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Abstract: Parallel principles are the most effective way himwincrease performance in parallel computing (pelra
computers and algorithms too). In this sense thpeps devoted to a complex performance evaluaifomatrix parallel

algorithms (MPA). At first the paper describes tigpical matrix parallel algorithms and then it suamimes common
properties of them to complex performance modetihtylPA. To complex performance analysis we are ableake into

account all overheads influence performance ofllgaralgorithms (parallel computer architecturergiel computation,
communication etc.). To be le to analyze MPA inithbstract form we have defined needed decompasitiodels of MPA.
For these decomposition strategies we derived #callyrelation for defined complex performance emiibns including

isoefficiency functions, which allow us to prediperformance although for hypothetical parallel catep In its

experimental part the paper considers the achigesdlts using defined complex performance criteriamcluding

issoefficiency function for performance predictialso for hypothetical future parallel computerscisidea of common
abstract analysis could be very useful in derivamgnplex performance criterions for groups of otbemilar parallel

algorithms (PA) as for example numerical integnatRA, optimization PA etc.

Keywor ds. Parallel Computer, NOW, Grid, Parallel Algorith®X), Matrix PA, Decomposition Model,

Performance Modeling, Optimization, Overhead Fumcti (S, P), Inter Process Communication IPC,
Performance Prediction, Issoeficiency Function

1. Trendsin Parallel Computing .

Basic common properties in parallel computing (jpalra
computers, parallel algorithms) computing, whiche ar
reaching continuous demands to performance actielera
are as follows

migration [23]

the development of hardware neutral parallel
programming language, such as Java, provides a
virtual computational environment in which
computing nodes of parallel computer appear to be
homogenous

embedded parallel principles on various levels of ®  continuous improvements in network technology

technical (hardware) and program support means and communication mlddlgwar_e_ in order to use
(software) [8] shared parallel resources in unified manner (cloud

using of homogenous shared resources so in computing, Internet computing).

computing nodes of parallel computers (processorchurrem trends also in high perfgrmance computing
cores, computers) as in parallel algorithms tog [24 (HPC) are to use networks of workstations (NOW, JHi®

using of high speed communication networks® cheaper alternative to traditionally used masgive

reducing communication latency [39] parallel multiprocessors or supercomputers and raditp
increased client/server computing on symmetricalf®m unifying of both mentioned disciplines [19].h&
multiple processors or cores (SMP) individual powerful computing nodes (workstatiorguld

trends to unified modeling of parallel computersP® SO single personal computer (PC) as parallepogens
(shared memory, distributed memory) and ippased on modern SMP parallel computers implemented
parallel algorithms (shared memory, distributedVithin computing node of parallel computer [13, .1Based
memory, hybrid) on such modular NOW modules there were are realized

continuous demands to increase mobility and datdi9n integrated massive parallel computers nameGras
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systems [38]. A member of NOW module or Grid coloéd
any classic supercomputers [35].

2. Performance Evaluation in Paralld
Computing

To performance evaluation of parallel computers an
parallel algorithms we can use evaluation methasls
follows

e analytical

application of queuing theory results [11, 21]

order (asymptotic) analyze [12, 20]

Petri nets [7]
simulation methods [25]
experimental

benchmarks [28]

modeling tools [32]

direct measuring [9, 30].

Analytical method is a very well developed set o
techniques which can provide exact solutions vergldy,
but only for a very restricted class of models. Fuore
general models it is often possible to obtain apijonate
results significantly more quickly than when using
simulation, although the accuracy of these resuldy be
difficult to determine.

Simulation is the most general and versatile meains
modeling systems for performance estimation. It masy
uses, but its results are usually only approximatito the
exact answer and the price of increased accuracyuish
longer execution times. They are still only apgileato a
restricted class of models (though not as redtriateanalytic
approaches.) Many approaches increase rapidly rir@inory
and time requirements as the size of the modaases.

Evaluating
measurements is a very useful alternative for cdempu
systems. Measurements can be gathered on existi
systems by means of benchmark applications thataim
stressing specific aspects of computers system&n Ev
though benchmarks can be used in all types of padnce
studies, their main field of application is compeé

procurement and performance assessment of eXiStingDecomposition model

systems and algorithms.

3. Parallel Algorithms

In principal we can divide parallel algorithms (R#é)the
following groups
parallel algorithm using shared memory (RA
These algorithms are developed for paralle

L]

computers with shared memory as actual moder

symmetrical multiprocessors (SMP) or multicore
systems on motherboard

parallel algorithm using distributed memory (A
These algorithms are developed for

system performance via experimental

paralle|,

eling of Matrix P&bhlgorithms

Grid systems
hybrid PA which combine using of both previous
PA (PA.y). This trend support applied using of
NOW consisted from computing nodes based on
SMP parallel computers.

The main difference between BAand PA,, is in form
of inter process communication (IPC) among created
Barallel processes [18, 33]. Generally we can bay PC
communication in parallel system with shared meneay
use more communication possibilities (all the pufises
of communication in shared memory) than in distiéou
systems (only network communication).

