneously analyzed problem may be nonlinear or 
equation requires more than second order [2, 23]. 
Nevertheless, the basic used classification of PDE is also 
used when determining if it is not accurate. Specifically the 
following types of PDEs are as follows 
� hyperbolic. This group is characterized by time 

dependent processes that are not stabilized at some 
steady state 

� parabolic. Group characterized by a time dependent 
processes, which tend to the stabilization 

� elliptical. Group describes the processes that have 
reached steady state and are therefore time 
independent. A typical example is the Laplace 
equation. 

Here we show how to solve in parallel way specific PDE 
– Laplace equation in two dimensions – by means of a grid 
computation method that employs finite difference method. 
Although we focus on this specific problem, the same 
techniques are used for solving other PDE (Laplace - three 
dimensional, Poisson equation etc.), extensive 
approximations calculations on various parallel computers 
(supercomputers, massive, SMP, NOW, Grid) eventually 
solving another similar complex problems. 

4.2.1. Parallel Application of Iterative Algorithms  
Here we show how to solve in parallel way specific PDE 

– Laplace equation in two dimensions – by means of a grid 
computation method that employs finite difference method. 
Although we focus on this specific problem, the same 
techniques are used for solving other PDE (Laplace - three 
dimensional, Poisson equation etc.), extensive 
approximations calculations on various parallel computers 
(supercomputers, massive, SMP, NOW, Grid) eventually 
solving another similar complex problems. Laplace 
equation is a practical example of using iterative methods 
to its solution. The equation for two dimensions is 
following 

 

Number of columns 
1      2       3      4       5      6      7      8       9    10     11    12    13    14    15 
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Computing nodes 
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Figure 3. Grid approximation of Laplace equation. 

Function Ф(x, y) could represent some unknown 
potential, such as heat, stress etc. Given a two-dimensional 
region and values for points of the region boundaries, the 
goal is to approximate the steady-state solution Ф(x, y) for 
points in the interior by the function u(x, y). We can do this 
by covering the region with a grid of points (Fig. 1) and to 
obtain the values of u(xi, yj) = ui,j. 

Let us consider square region (a, b) x (a, b). For 
coordinates of grid points is valid xi = i*h, yj = j*h, h = (b-a) 
/ N for i,j = 0, 1, ..., N. We replace partial derivations of Ф 
~ u(x, y) by the differences of ui,j. After substituting we 
obtain final iteration formulae as 

X i,j
(t+1) = (Xi-1,j

(t) + Xi+1,j
(t) + Xi,j-1

(t) + Xi,j+1
(t) ) / 4 

orits alternative version 

X i,j
(t+1) = (4 Xi,j

(t) + Xi-1,j
(t) + Xi+1,j

(t) + Xi,j-1
(t) + Xi,j+1

(t) ) / 8 

Each interior point is initialized to some value. The 
steady-state values of the interior points are then computed 
by repeated iterations. In each iteration the new point value 
is set to a combination of the previous values of 
neighboring points. The computation terminates either after 
a given number of iterations or when every new value is 
within some acceptable difference Epsilon > 0 of the 
previous value.  

 

Figure 4. Convergence rate. 

Illustration of convergence rate of iterative parallel 
algorithms is at Fig. 4. For the convergence of Gauss-Seidel 
iterative method is valid the same conditions as for Jacobi 

iterative method whereby the Gauss-Seidel method 
converges faster. Given condition is not only necessary but 
only a sufficient one for the convergence of both methods. 
In practice, we use both iterative methods also in case of 
not satisfying of this condition based on them that 
convergence is influenced also by selection of initial vector. 

4.2.1.1. Communication Model 
For Jacobi finite difference method a two-dimensional 

grid is repeatedly updated by replacing the value at each 
point with some function of the values at a small fixed 
number of neighboring points. The common approximation 
structure uses a four-point stencil to update each element 
X i,j (Fig. 5.).  

