

American Journal of Networks and Communications
2016; 5(2): 27-34

http://www.sciencepublishinggroup.com/j/ajnc

doi: 10.11648/j.ajnc.20160502.13

ISSN: 2326-893X (Print); ISSN: 2326-8964 (Online)

Combat-Sniff: A Comprehensive Countermeasure to Resist
Data Plane Eavesdropping in Software-Defined Networks

Fan Jiang, Chen Song
*
, Hao Xun, Zhen Xu

Institute of Information Engineering, Chinese Academy of Sciences, Beijng, China

Email address:
jiangfan@iie.ac.cn (Fan Jiang), songchen@iie.ac.cn (Chen Song), xunhao@iie.ac.cn (Hao Xun), xuzhen@iie.ac.cn (Zhen Xu)
*Corresponding author

To cite this article:
Fan Jiang, Chen Song, Hao Xun, Zhen Xu. Combat-Sniff: A Comprehensive Countermeasure to Resist Data Plane Eavesdropping in

Software-Defined Networks. American Journal of Networks and Communications. Vol. 5, No. 2, 2016, pp. 27-34.

doi: 10.11648/j.ajnc.20160502.13

Received: February 23, 2016; Accepted: March 4, 2016; Published: April 21, 2016

Abstract: Software-defined networking (SDN), on account of its unprecedented capability of network traffic monitoring and

data resource transferring, has been deployed into a wide range of application scenarios. However, typical cyber-attacks which

prevail in traditional IP networks, have also mutated their implementation models adjusting to SDN environment. Eavesdropping

is one of such attacks and causes severe information disclosure to different degree. In this paper, we focus on data plane

eavesdropping in SDN and treat it on two levels according to the extent an adversarial sniffer can exploit a SDN switch. Then we

introduce Combat-Sniff, a comprehensive countermeasure which includes two methods to deal with the two-level sniffing

respectively. And later, we both theoretically and experimentally demonstrate their reliability and performance. Results represent

that we can exert Combat-Sniff in SDN to satisfy different security requirements with an acceptable overhead.

Keywords: Eavesdropping, Software-Defined Networking (SDN), Flow Entries Integrity Verification,

Moving Target Defense (MTD)

1. Introduction

SDN has offered traditional IP networks a brand new

paradigm [1], with its separated control and forwarding planes,

logically centralized controllers, and unified programmable

interfaces. Since the original rigid closed network model

suffers a hardship when keeping pace with the rapid expansion

of network size and abrupt outburst of huge data volume,

newly developed network practices, such as cloud service and

big data analytics, turn to SDN for feasible solutions.

Innovative as SDN infrastructure is, it fails to put an end to

traditional typical cyber-attacks, which have exploited their

distinctive realization methods against SDN-specific

background. As the present mostly referenced implementation

of SDN is OpenFlow protocol [2], we would focus our

subsequent discussion on OpenFlow-based network.

Network eavesdropping [3] is a kind of packets

interception attack in traditional IP network. So far, there are

no recognized reliable detection methods to deal with it, and

the accepted defense method is encryption [4]. However,

situation changes when transiting to SDN, either for detection

or defense. In this paper, we focus on data plane

eavesdropping in SDN. According to what degree a malicious

attacker can exploit a SDN switch, in figure 1, we classify the

eavesdropping into two levels: flow entries compromised

level and switch compromised level.

Flow entry compromised level. The decoupled control and

data plane expose a forwarding rule inconsistency problem.

Central controllers take charge of networking intelligence by

means of installing flow entries on flow tables in switches to

instruct traffic forwarding. Maliciously falsifying flow entries

from switch side can cause the inconsistency between

original flow entries delivered by controllers and the ones

preserved by switches. For example, for the convenience of

debugging networking, some current OpenFlow switches [5,

6] are left with a listening mode, through which network

administrators can connect them from unauthenticated TCP

port for manipulating, such as writing rules or reading

information. Utilizing such interface, an intentional attacker

can eavesdrop certain data streams by artificially adding a

mirror port in a switch.