2.1. Developing Steps of PA

The role of programmer is for the given parallel
computer and for given application problem to depehe
effective parallel algorithm. This task is more gdicated
in those cases, in which we have to create theitionsl for

@ny parallel activities in form of dividing the sesmtial

algorithm to their mutual independent parts namaclfel
processes. Principally development of any parallel
algorithms (shared memory, distributed memory, tybr
includes performing of the following activities [234].
decomposition of a complex problem to a set of
parallel  processes including their data
(decomposition model)

mapping — distribution of decomposed parallel
processes to computing nodes of used parallel
computer

inter process communication (IPC) to cooperation
(data communications, synchronization, control) of
performed parallel processes

performance optimization (tuning) of developed
parallel algorithm (effective PA).

The most important step is to choose for given derp
Hboblem optimal decomposition model. To do thisr¢his
necessary to understand given complex problem,edhar
data, applied sequential algorithms (SA) and the tf SA
control [4, 26].

3.1.1. Decomposition Models

defines distribution of given
complex problem to its independent parts (parallel
processes) in such a way, that they could be pedgdrin a
parallel way via computing nodes of used paraliehputer.
Optimal selection of decomposition model and degrke
parallelism are critical conditions to develop effee
parallel algorithm. Potential decomposition of give
complex problem is crucial for effectiveness of giiat
hlgorithm [16]. The chosen decomposition model then
Brives the rest of effective parallel program depetent.
This is true is in case of developing new appliédaB in
porting serial code. The decomposition model dsfine
structure of PA codes and their data and estima¢e t
ptimal topology of needed communication network,[2

computers with distributed memory as actual NOWs1) - The existed decomposition models we have been
system and their higher integration forms named Snalyzed in [16].
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3.1.2. Mapping allocation for given developed PA. In dominated gtlat
This step allocates created parallel processes tmmputers (NOW, Grid) there are necessary to reduce

computing nodes of parallel computer for their flata (optimize) mainly number of inter process commutigces

executions. There is necessary to achieve thatyevelPC (communication complexity) for example by

computing node should perform allocated paralletonsidering of alternative existing decompositioode.

processes (one or more) with at least approximapeiti _ _

loads (load balancing) on real assumption of equal-2 Complex Performance Evaluation Metrics

powerful computing nodes. Fulfillment of this cotioln

4 ) - - To evaluating parallel algorithms we have beenndefi
contributes to optimal parallel execution time.

in [14] complex performance criterions of PA. Traffe
among these performance factors are often encathtar
greal applied PA. We summarize these criterion®bsvs
complex parallel execution time T(s, p) including
overhead function h(s, p)
e complex speed up S(s, p)
* complex efficiency E(s, p)
e  issoeficiency w(s).

3.1.3. Inter process Communication

Inter process communication (IPC) represents aeatbe
tool to cooperation of decomposed parallel proceske
general we can say that dominated parts of parallel
algorithms are decomposed parallel processes (@milemt
sequential parts) and inter process communicatiB&)(
among created parallel processes in performingAofVire
have been analyzed IPC communication in detail &). ) ) )

o 4. Typical Matrix Parallel Algorithms

3.1.4. Performance Optimization

After verifying developed parallel algorithm on dse  Some of the typical matrix parallel algorithms wavé
parallel computer the further step is performanceleling been yet analyzed as follows

and its optimization in order to develop effectRa. This e parallel matrix multiplication [16]
step contents analysis of previous steps in sualay to e parallel fast discrete Fourier Transform (DFFT) in
minimize whole execution time latency of parallel [14].

computing T(s, p). Performed optimization of T(3,fpr We will short describe further typical MPA.
given parallel algorithm depends mainly from foliog
factors

¢ allocation of balanced input load to used computing System of n linear equations (SLE) with n variablgs

nodes of parallel computer (load balancing) [1, 36] , 'y in matrix form is defined as follows [3, 10]
*  minimization of accompanying overheads amounts 5 'y - g

(parallelization, IPC, synchronization control &f)P
[14, 22].
To do load balancing we need in case of obviousgusf
equally powerful computing nodes of PC results addl

d11,d12,d13, -+ A1 a5 a1
I

dz1,d32,d23, -+ dp /az +1\
,n

| B=| - | x=|

A-| |
\anllanz; an3, ann/ nn+1 Xn

4.1.1. Methods of SLE Solving
There is no known universal optimal method of sudvi
systems of linear equations. There are severaérdifit
ways of solving SLR whereby each of them at fulféint
of defined assumption implies the option of theusioh
method. In principle, we divide the available methdor
exact (finite) and iterative. There exist many vas ways
how to solve system of linear equations. But titeres not
exist any optimal way of solving it. The existed thwals
can be divided into
* exact
Cramer rule
Gaussian elimination methods (GEM)
GEM alternatives
* terative

4.1. System of Linear Equations

where the matrix A is a square matrix of coeffitgrB is
the vector of the right side and X is a vector @arghing
unknown as follows

4.1.2. Typical Decomposition Models

To parallel solution of SLE by preferred Gauss
eliminated method (GEM) the decomposition modetsaar
follows [16]

* allocation of block strips

 gradually allocation of strips.

In the first allocation method strips are dividedset of
strips and to every computing node is assignedbioek.
lllustration of these allocation methods is at Rig.



4 Peter Hanuliak: Complex Modeling of Matrix P&bRlgorithms

. Laplace equationd+ u, = 0.
15 These three types are the basic types of genewdrli
second order PDR as in follows
Uy + buyy+cuy, +dy+ey+fu+g=0. This equation
could be transformed by changing the variablesne of
three basic equations, including the members ofidiver
rows, provided that the coefficients a, b, ¢ arealbequal
to zero. Variable b— 4 ac is refer to as discriminant
whereby its value determines the following basiougs
PDR of second order

« b? - 4 ac > 0, hyperbolic (typical equation for

waves).