 

Figure 5. Communication model for 4 - points approximation 

Similar for more accurate value of any point we can also 
used more precise multipoint approximation relation, and 
that for example through approximation of nine points 
according the pencil at Fig. 6 with following relation 

X i,j
(t+1) = (16 Xi-1,j

(t) + 16 Xi+1,j
(t) + 16 Xi,j-1

(t) + 16 Xi,j+1
(t) 

- Xi-2,j
(t) - Xi+2,j

(t) - Xi,j-2
(t) - Xi,j+2

(t)) / 60 

 

Figure 6. Stencil with nine points. 

5. Complex analytical performance 
modeling of MPA 

For a complex performance analysis (including overhead 
function) of matrix parallel algorithms (MPA) we will be 
consider general shape of a square n x n matrix at Fig. 7. 
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Figure 7. Square matrix n x n. 

The reason for preferred square matrix reducing of 
parameter number (n = m) in derivation process of complex 
analytical performance relations (execution time, speed up, 
efficiency, isoefficiency etc.). Such more transparent 
approach is supported with following additional reasons 
� any rectangular matrix n x m could be transformed 

into a square matrix n x n either by extending the 
number of rows (where m < n) or column (if m > n) 

� derivation process of performance relations will be 
the same except for the fact that when considering 
the complexity of the matrix instead of n2 (square 
matrix) we have to consider product n. m . 

5.1. Basic Common Characteristics of MPA 

Typical characteristics of matrix parallel algorithms are 
regularities both in the program (matrix computational 
activities) and also in data structure matrix (matrix 
elements). Such regularity we refer to as a domain. Matrix 
computational activities we will represent as T(s, p)comp 
latency. Considering square matrix n x n sequential 
computational complexity is given as n2. Common 
characteristics of matrix parallel algorithms (MPA) are as 
follows 
� parallelization - matrix itself is well parallelized 

theoretically up to level of its single data element. 
But applying such a maximal degree of 
parallelization could not be effective because of low 
computation complexity for one matrix element. 
Therefore we will consider basic matrix 
decomposition models in group of matrix data 
elements 

� using of domain decomposition models in which 
domain is represented by data matrix elements (data 
domain) 

� applied matrix date domain decomposition models 
define that for parallel computation on decomposed 
parts of matrix data elements there is necessary to 
perform in a parallel way the whole computation as 
in sequential matrix algorithms   

� to do any computational operation on matrix there 
is necessary to do this operation on every matrix 
element or group of them. From performed analysis 
comes out that at solving typical MPA parallel 
matrix computations are performed as follow 
� allocated matrix data part of given computing 

node are repeatedly evaluated according used 

PA (iteration PA). After every iterations step 
there is necessary to perform IPC 
communication to neighboring computing 
nodes of shared matrix data elements 

� allocated matrix data part of given computing 
node in one computing step are reduced 
according used PA to simpler matrix data part 
(for example GEM PA). After every reduction 
step there is necessary to perform IPC 
communication to all other used computing 
nodes. 

Based on these conclusions to modeling of MPA there is 
necessary to derive needed computational and 
communication complexity. 

5.1.1. Computational Matrix Complexity 

5.1.1.1. Sequential  
Sequential computational matrix complexity for 

considered square matrix n x n is given as n2 (computation 
on each matrix element). Then the used asymptotic 
complexity is given as O(n2).  

5.1.1.2. Parallel  
Computational parallel matrix complexity Z(s, k) is 

given as computational complexity of one decomposed 
parallel process in k computing steps where parameter s we 
have been defined [14] as working load of given problem. 
For square matrix s = n2 (sequential matrix complexity). 
Through matrix decomposition models we are creating p 
parallel processes (matrix decomposition to p matrix parts) 
the Z(s, k) will be given as a quotient of computational 
sequential matrix complexity n2 and number of 
decomposed parallel processes p as follows 

2
( , ) ( ,1)  

n
Z s k Z s

p
=  

where Z(s, 1) represent computational complexity in one 
computation step. From derived relation the parallel 
computation time complexity T(s, p)comp is given through 
quotient of  parallel computing time running time of one 
parallel process (product of its complexity Z(s, 1)comp and a 
constant tc1 as an average value of performed computation 
operations) through number of decomposed parallel 
processes p as follows 