28 Fan Jiang et al.: Combat-Sniff: A Comprehensive Countermeasure to Resist Data Plane

Eavesdropping in Software-Defined Networks

Figure 1. Eavesdropping in SDN data plane through exploiting switch in two levels.

Switch compromised level. Directly compromising a switch

enables a hacker to monitor the whole traffic flowing through

the device, even need not bother to modify the flow entries.

Researchers [7] have exploited malware which could hunt out

the switch within a targeted network and install a sneaky,

second-stage piece of malware on the switch and push data to a

command-and-control server. In addition, malicious entity can

also pretend regular switches and thus have full visibility into

all of the traffic running through the switch.

As for the flow entries compromised level, in traditional

network, there are no efficient mechanisms to guarantee the

validity of the forwarding rules in devices. However, in SDN,

we can utilize its centralized management nature to inspect

the integrity of flow entries preserved in switches. As to the

switch compromised level, although encryption has

demonstrated its reliability in traditional network, in SDN,

the scope of protection through encryption is limited.

Network encryption mostly is protocol dependent, eg.

HTTPS. Since SDN is being designed to open network, it is

applied into various areas where customized communication

protocols are popular and such protocols haven't adopted

corresponding encryption scheme. For example, Data center

networking, which is one of the main application domains of

SDN, is more frequently using Data Center Interconnect

(DCI) protocols, such as Virtual Extensible LAN (VXLAN),

Stateless Transport Tunneling (STT), which lack

authentication and any form of encryption to secure the

packet contents. Thus, we need a protocol oblivious solution.

Such two levels sniffing require different cost from

attackers and also reward them distinct benefit. Thus in this

paper, we introduce Combat-Sniff, a comprehensive

countermeasure, which includes two methods to

correspondingly cope with the above two levels situation.

Our contributions are as follows:

� We propose a flow entries integrity verification method

to deal with flow entries compromised level

eavesdropping.

� We propose an innovative protocol oblivious method to

prevent data disclosure in switch compromised level

eavesdropping.

� We implement the integrated countermeasure,

Combat-Sniff, and demonstrate its reliability and

performance in experiments.

The structure of the paper is as follows. Firstly, in section 2,

we introduce related research works and knowledges. Secondly,

we introduce the specifications of Combat-Sniff in Section 3.

Later in Section 4, we testify the effectiveness of our methods

using experiments. At last, we conclude our work and discuss

the subsequent research direction in Section 5.

2. Background

2.1. Related Works

Eavesdropping in SDN can be exerted both within data

plane and within the communication channel between

controllers and switches. As for data plane eavesdropping,

Kevin et al. [8] figure out the possibility of adversarial flow

tables modifications in OpenFlow network through listening

mode of switches. Markku et al. [9] analyze such threat in

detail by showing us how attackers can utilize flow tables

modification as the first-step attacking and then exert

eavesdropping. But they didn't give the feasible solutions.

Po-Wen et al. [10] design a detection mechanism to find

compromised OpenFlow switches. Qi et al. [11] propose a

proactive Random Route Mutation (RRM) technique to

 American Journal of Networks and Communications 2016; 5(2): 27-34 29

randomly change the routing of multiple flows to defend

against eavesdropping. As for communication channel

eavesdropping, Kreutz et al. [12] propose the vulnerability of

the openflow channel, when the attacker captures the flow

mod messages, it can modify the messages to add another

mirror port. Daniel et al. [13] testify such vulnerability

through experiments.

Except for eavesdropping, there are also many researches

focusing on typical cyber-attacks, which cause serious

damages to legacy networks and now developed transformed

attacking schemes in SDN. Shin et al. [14] figure out how to

consume control plane and data plane resource to exert

Denial-of-service(Dos) [15] attack in OpenFlow. Later, Shin

et al. also introduce AVANT-GUARD [16] to relieve such

attack by expediting control plane's detection and response

ability. Hong et al. [17] reveal how to exploit SDN's inherent

topology discovery mechanism to poison network visibility

and they also construct TopoGuard as an OpenFlow

controller extension to secure network topology.