+ b?-4ac =0, parabolic (typical of heat transfer)

« b? - 4 ac < 0, elliptical (typical is the Laplace

equation) [6, 37].

Classification of more general types of PDE is sot
clear. When the coefficients are variable, thentiipe of
Another alternative decomposition model with grdduaequa.‘t'.or.] can be modified by ch{;mgeslln the analgzed

. and if it is intended at the same time with severplations,
allocation of columns they are allocated columns to

individual computing nodes like the card are grdlgua egch equation can generally be of a d|ffere_nt type.
. - . Simultaneously analyzed problem may be nonlinear or
passing out at games to game participants. llitigtraof

gradual assignment of columns is at Fig, 2 equation requires more than second order [2, 23].
T Nevertheless, the basic used classification of RDEIso

Number of columns used when determining if it is not accurate. Spealify the

Number of columr

1 2 3 4 5 6 78 9 10 11 1.

N
—
(e8]
N

0 1 2 3 0 1 23 0 1 2 3 0 12
Computing nodes

Figure 1. Allocation of matrix data blocks.

L2 3 45 6 78 9 10 I 1213 14 IS following types of PDEs are as follows
e hyperbolic. This group is characterized by time
dependent processes that are not stabilized at some
steady state
e parabolic. Group characterized by a time dependent
processes, which tend to the stabilization
* elliptical. Group describes the processes that have
reached steady state and are therefore time
independent. A typical example is the Laplace
equation.
Here we show how to solve in parallel way sped#igE
0 1 2 3 0 1 23 0 1 2 3 0 1 2 — Laplace equation in two dimensions — by meare grfiid
Computing nodes computation method that employs finite differencetimod.
Figure 2. Allocation of matrix columns. Although we focus on this specific problem, the sam
techniques are used for solving other PDE (Laplateee
4.2. Partial Differential Equations dimensional, Poisson equation etc.), extensive

approximations calculations on various parallel patars
(supercomputers, massive, SMP, NOW, Grid) eventuall
solving another similar complex problems.

Partial differential equations (PDE) are the edurati
involving partial derivates of an unknown functievith
respect to more than one independent variable. RIDEsf
fundamental importance in modeling all types o0f4.2.1. Parallel Application of Iterative Algorithms
continuous phenomena in nature. Typical examples ar Here we show how to solve in parallel way sped#icE
weather forecasting, optimization of aerodynamiepgs, - Laplace equation in two dimensions — by meare gifid
fluid flow, and the like. Simple PDE can be sohditectly, = computation method that employs finite differencetimod.
but in general it is necessary to approximate tthetisn on  Although we focus on this specific problem, the sam
the extensive network of final points by iterativemerical techniques are used for solving other PDE (Laplateee
methods [18]. We will confine our attention to PDEh  dimensional, Poisson  equation etc.), extensive
two space independent variables x, y. The needectiftn  approximations calculations on various parallel patars
we denote as u (X, y). The considered partial déoas we  (supercomputers, massive, SMP, NOW, Grid) eventuall
denote as \, Uy, U, etc. For practical use the mostsolving another similar complex problems. Laplace
important PDE are two ordered equations as follows equation is a practical example of using iterativethods

e heat equation,;&F Uy to its solution. The equation for two dimensions is

* wave equation, = Uy following
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Figure 3. Grid approximation of Laplace equation.

Function ®(x, y) could
potential, such as heat, stress etc. Given a twaaional
region and values for points of the region bouretarthe
goal is to approximate the steady-state solufigr, y) for
points in the interior by the function u(x, y). Wan do this
by covering the region with a grid of points (Fig.and to
obtain the values of u(xy;) = u;.

Let us consider square region (a, b) x (a, b). For

coordinates of grid points is valid x i*h, y; = j*h, h = (b-a)
/ N forij=0,1, .., N. We replace partial dexfions of®
~ u(x, y) by the differences ofj;u After substituting we
obtain final iteration formulae as

Xi = (Gay® + Xig [0 + X520 + X100 ) 1 4
orits alternative version
xi'j(t“rl) = (4 Xi,j(t) + Xi-l,j(t) + Xi+1,j(t) + Xi,j-l(t) + Xi,j+1(t) )/8

Each interior point is initialized to some valueheTl
steady-state values of the interior points are t@nputed
by repeated iterations. In each iteration the neimtpralue
is set to a combination of the previous values
neighboring points. The computation terminatesegitfter
a given number of iterations or when every new &aki

within some acceptable difference Epsilon > 0 oé th

previous value.

Computed
values
Epsilon \
Exact :
value

t+1 — |teration

Figure 4. Convergence rate.

lllustration of convergence rate of iterative phaial

algorithms is at Fig. 4. For the convergence of$Sabeidel
iterative method is valid the same conditions asJaxrobi

represent some unknown

iterative method whereby the Gauss-Seidel method
converges faster. Given condition is not only neagsbut
only a sufficient one for the convergence of botstimds.
In practice, we use both iterative methods alscage of
not satisfying of this condition based on them that
convergence is influenced also by selection ofahitector.