 
1

2 ..)1 ,(
)p ,(

p

tnsZ
sT ccomp

comp =  

In MPA we are oft using mapping under the condition n 
= p. Then we get for T(s, p)comp following simpler relation 
as 

 1..)1 ,()p ,( ccompcomp tnsZsT =  

For this simpler relation asymptotic complexity is given 
as O (n). At the same time in relation to ideally parallelized 
MPA and under assumptions of theoretical unlimited 
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number of computation nodes p mathematical limit of T(s, 
p)comp is given as  

0
..)1 ,(

lim)p ,(  
1

2

== ∞→ p

tnsZ
sT

ccomp
pcomp  

From this result we can see that a MPA the dominant 
influence will have mainly communication complexity. 
Therefore we will exanimate basic matrix decomposition 
models and their consequences to defined complex 
performance criterion.  

5.2. Basic Matrix Decomposition Models 

Supposed efficiency of parallel matrix algorithms 
(shared memory, distributed memory, hybrid) required to 
allocate a parallel process to more than one internal 
element of the square matrix (data elements). Then for 
decomposition of matrix elements to some groups of matrix 
data elements we have in principal two basic 
decomposition models as follows 
� decomposition model of n x n matrix to square 

blocks of matrix elements (parallel process). 
Illustration example of matrix decomposition to p 
blocks (B1, B2, …, Bp) is at Fig. 8 a. In this case the 
decomposed blocks consist from at least four matrix 
data elements.  

� decomposition model of n x n to continual matrix 
strips of matrix elements. Continual strips consist of 
at least one matrix row or one matrix column. 
Illustration example of matrix decomposition to p 
strips (S1, S2, …, Sp) is at Fig. 8 b.  In this case the 
decomposed strips consist from at least one matrix 
row. 

 

Figure 8. Matrix decomposition models a) blocks b) strips. 

5.2.1. Decomposition Model to Blocks 
For mapping matrix elements in blocks a inter process 

communication is performed on the four neighboring edges 
of blocks, which it is necessary in computation flow to 
exchange. Every parallel process therefore sends four 
messages and in the same way they receive four messages 
at the end of every calculation step (Fig. 9. a) supposing 
that all needed data at every edge are sent as a part of any 
message).  

 

Figure 9. Communication decomposition models a) blocks b) strips. 

Then the requested communication time for this 
decomposition model is given as 

)(8),( wscommb t
p

n
tpsT +=  

using defined technical communication parameters [18] as 
follows 
� ts is defined parameter for communication 

initialization 
� tw is defined parameter for data unit latency. 
This equation is correct for p ≥ 9, because only under 

this assumption it is possible to build at least one square 
because only then is possible to build one square block with 
for communication edges. Using these variables for the 
communication overheads in decomposition method to 
blocks is correct 

)(8 ),(),()p ,( wscommbcomm t
p

n
tpshpsTsT +===  

Then the requested communication time for this 
decomposition method is given as 

)(8 wscomb t
p

n
tT +=  

5.2.2. Matrix Decomposition to Strips 
Decomposition method to rows or columns (strips) are 

algorithmic the same and for their practical using is critical 
the way how are the matrix elements putting down to 
matrix. For example in C language are array elements put 
down from right to left and from bottom to top (step by step 
building of matrix rows).  

In this way it is possible send very simple through 
specification of the beginning address for a given row and 
through a number of elements in row (addressing with 
indexes). Let for every parallel process (strips) two 
messages are send to neighboring processors and in the 
same way two messages are received from neighboring 
processors (Fig. 8 b) supposing that it is possible to 
transmit for example one row to one message. 
Communication time for a calculation step T(s, p)comms is 
then given as 

( )  4),( wscomms tntpsT +=  
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Using these variables for the communication overheads 
in decomposition method to strips is correct  

)t(t 4 ),(),()p ,( ws npshpsTsT commscomm +===  

The whole time to execute parallel algorithm T(s, p) for 
decomposition to strips is then given in general as 

 ws

2

)t(t4
.