2.2. Background Knowledges

Since our countermeasure involves specific knowledges

about OpenFlow protocol and Protocol Oblivious Forwarding

[18] technology, we would introduce some related

information below.

Flow entries in OpenFlow. In OpenFlow network, every

switch preserves multiple flow tables, in which store flow

entries installed by controller. Switches would forward data

plane packets conforming to flow entries. Each flow entry

contains match fields and instructions [19]. The match fields

consist of packet headers (eg. TCP_SRC) and if a passing

packet matches one of flow entries, i.e. the values of the

packet headers equal the values of corresponding match

fields of an entry, then the packet would be disposed

according to the instructions in the flow entry. A packet not

matching any of the flow entries would be sent to controller.

Protocol Oblivious Forwarding. Basing on OpenFlow v1.3,

Song [18] proposes Protocol-Oblivious Forwarding. In such

forwarding technology, the controller and forwarding

elements communicate at a field-offset level rather than

protocol semantics level. That is to say, the switch needs not

to understand specific packet formats to extract certain search

keys, and instead, the controller guides the switch to locate a

certain key using a {offset, length} structure. This novel

conception allows user to use their own network protocols

without any need to go back to the device vendor. This

protocol agnostic forwarding device, acts as a facilitating tool

to realize our protocol oblivious defense method.

3. Assumptions and Design

3.1. Assumptions and Designing Objectives

Before introduction of our countermeasure, we need to

state the following assumptions clearly:

� As for the first-level-based eavesdropping, we assume

the sniffer who falsifies the flow entries can’t hamper

the other OpenFlow functions of that switch.

� As for the second-level-based eavesdropping, we

suppose the sniffer who encroaches the whole switch

won’t hinder the switch from forwarding data packets

normally.

For the first assumption, since the first level sniffers'

ability is limited to falsifying the flow entries through a

feasible interface, it's reasonable for us to think they can't

hamper switches' inherent mechanism. For the second

assumption, because our focus is networking eavesdropping,

we don't consider the other destructive attack from that

sniffers. Besides, a switch which doesn't perform normally

will easily be detected.

In the design of Combat-Sniff, we plan to achieve the

following goals:

� For the first level eavesdropping, we aim to detect the

falsifiers efficiently.

� For the second level eavesdropping, we aim to protect

communication confidentiality.

3.2. The Sketch of Combat-Sniff

Our countermeasure, Combat-Sniff, includes an active

detection method ,called flow entries integrity verification, to

realize the sniffing detection goal, and a proactive defense

method, called protocol fields randomization, to reach the

information confidentiality protection goal.

Method I: Flow Entries Integrity Verification. For a scalable

integrity verification solution, the amount of flow entries

accesses and transmissions should be minimized, so we utilize

a random sampling mechanism to verify part of the flow

entries during each round. Besides, we also need to ease the

additional burden loaded to switches so as not to influence

traffic forwarding. Since the upper controllers can be a

centralized cluster of nodes [20] or a physically distributed set

of elements [21], we don't need to worry about the storage or

the computing capability of the controllers. So we make

controller undertake the role of verifier to store the original

delivered flow entries and compute the related values.

Design of the method. We adopt a query-reply mechanism,

within which the controller periodically sends query

messages to switches. On receiving the query messages,

switches send the appointed flow entries to controller, and

controller verifies their integrity with message digest

algorithm (MD5).

The process of verification is in Algorithm 1. Given the

total number of flow entries, sampling ratio and total number

of switches, in step 1, controller computes the sampling

number for each switch according to their share of flow

entries. Step 2-10 is the query process. Controller will firstly

check the number of flow entries within that switch to inspect

if there are maliciously added or deleted flow entries. If not,

secondly, it randomly generate the flow entries IDs to be

queried and send the message to switches. Step 11-18 is the

verification process. Once controller detected inconsistency,

it will find the specific flow entry and shut down the

suspected ports.

30 Fan Jiang et al.: Combat-Sniff: A Comprehensive Countermeasure to Resist Data Plane

Eavesdropping in Software-Defined Networks

Table 1. The flow entries integrity verification algorithm.

Algorithm 1 The flow entries sampling verification algorithm

input: total EntryNum, Sr, SwNum.