4.2.1.1. Communication Model

For Jacobi finite difference method a two-dimenaion
grid is repeatedly updated by replacing the valueach
point with some function of the values at a smaikd
number of neighboring points. The common approxiomat
structure uses a four-point stencil to update eglement
Xi,j (Flg 5)

(/) i
O o O o

Figure 5. Communication model for 4 - points approximation

Similar for more accurate value of any point we afso
used more precise multipoint approximation relgtiand
that for example through approximation of nine p®in
according the pencil at Fig. 6 with following retat

Xij0 = (16 X1, + 16 Xy [ + 16 X340 + 16 X3,,©
Xia - Xp - X, 150 - Xij22) 1 60

Figure 6. Sencil with nine points.

of

5. Complex analytical performance
modeling of MPA

For a complex performance analysis (including ogath
function) of matrix parallel algorithms (MPA) we Nbe
consider general shape of a square n x n matfigaf/.
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PA (iteration PA). After every iterations step

/811,342, - ,31p there is necessary to perform IPC
351,352, - a0, communication to neighboring computing

N ) nodes of shared matrix data elements
A= - allocated matrix data part of given computing

node in one computing step are reduced
according used PA to simpler matrix data part
dpi,dpz, - 5 dnp (for example GEM PA). After every reduction
step there is necessary to perform IPC
communication to all other used computing
The reason for preferred square matrix reducing of nodes.
parameter number (n = m) in derivation processafigex Based on these conclusions to modeling of MPA tiere
analytical performance relations (execution tinpeesi up, necessary to derive needed computational and
efficiency, isoefficiency etc.). Such more trangwar COMMunNication complexity.
approach is supported with following additionalseas
* any rectangular matrix n x m could be transforme
into a square matrix n x n either by extending thes.1.1.1. Sequential
number of rows (where m < n) or column (if m>n)  Sequential computational matrix complexity for
+ derivation process of performance relations will beconsidered square matrix n x n is given agcomputation
the same except for the fact that when consideringn each matrix element). Then the used asymptotic
the complexity of the matrix instead of (square complexity is given as Ofh
matrix) we have to consider product n. m .

Figure 7. Square matrix n x n.

(?.1.1. Computational Matrix Complexity

5.1.1.2. Parallel

5.1. Basic Common Characteristics of MPA Computational parallel matrix complexity Z(s, k) is
given as computational complexity of one decomposed
parallel process in k computing steps where paransetve
have been defined [14] as working load of givenbpem.
For square matrix s =2r(sequential matrix complexity).
Through matrix decomposition models we are creafing
Eﬁ?rallel processes (matrix decomposition to p matarts)

e Z(s, k) will be given as a quotient of compiotaal
sequential matrix complexity ’n and number of
decomposed parallel processes p as follows

Typical characteristics of matrix parallel algonth are
regularities both in the program (matrix computasib
activities) and also in data structure matrix (ixatr
elements). Such regularity we refer to as a donidatrix
computational activities we will represent as Ti3omp
latency. Considering square matrix n x n sequenti
computational complexity is given as®nCommon
characteristics of matrix parallel algorithms (MP&de as
follows

* parallelization - matrix itself is well parallelide n

theoretically up to level of its single data eleten Z(sk)=2(s, 1)?

But applying such a maximal degree of

parallelization could not be effective becauseoof | \where Z(s, 1) represent computational complexityoire
computation complexity for one matrix element.computation step. From derived relation the paralle
Therefore we will consider basic matrix computation time complexity T(s, @), is given through
decomposition models in group of matrix dataquotient of parallel computing time running timeane
elements parallel process (product of its complexity Z(soddand a

* using of domain decomposition models in whichconstant 4 as an average value of performed computation

domain is represented by data matrix elements (dagperations) through number of decomposed parallel

domain) processes p as follows
e applied matrix date domain decomposition models

define that for parallel computation on decomposed
parts of matrix data elements there is necessary to

perform in a parallel way the whole computation as ] . N
in sequential matrix algorithms In MPA we are oft using mapping under the condition

« to do any computational operation on matrix theré& P- Then we get for T(s, g, following simpler relation

is necessary to do this operation on every matri{S
element or group of them. From performed analysis
comes out that at solving typical MPA parallel
matrix computations are performed as follow
allocated matrix data part of given computing
node are repeatedly evaluated according us

Z(S D) eomp - N7 oty

T(s:P)comp = D

T (Svp)cor'rp =Z (Sal)corm n. tcl

For this simpler relation asymptotic complexitygisen
as O (n). At the same time in relation to idealyagllelized
PA and under assumptions of theoretical unlimited
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number of computation nodes p mathematical limitT ¢,

P)ecomp IS given as -t n >
2
T(S,P)cmp = Iim o Z(Svl)comp-n 'tclzo .
P ; 4 4
NP -t l
From this result we can see that a MPA the dominan . v v
influence will have mainly communication complexity :
Therefore we will exanimate basic matrix decomposit
models and their consequences to defined comple a) b)
performance criterion. Figure 9. Communication decomposition models a) blocks b) strips.
5.2. Basic Matrix Decomposition Models Then the requested communication time for this
Supposed efficiency of parallel matrix algorithmsdecompos't'on model is given as
(shared memory, distributed memory, hybrid) reglite n
allocate a parallel process to more than one iatern T(S: P) oo :8(ts+ﬁtw)

element of the square matrix (data elements). Tioen

decomposition of matrix elements to some groupsa@fix  sing defined technical communication paramete8 §&

data elements we have in principal two basigg|ows

decomposition models as follows + t, is defined parameter for
* decomposition model of n x n matrix to square initialization

blocks of matrix elements (parallel process). . t, is defined parameter for data unit latency.
lllustration example of matrix decomposition 10 P This equation is correct for p 9, because only under
blocks (B, By, ..., By) is at Fig. 8 a. In this case the this assumption it is possible to build at least sguare
decomposed blocks consist from at least four matrikecgyse only then is possible to build one squakwith
data elements. for communication edges. Using these variables tiar