)p ,( n
p

tn
sT c ++=  

In this case a communication time for one calculation 
step does not depend on the number of used calculation 
processors. 

5.3. Complex Analytical Performance Modeling 

To complex MPA performance modeling we have been 
defined as deriving of evaluation criterions of IPA including 
considering overhead function h(s, p). We summarized 
derived analytical results as following  

Shared results for both decomposition models (blocks, 
strips) 
� execution time of sequential square matrix 

algorithm T(s, 1) 

 1
2)1 ,( ccomp tnsT =  

�
 execution time for own parallel computation time of 

IPA parallel algorithms T(s, p)comp 

 
1

2 .
),(

p

tn
psT c

calc =  

� optimal conditions to selection of matrix 
decomposition model for ts ,and for tw respectively 

ws t
p

nt )
2

1( −> .)
2

1( sw t
p

nt −>  

Different results for basic matrix decomposition models 
(blocks, strips)  

� overhead function for blocks h(s, p)b and for 
strips h(s, p)s as follows 

)(8 ),( wsb t
p

n
tpsh +=  

)t(t 4 ),( ws npsh s +=  

� complex parallel execution time for blocks T(s, 
p)compb, and for strips T(s, p)comps 

 
1

2

)(8
.

),(),()p ,( ws
c

ipcbcalccalcb t
p

n
t

p

tn
psTpsTsT ++=+=  

 
1

2

)(4
.

),(),()p ,( ws
c

ipcscalccalcs tnt
p

tn
psTpsTsT ++=+=  

� parallel speed up for blocks S(s, p)b, and for 

strips S(s, p)s 

)tt(p8  ),(

)1,(
),(

ws1
2

 1
2

nptn

tpn
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� constant C (needed constant in deriving an 
isoefficiency function w (s)) and that for blocks 
as Cb, and for strips as Cs in issoeficiency 
function 
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Fig. 10 illustrates growth dependencies of parallel 
computing time T(s, p)comp, communication time T(s, p)comm  
and complex parallel execution time T(s, p)complex from 
input load growth n (Square matrix dimension) at constant 
number of computing node p = 256 

 

Figure 10. Dependencies of T(s, p)complex,T(s, p)comm and T(s, p)comp from n 
( p=256). 

Fig. 11 illustrates growth dependencies of parallel 
computing time T(s, p)comp, communication time T(s, p)comm. 

and complex parallel execution time T(s, p)complex from 
increasing number of computing node p at constant input 
load n (Matrix dimension n = 512) 
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Figure 11. Dependencies of T(s, p)complex, T(s, p)comm and T(s, p)comp from p 
(n=512). 

5.3.1. Issoeficiency Functions 
Issoeficiency function w(s) is very important for 

performance prediction of parallel algorithms PA. For 
modeling of performance prediction in PA we are going to 
derive for defined basic matrix decomposition models 
(blocks, strips) corresponding analytical issoeficiency 
functions w(s)b (Decomposition to blocks) and w(s)s 
(decomposition to strips). For asymptotic complexity of 
w(s) is valid following derived relation as  

[ ]p)(s,h   ,),(max)( calcpsTsw =  

where defined workload s is a function of input load n. 
For IPA it is given as s = n2. We have defined that for given 
value efficiency E(s, p) following quotient of efficiencies 
E(s, p) is constant  

C
E

E =
−1

 

5.3.1.1. Canonical Matrix Decomposition Models 
As basic matrix decomposition models we have defined 

such matrix decomposition models to which there is 
possible to reduce all other known matrix decomposition 
models. Then the canonical matrix decomposition models 
are as follows 
� matrix decomposition model to blocks  
� matrix decomposition model to strips. 
For defined constants Cb (blocks) and Cs (strips) which 