*  decomposition model of n x n to continual matrixcommunication overheads in decomposition method to
strips of matrix elements. Continual strips consfst ) ocks is correct

at least one matrix row or one matrix column.
Illustration example of matrix decomposition to p
strips (8, S, ..., §) is at Fig. 8 b.  In this case the

decomposed strips consist from at least one matrix o . )
rOW. Then the requested communication time for this

decomposition method is given as

communication

n
T(Svp)comm =T(S, p)comm =h (S, p)=8(ts +7tw)
i Jp

'y
|
Fy
v

Tcomb :S(ts +7n

ty)
I PR r \/H

: 5.2.2. Matrix Decomposition to Strips
Decomposition method to rows or columns (strip® ar
algorithmic the same and for their practical usmagritical
the way how are the matrix elements putting down to
matrix. For example in C language are array elempnt
down from right to left and from bottom to top (stey step
Py Pe building of matrix rows).
&) b} In this way it is possible send very simple through
Figure 8. Matrix decomposition models a) blocks by strips. specification of the beginning address for a givew and
through a number of elements in row (addressing wit
5.2.1. Decomposition Model to Blocks indexes). Let for every parallel process (stripgjo t
For mapping matrix elements in blocks a inter pssce messages are send to neighboring processors atfte in
communication is performed on the four neighbokdges same way two messages are received from neighboring
of blocks, which it is necessary in computationwfito ~ processors (Fig. 8 b) supposing that it is possilole
exchange. Every parallel process therefore sends fotransmit for example one row to one message.
messages and in the same way they receive fouragess Communication time for a calculation step T(Suofs IS
at the end of every calculation step (Fig. 9. g)pssing then given as
tmhztssglgr;()aleded data at every edge are sent ag afpny T(S Pomme = 4 (s nt,)
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Using these variables for the communication ovethea

in decomposition method to strips is correct

TS Porm =T(S, Ploomms =h (5,p)=4(ts+nty)

The whole time to execute parallel algorithm T(sfqr
decomposition to strips is then given in general as

n?.t,
T(S,P):T*'Af(ts'””w)

In this case a communication time for one calcofati

step does not depend on the number of used catirulat

processors.

5.3. Complex Analytical Performance Modeling

To complex MPA performance modeling we have been

defined as deriving of evaluation criterions of lir&luding

Complex Modeling of Matrix P&bAlgorithms

strips S(s, R)

T@) n° pty

S(s, p)p = =
TS Peaw Mlig+ 8 (Pt +ypnty)

efficiency for blocks E(s, g and for strips E(s,

P)s
S(s, n’t
E(S, p)b — ( p)b - 5 cl
P iyt 8(t+ypnty)
2
E(S, p)s — S(Sv p)s - 5 n tCl
p ntcl+4p(ts+ntw)

constant C (needed constant in deriving an
isoefficiency function w (s)) and that for blocks
as G, and for strips as Cin issoeficiency

considering overhead function h(s, p). We summédrize function
derived analytical results as following £ 2
Shared results for both decomposition models (lspck b = (s.p) N Tey
strips) 1-E(s,p) 8 (pte+4/pnty)
e execution time of sequential square matrix )
algorithm T(s, 1) E(s p) Nt

T (snl)comp = ﬂ2 tcl

IPA parallel algorithms T(s, R

2

n?.ty

p

T (S- p)calc

optimal conditions to selection of matrix
decomposition model fog fand for §, respectively

2 9y, t, >0 @-—2)t..

Ve Jp

Different results for basic matrix decomposition dats
(blocks, strips)
e overhead function for blocks h(s,pand for
strips h(s, p)as follows

tg>n (1-

h (s, p)y =8 (t, +—=t,,
(s, P), =8( 7o )
h(s,p)s=4(t;+nt,)

complex parallel execution time for blocks T(s,
P)compb @nd for strips T(S, Bmps

n2.t n
T(S, p)calcb:T(S p)calc+T(s' p)ipcb:7pc1 +8(ts +7tw)

i

n’ty

T(S:p)cajcszT(Sv p)ca|c+T(Sl p)ipcs= +4(ts+ﬂtw)

parallel speed up for blocks S(s,,pand for

S

T 1-E(s,p) 4p(ts+nt,)

Fig. 10 illustrates growth dependencies of parallel

execution time for own parallel computation time ofcomputing time T(s, Rjmp COMMunication time T(s, @}m

and complex parallel execution time T(ScoR)ex from
input load growth n (Square matrix dimension) atstant
number of computing node p = 256

p=256

i

lusl
40

35

30
25
20
15
10
5

.

“T(s.olc
™

T(s.nlc

T(s.nlc

0

1 3 5 7 o 11 43 15 4y
n

Figure 10. Dependencies of T(S, p)compiex (S, P)comm @nd T(S, P)comp from n
( p=256).