are integral parts of issoeficiency functions w(s)b (blocks) 
and w(s) (strips) we have derived following relations  
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To win a closed form of issoeficiency function w(s)b, 
w(s)s we have used an approach in which we performed at 
first the analysis of increasing input load influenced the 
analyzed expression contained ts in relation to p so to keep 
this growth constant (we supposed that tw = 0). Then for 
constants Cb, Cs we get following expressions  
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From these expressions we can derive for searched 
functions w(s)b = w(s)s = n2 from relations for Cb, Cs 
following relations  
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With a similar approach we can analyze the influence 
growth of input load caused another part of expression 
from ts in relation to p so to keep this growth constant (we 
supposed that ts = 0). Then after setting and performed 
needed adjustments we get for searched functions w(s)b and 
w(s)s following relations  
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Final derived analytical functions w(s)band w(s)s are as 
follows 
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5.3.1.2. Optimization of Issoefficiency Functions 
Optimization of derived issoefficiency functions require 

to search for dominant expressions in derived final relations 
for w(s)b a w(s)s. For this purpose we have been done 
comparison of individual expressions of w(s)b and w(s)s 
with following conclusions 
� the first expressions of w(s)b and w(s)s are the same 

and therefore this expression will be the component 
of final optimized w(s)opt. At the same time for this 
expression at performed asymptotical analysis in 
relation to parameter p the following limit is valid 

0
.

lim 1
2

=→∞ p

tn c
p  

and therefore the similar first expressions of 
issoeficiency functions w(s)b and w(s)s we can omit 
from searched w(s)opt 

� in relation to the similarity of actually first 
expressions of w(s)b and w(s)s (After omitting 
expressions according previous conclusion) as 
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follows 

11

48
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s
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c

s
b t

t
pC

t

t
pC ≥  

This condition after reducing of shared expression 
parts lead to inequality 2 Cb ≥ Cs. After setting and 
following adjustments we get final condition as p ≥ 
1, which is valid on the whole range of spotted 
values of parameter p. It means the with this 
performed expression comparison we have got more 
dominated expression which we let to the next three 
comparisons (Two from w(s)b and one from w(s)s) 

� in an analogous way we do comparison of third 
expressions from original w(s)b and w(s)s 
issoeficiency functions and that as follows 

11
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These conditions after reducing of shared expression 
parts lead to following inequality Cs√p ≥ 2 Cb. After 
setting and performed adjustments we get final 
condition p ≥ 1, which is fulfilled on the whole 
range of parameter p. With performed comparison 
we have ignored further less expression and final 
relation w(s)opt is actually as follows 
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� final comparison of remaining expression comes to 
following expression comparison 
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This condition after reducing of shared expression 
parts leads to following inequality Cs n tw ≥ 2 Cbts. 
After setting and performed adjustments we come to 
following inequality n2. tw

2 ≥ √p ts
2. This inequality 

we are able to solve only for concrete values of 
parameters n, p, ts, tw. For example using following 
values of parameters ts = 35 µs, tw = 0,23 µs and 
under assumption of in praxis frequent case of 
choosing n = p we get simpler expression to 
condition validity as n. √n  ≥ 152,172or p. √p ≥ 
152,172. The smallest integer number which satisfies 
given condition is p = n = 813. Satisfying this 
condition for n or p, the final issoefficiency function 
w(s)opt given with first expression and in opposite is 
given with second expression of following final 
optimized issoeficiency function w(s)opt 
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5.3.1.3. Conclusions of Issoeficiency Functions 

Then for the given concrete value of E(s, p) and for 
given values of parameters p, n we can in analytical way 
the thresholds, for which growth of isoefficiency function 
means decreasing of efficiency of given parallel algorithm 
with assumed typical decomposition strategies. This means 
the minor scalability of the assumed algorithm. In case of 
decomposition strategy the approach is similar to analyzed 
practical used decomposition matrix strategies. 

Based on analysis of computer technical parameters ts, tw, 
tc for some parallel computers in the world they are valid 
following inequalities ts>>tw>tc. Alike is valid that p ≤ n. 
Using these inequalities it is necessary to analyze 
dominancy influence of the all derived expressions.  