Fig. 11 illustrates growth dependencies of parallel
computing time T(s, RImp COMMunication time T(S, Rm.
and complex parallel execution time T(ScoR)ex from
increasing number of computing node p at constaptiti
load n (Matrix dimension n = 512)
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To win a closed form of issoeficiency function wy(s)
w(s) we have used an approach in which we performed at
first the analysis of increasing input load infleed the
3[;';[1) analyzed expression containgdntrelation to p so to keep

1 this growth constant (we supposed thatt0). Then for

n=g12

4000
T

3000 \ constants ¢ C; we get following expressions
2500 -+ 2 2
\ [T, phcomgis — n tCl CS - n tCl
2000 \ -+ b7 g p te 4pt,
5. plcomm
1500 1\ From these expressions we can derive for searched
functions w(s) = w(sy = rf from relations for G C,

1000 : : Tis. p)comp
=

500

following relations

V\(S)S - n2 - 4CS ptS

t
S w(s), =n? =8C, p—=
0 ! tCl tCl
0 20 40 80 80 100 120

p

With a similar approach we can analyze the infléenc
growth of input load caused another part of expoess
from & in relation to p so to keep this growth constame (
5.3.1. | ssoeficiency Functions supposed thatst= 0). Then after setting and performed

Issoeficiency function w(s) is very important for needed adj_ustment_s we get for searched functiosy ar{d
performance prediction of parallel algorithms Paor F W(Sk following relations
modeling of performance prediction in PA we arengoio t t
derive for defined basic matrix decomposition medel w(s), = n® = 8C, \/Hn - w(s),=4C,np~
(blocks, strips) corresponding analytical issoeficy ta ty
functions w(s) (Decomposition to blocks) and ws)
(decomposition to strips). For asymptotic comphexitf
w(s) is valid following derived relation as

Figure 11. Dependencies of T(S, pP)compies T(S, P)eomm and T(S, P)comp fromp
(n=512).

Final derived analytical functions wgapd w(s) are as
follows

w (s) = max[T (s, P)cac » h(s.p)] Nty

W(S)b:ma{ , 8Cy pt—s,BCb nﬁ:—w}
a

ta
where defined workload s is a function of inputdaa -

For IPA it is given as s =>nWe have defined that for given
value efficiency E(s, p) following quotient of efiéncies
E(s, p) is constant

n’t,

t
W (S)s = max
tcl cl

,4C, p—=,4C.n ptﬂ}

E 5.3.1.2. Optimization of | ssoefficiency Functions
—=C Lo . . e . .
1-E Optimization of derived issoefficiency functionsyjuare
to search for dominant expressions in derived fiakdtions

5.3.1.1. Canonical Matrix Decomposition Models ~ for w(s), a w(s). For this purpose we have been done
As basic matrix decomposition models we have ddf'necomparison of individual expressions of w(gnd w(s)
such matrix decomposition models to which there igip following conclusions

possible to reduce all other known matrix decontpmsi .
models. Then the canonical matrix decomposition eted
are as follows

*  matrix decomposition model to blocks

*  matrix decomposition model to strips.

For defined constants,Gblocks) and €(strips) which

the first expressions of wgsand w(s) are the same
and therefore this expression will be the component
of final optimized w(s),. At the same time for this
expression at performed asymptotical analysis in
relation to parameter p the following limit is \éli

are integral parts of issoeficiency functions w(@locks) ) n2.t a
and w(s) (strips) we have derived following relaso limp . D =0
__EGsp n’ty

"T1-EG P 8 (pt.+ypnty)

EGp) _ Ny

_l_ E(S, p) - 4p(ts+ntw)

S

and therefore the similar first expressions of
issoeficiency functions w(gland w(s) we can omit
from searched w(s)

* in relation to the similarity of actually first
expressions of w(g) and w(s) (After omitting
expressions according previous conclusion) as
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follows Then for the given concrete value of E(s, p) and fo
given values of parameters p, n we can in analytiy
8C, pt—SZ4CS pt_s the thresholds, for which growth of isoefficienayn€tion
teg teg means decreasing of efficiency of given parallgbathm

) » ) . with assumed typical decomposition strategies. Tiesns
This condition after reducing of shared expressiog,e minor scalability of the assumed algorithmcase of
parts lead to inequality 2,& Cs. After setting and  yecomposition strategy the approach is similarnaiyzed
following adjustments we get final condition agp dpractical used decomposition matrix strategies.

1, which is valid on the whole range of spotted pageq on analysis of computer technical parameégets
values of parameter p. It means the with thig ¢, some parallel computers in the world they eatid
performed expression comparison we have got moigioying inequalities £&>t,>t.. Alike is valid that p< n.
domlnaFed expression which we let to the next thregsing these inequalities it is necessary to analyze
comparisons (Two from w(snd one fromw(s)  gominancy influence of the all derived expressions.
in an analogous way we do comparison of third then the asymptotic issoefficiency function is tied
expressions from original wgsand w(s) through dominancy conditions of second and third
issoeficiency functions and that as follows expressions. From their comparison comes out
t t . based on real conditioR ® t a third expression is
4C,np~28Cyn \/B—W bigger or equal than a second expression and an
tat tat issoefficiency function is limited through the firs
expression of w(g). If we used following technical
parameters;t= 35 s, tw= 0,23 us this is true for n
>813
for n < 813 and for the same technical constants t
35 us, = 0,23 us issoefficiency function is limited
through a second expression of w(s)

These conditions after reducing of shared exprassio
parts lead to following inequality@p > 2 G,. After
setting and performed adjustments we get final |
condition p> 1, which is fulfilled on the whole
range of parameter p. With performed comparison
we have ignored further less expression and final

relation w(s), is actually as follows
6. Results

t t
W(S)opt = max{4 Csn pt—w ,8Cy pt—s} We illustrate some of chosen performed tested tesT
ct ot practical illustrations we have used MPA algorithiios
e solving of Laplace PDE equation definedadlows
four point iteration relation in which in one itéin
are performed five arithmertic operationg 5 t)

e communication model according Fig. 5.