Then the asymptotic issoefficiency function is limited 
through dominancy conditions of second and third 
expressions. From their comparison comes out 
� based on real condition tw ≥ ts a third expression is 

bigger or equal than a second expression and an 
issoefficiency function is limited through the first 
expression of w(s)opt. If we used following technical 
parameters ts = 35 µs, tw= 0,23 µs this is true for n 
≥ 813 

� for n < 813 and for the same technical constants ts = 
35 µs, tw= 0,23 µs issoefficiency function is limited 
through a second expression of w(s)opt. 

6. Results 
We illustrate some of chosen performed tested results. To 

practical illustrations we have used MPA algorithms for 
iterative solving of Laplace PDE equation defined as follows 
� four point iteration relation in which in one iteration  

are performed five arithmertic operations (tc1 = 5 tc) 
� communication model according Fig. 5. 
For experimental testing we have used workstations of 

NOW parallel computer (workstations WS 1 – WS 5) and 
supercomputer as follows 
� WS 1 – Pentium IV (f = 2,26 G Hz) 
� WS 2 - Pentium IV Xeon (2 proc., f = 2,2 G Hz) 
� WS 3 - Intel Core 2 Duo T 7400 (2 cores, f=2,16 

GHz) 
� WS 4 - Intel Core 2 Quad (4 cores, 2.5 GHz) 
� WS 5 - Intel SandyBridge i5 2500S (4 cores, f=2.7 

GHz) 
� supercomputer Cray T3E in remote computing 

node. 
Comparison of decomposition model influence (D1 - 

blocks, D2 - strips) is at Fig. 11. For comparison were 
measured values recomputed to one iteration step. 
Performed measurements have proved higher efficiency of 
decomposition model to blocks for tested parallel computer 
Cray T3E. Technical parameters of parallel computer Cray 
T3E (ts = 3 µs, tw = 0,063 µs, tc = 0,011 µs).  
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Figure 12. Comparison of T(s, p)complex for decomposition models (n=256). 

Fig. 13 illustrate dependencies to optimal selection of 
decomposition strategy for technical parameter tsi (ts1, ts2) 
using verified technical parameters of supercomputer Cray 
T3E for tw = 0,063 µs and n = 128, 256. 

 

Figure 13. Influences ts for n = 128, 256 

 

Figure 14. Comparison of T(s, p)complex for Jacobi and Gauss-Seidel IPA for 
E=10-5. 

At Fig. 14 we have presented measurement results of the 
whole solving time for both developed parallel algorithms 
(Jacobi, Gauss-Seidel) with the number of processors p = 8 
and for various values of input workload n (Matrix 

dimensions) for E=10-5. From comparisons of these 
measurements come out that for great number of 
workstations (p=8) are the whole solving times 
approximately the same. The reasons are that lower 
computation complexity at Gauss-Seidel method 
(Computation) is eliminated through greater 
communication complexity in its parallel algorithm 
practically double higher than Jacobi IPA.  

This figure illustrates continually percent spreading of 
the individual overheads (Initialization, computation, 
communication, gathering) for Jacobi parallel algorithm 
with the given number of workstations p = 4 for various 
values of workload n (matrix dimensions) and for  
accuracy E=0,001. From comparisons we can see raising 
trend of computation in dependence of accuracy E. 

Generally for the problems with increasing 
communication complexity through using great number of 
processors p based on Ethernet NOW we come to the point 
(Threshold that parallel computing is no more effective, 
that means we are without any speed-up. It is evident that 
for the given problem, given parallel algorithms and given 
parallel computer to find such a threshold (no speed-up) is 
very important. 

The individual parts of the whole execution parallel time 
are illustrated at Fig. 15 for Jacobi iterative parallel 
algorithm for 4 workstations and for E = 0,001. 

 

Figure 15. Percentage comparison of T (s, p)complex for its components 
(E=0,001). 

 

Figure 16. Comparison of T (s, p)complex parts for p=4 (E=0,001). 
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The influence of number of workstations at given 
accuracy E=0,001 to the individual parts of the whole 
solving time for pre Jacobi iterative parallel algorithm for 
various sizes of input workload (matrix dimensions from 64 
x 64 to the size 512 x 512) illustrates Fig. 16 for the 
number of workstations p = 4. From the comparisons come 
out percent sinking of computations at the bigger number 
of workstations (parallel speed-up though the higher 
number of workstations) at the moderate percent raising of 
network communication overheads.  

Fig. 17 illustrates the times of individual parts of the 
whole solving time as a function of input workload n 
(Square matrix dimensions) for number of workstations 
p=4 and for accuracy E=0,001. From comparison of these 
both graphs comes out higher contribution through the 
number of working stations than the raising overheads of 
the network communication. 

 

Figure 17. Influence of computing nodes to T(s, p)comm, (E=0,001). 

Fig. 18 illustrate influence of number of workstations 
NOW to quicker solutions of both distributed parallel 
algorithms (Gauss-Seidel parallel algorithm) for matrix 
dimensions 512x512 and various  analyzed accuracies of 
Epsilon. 

 

Figure 18. Influence of workstation number for Gauss-Seidel IPA. 

Derived analytical issoeficiency functions allow us to 
predict parallel computer performance also for theoretical 
not existed ones. We have illustrated at Fig. 19 

isoefficiency functions for individual constant values of 
efficiency (E = 0,1 to 0,9) for n < 152 using the published 
technical parameters tc, ts, tw communication constants of 
used NOW (tc= 0,021 µs, ts = 35 µs, tw= 0,23 µs,). 

 

Figure 19. Isoefficiency functions w(s) for n < 152 

Fig. 20 illustrates isoefficiency functions for individual 
constant values of efficiency (E = 0,1 to 0,9) for n = 1024 
and for communication parameters of parallel computer 
Cray T3E (tc= 0,011µs, ts = 3 µs, tw= 0,063 µs,).  

 

Figure 20. Isoefficiency functions w(s) (n = 1024). 

From both pictures (Fig. 19 and Fig. 20) we can see that 
to keep a given value of efficiency we need step by step 
increasing number of computing processors and higher 
value of workload (useful computation) to balance higher 
communication overheads. 

7. Conclusions 
Performance evaluation as a discipline has repeatedly 

proved to be critical for design and successful use in 
parallel computing. At the early stage of design, 
performance models can be used to project the system 
scalability and evaluate alternative solutions. At the 
production stage, performance evaluation methodologies 
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can be used to detect bottlenecks and subsequently suggests 
ways to alleviate them. Queuing networks has been 
established in modeling of parallel computers [5, 17]. 
Extensions of complexity theory to parallel computing have 
been successfully used for the evaluation of parallel 
algorithms and communication complexity too. Via 
extended form of isoefficiency concept for parallel 
algorithms we have demonstrated its applied using to 
performance prediction in typical matrix parallel algorithms 
(MPA).  

To derive isoefficiency function in analytical way it is 
necessary to derive al typical used criterion for 
performance evaluation of parallel algorithms including 
their overhead function (parallel execution time, speed up, 
efficiency). Based on this knowledge we are able to derive 
issoefficiency function as real criterion to evaluate and 
predict performance of parallel algorithms also for future 
hypothetical parallel computers. So in this way we can say 
that this process includes complex performance evaluation 
including performance prediction. 

Due to the dominant using of parallel computers based 
on NOW modules and their high integration named as Grid 
there has been great interest in performance prediction of 
parallel algorithms in order to achieve effective parallel 
algorithms (optimized). Therefore this paper summarizes 
the used methods for complexity analysis which can be 
applicable to all types of parallel computers (supercomputer, 
NOW, Grid).  
This paper finalizes applying of complex analytical 

modeling to the whole group of matrix parallel algorithms 
which are characterized by domain decomposition models. 
To present this group of MPA we have modeled abstract 
matrix using basic decomposition models with supposed 
intensive communication complexity. In such a way 
performed complex modeling could be inspiring also to 
other PA or even a group of PA. The complex analyzed 
examples we have been evaluated so on classic massive 
supercomputers (hypercube, mesh) as on dominant parallel 
computers represented by NOW module. 
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