For experimental testing we have used workstatmis
NOW parallel computer (workstations WS 1 — WS 5) an
This condition after reducing of shared expressiosupercomputer as follows
parts leads to following inequalitys@ t, > 2 G e WS 1-PentiumlV (f=2,26 G Hz)

After setting and performed adjustments we cometo « WS 2 - Pentium IV Xeon (2 proc., f = 2,2 G Hz)
following inequality A. t,2 > Vp t2 This inequality =~ ¢ WS 3 - Intel Core 2 Duo T 7400 (2 cores, f=2,16
we are able to solve only for concrete values of GHz)

parameters n, p,,tty. For example using following WS 4 - Intel Core 2 Quad (4 cores, 2.5 GHz)
values of parameterg + 35 ps, § = 0,23 pus and * WS 5 - Intel SandyBridge i5 2500S (4 cores, f=2.7

final comparison of remaining expression comes rgerativ
1 H . .
following expression comparison

4Cgn pt—W28Cb pt—S
t(:1 tcl

under assumption of in praxis frequent case of GHz)
choosing n = p we get simpler expression to ¢ supercomputer Cray T3E in remote computing
condition validity as nyn > 152,170r p. Vp > node.

152,17. The smallest integer number which satisfies Comparison of decomposition model influence (D1 -

given condition is p = n = 813. Satisfying thisblocks, D2 - strips) is at Fig. 11. For compariseare

condition for n or p, the final issoefficiency fuilan  measured values recomputed to one iteration step.

Ww(S)pt given with first expression and in opposite isPerformed measurements have proved higher effigiefc

given with second expression of following final decomposition model to blocks for tested parakehputer

optimized issoeficiency function wig) Cray T3E. Technical parameters of parallel compGiery
T3E (t = 3us, t, = 0,063us, t = 0,011us).

W(S)gpt = ma>{4cS n pt—W ,8C, pt—s}
tc1 t(:l

5.3.1.3. Conclusions of | ssoeficiency Functions



American Journal of Networks and Communications 26{3-1): 1-14 11

dimensions) for E=18 From comparisons of these
=256 measurements come out that for great number of
workstations (p=8) are the whole solving times
approximately the same. The reasons are that lower
computation complexity at Gauss-Seidel method
(Computation) is eliminated through greater
communication complexity in its parallel algorithm
practically double higher than Jacobi IPA.
'Q\ This figure illustrates continually percent spremdiof
-\;\\.\’\‘\“‘_"‘“’ the individual overheads (Initialization, compubatj
l‘-——»——.,,,,,,,ﬂw communication, gathering) for Jacobi parallel aitpon
with the given number of workstations p = 4 for igas
0 2 4 © & 10 10 M0 160 180 2AD 20 240 20 values of workload n (matrix dimensions) and for
P accuracy E=0,001. From comparisons we can seegaisi
Figure 12. Comparison of T(s, p)emiex fOr decomposition models (n=256).  trend of computation in dependence of accuracy E.
Generally for the problems with increasing
Fig. 13 illustrate dependencies to optimal selecttd communication complexity through using great numtier
decomposition strategy for technical paramefeftd, t2)  processors p based on Ethernet NOW we come todiné p
using verified technical parameters of supercompGtay (Threshold that parallel computing is no more eftes

& -

EEEREENEN
=1
f
B R

—— 3 5 4

o

T3E for t, = 0,063us and n = 128, 256. that means we are without any speed-up. It is evitieat
for the given problem, given parallel algorithmslagiven
16 26 2% parallel computer to find such a threshold (no dpge) is
e very important.
“ _//,,,.,,,.mr——r*f"*"*' The individual parts of the whole execution paidilme
2 e are illustrated at Fig. 15 for Jacobi iterative ghiet
,./r algorithm for 4 workstations and for E = 0,001.
10 /
///
8 R ey Jacobi 4 workstations, E=0,001
W _mots2
64/ 100%
.
4 Partsof  80% 1
T{s,ploomplex .
[ [ Colledion
2 6% 1 O Cammunicatior
40% B Computatior
0 T T T T O Initislisstior
9 29 49 69 89 109 129 149 169 189 209 229 249
P 20%
Figure 13. Influencests for n = 128, 256 %
16 84 112 160 206 256 304 352 400 445 455
. Matrix dimension [nxn]
8 workstations. E=0.00001
T[S
(<] Figure 15. Percentage comparison of T (S, p)compiex fOr its components
160 (E=0,001).
140 |
120 Jacohi 4 workstations, E=0,001
100
-
20 1 Jacobi 100% 1
§ -+ 9%
60 Gauss-Seidel B0 4
40 T0%
1 Parts of .
20 Tis, om0 |
0 (%) ol
4%
0 100 200 300 400 500 W 4
Matrix dimension [nxn] 0%
10% A
Figure 14. Comparison of T(S, p)complex fOr Jacobi and Gauss-Seidel 1PA for T e 128 2% 384 512
E=10°. OCollection 0,003 0,01 o073 | o425 0,75
CJCommunication| 0,243 0,248 0,39 0,613 0,448
At Fig. 14 we have presented measurement resuttseof Wcompulaton | 0015 | 0068 |ode |1 LA
. . [ Initislization 0,025 0,035 0,065 012 0.2
whole solving time for both developed parallel aithons Matrix dmension ]
(Jacobi, Gauss-Seidel) with the number of procasgcr 8

and for various values of input workload n (MatriX  Figure 16. Comparison of T (S, p)eonpie: parts for p=4 (E=0,001).
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The influence of number of workstations at givenisoefficiency functions for individual constant uak of

accuracy E=0,001 to the individual parts of the Mho
solving time for pre Jacobi iterative parallel aitfum for
various sizes of input workload (matrix dimensi@rsn 64
X 64 to the size 512 x 512) illustrates Fig. 16 fbe
number of workstations p = 4. From the comparistoree
out percent sinking of computations at the biggember

of workstations (parallel speed-up though the highe

number of workstations) at the moderate percestmgiof
network communication overheads.

Fig. 17 illustrates the times of individual parts the
whole solving time as a function of input workload
(Square matrix dimensions) for number of workstaio
p=4 and for accuracy E=0,001. From comparison e$eh
both graphs comes out higher contribution througé t
number of working stations than the raising ovedseaf
the network communication.

Jacobi E=0,001

T (s, pleomm(s]
0.7

0.6
05
04
0.3
02
0.1

0+ T T T T -
0 50000 100000 150000 200000 250000
Number of matrix points

+2p
=4p

Figure 17. Influence of computing nodes to T(s, p)comm, (E=0,001).

Fig. 18 illustrate influence of number of worksteis
NOW to quicker solutions of both distributed pazhll
algorithms (Gauss-Seidel parallel algorithm) for trixa
dimensions 512x512 and various analyzed accuradies
Epsilon.

GausSeidel 512x512

T (2P Lompex 150

E=0,00001
E=0,0001

E=0,001

2p 4p ip
Number of workstations

Figure 18. Influence of workstation number for Gauss-Seidel |PA.

Derived analytical issoeficiency functions allow tes
predict parallel computer performance also for th&cal

efficiency (E = 0,1 to 0,9) for n < 152 using thabpshed
technical parameters, tt;, t, communication constants of
used NOW (= 0,021 us,st= 35 us, = 0,23 us,).

2,5EH07

Figure 19. Isoefficiency functionsw(s) for n < 152

Fig. 20 illustrates isoefficiency functions for ixiual
constant values of efficiency (E = 0,1 to 0,9) for 1024
and for communication parameters of parallel comput
Cray T3E (&= 0,011pus,&= 3 us, = 0,063 pus,).

206407
w

18E+07

16E407 / —o—E01

—§-E02

14E407
E-03
126407 | E=04
—%—E=05
- E06
——E=07

—=—E=08
E=09

1,0E+07

8,0E+06

6,0E+06 4

4,0E+06 -

2,0E+06 +

0,0E+00

Figure 20. Isoefficiency functionsw(s) (n = 1024).

From both pictures (Fig. 19 and Fig. 20) we cantkaé
to keep a given value of efficiency we need stepstap
increasing number of computing processors and highe
value of workload (useful computation) to balanighkr
communication overheads.

7. Conclusions

Performance evaluation as a discipline has replyated
proved to be critical for design and successful iuse
parallel computing. At the early stage of design,
performance models can be used to project the rayste
scalability and evaluate alternative solutions. #ie

not existed ones. We have illustrated at Fig. 1%roduction stage, performance evaluation methodedog
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can be used to detect bottlenecks and subsequeemtjests
ways to alleviate them. Queuing networks has been
established in modeling of parallel computers [F].1 [4
Extensions of complexity theory to parallel compgthave
been successfully used for the evaluation of palrall 5
algorithms and communication complexity too. Via[ ]
extended form of isoefficiency concept for parallel
algorithms we have demonstrated its applied usimg t
performance prediction in typical matrix parall@@ithms [6]
(MPA).

To derive isoefficiency function in analytical watyis
necessary to derive al typical used criterion
performance evaluation of parallel algorithms icidhg
their overhead function (parallel execution timgeed up,
efficiency). Based on this knowledge we are abldddve
issoefficiency function as real criterion to evakiaand
predict performance of parallel algorithms also fioture
hypothetical parallel computers. So in this waycaa say
that this process includes complex performanceuatiain
including performance prediction. [10]

Due to the dominant using of parallel computersetas
on NOW modules and their high integration name&ead
there has been great interest in performance pieadiof
parallel algorithms in order to achieve effectivargilel
algorithms (optimized). Therefore this paper sumnesr
the used methods for complexity analysis which ban
applicable to all types of parallel computers (sapmputer,
NOW, Grid).

This paper finalizes applying of complex analytical
modeling to the whole group of matrix parallel aigfums [14]
which are characterized by domain decompositioneisd
To present this group of MPA we have modeled abstra
matrix using basic decomposition models with supgos
intensive communication complexity. In such a wa
performed complex modeling could be inspiring ateo
other PA or even a group of PA. The complex analyze
examples we have been evaluated so on classic veassito]
supercomputers (hypercube, mesh) as on dominaaligar
computers represented by NOW module.
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