1: Computes the sampling number of flow entries for each switch: samp

EntryNum;

2: for Sw in switches do

3: Query for the number of flow entries of the switch: entryNum

4: if the value are correct then

5: exert SelectEntry (0, entryNum, sampEntryNum);

6: deliver query messages;

7: else

8: check flow entries item by item in that switch and shut down illegal

port;

9: end if

10: end for

11: if Receiving reply from switches then

12: CompareMD5 (OriginalEntry, SampledEntry);

13: if values are not equal then

14: find the specific inconsistent flow entries and shut down illegal

port;

15: else

16: pass;

17: end if

18: end if

Method II: Protocol Fields Randomization.

To protect the confidentiality of the data packets which

pass through a potential compromised switch, we need to

make the switch partially blind. That is to say, the switch

should know how to forward the packets, but not know what

it is forwarding. As we have mentioned, though traditional

communication encryption is a recognized reliable solution,

it is protocol dependent.

Inspired by the idea of Address Space Layout

Randomization (ASLR) [22], which randomizes the locations

of executable segments of a running process to raise the bar

for Return-oriented programming(ROP) attack. It occurs to

us that we can artificially reorder the locations of protocol

fields within a packet scope to enhance the difficulty for

sniffers to parse the data packets. Our method has the

following features:

- It’s protocol oblivious.

It can be applied into any kind of transmission protocol.

- It’s content oblivious.

Switch can hardly parse the packet content using regular

protocol format knowledges.

Design of the method. We design a specific protocol fields

randomization algorithm and a practical transmission scheme

to forward the randomized packets.

Protocol fields randomization algorithm. Our

randomization scheme includes a reordering and a XOR

process. Algorithm 2 represents the specification. There are

different levels of reordering according to different data

granularities: protocol field level, byte level, bit level. The

finer, the safer, but also more expensive for computing. In

our defense method, we use byte level reordering.

Table 2. The protocol fields randomization algorithm.

Algorithm 2 Protocol fields randomization algorithm

input: A normal data packet with N bytes, within which the header part is

M bytes.

output: A protocol fields randomized packet

1: Split the single packet into separated N bytes ignoring the header fields

meaning.

2: Randomly reorder the M bytes header and distribute them into the whole

N bytes scope.

3: Fill in the remaining N − M locations with the original payload of that

packet, without changing their relative order.

4: Use a N byte randomly generated secure key to encode the whole packet

with XOR

Figure 2 raises an example of the protocol fields reordering

process. For simplicity, we only take one protocol field for

illustration. In the original TCP packet, the field src IP is

located at the offset of 26 bytes of the whole packet ,its length

is 4 bytes and value is 10.0.0.2, i.e. 0x0a00 0002 in

hexadecimal format. On exerting our protocol fields

randomization, we firstly split the integrated field into 4

separate bytes and then reorder them within the whole packet

scope. The result is 4 independently bytes, their offsets are k1,

k2, k3, k4 respectively and values are 0x02, 0x00, 0x0a, 0x00.

Figure 2. The reordering mechanism of protocol fields randomization.

 American Journal of Networks and Communications 2016; 5(2): 27-34 31

Besides, we also display the actual effect through wireshark in figure 3. For clarity, we only encode the field of source

address of IP. The left side is a transformed packet and the right side is an original one. The src IP is 0x0a00 0002. The original

field of src IP is reordered and be encoded with XOR. The random key is 0xaaaa aaaa, and the value after XOR should be 0xa8,

0xaa, 0xa0 and 0xaa. We can see that the original field value is distributed into other locations of the packet. And the original

location has been substituted by corresponding fields in the packet.

Figure 3. The comparison of data packet before and after protocol fields randomization.

The practical transmission scheme. We represent how the

protocol fields randomization can be used in practical data

transmission in Figure 4.

Figure 4. The practical process of data transmission for protocol fields

randomized packets.

In step 1, host1 will generate its own randomization

manners and also appoint some unused fields in a protocol

field to mark the corresponding manners. In step 2, host1

shakes hands with controller to inform it the above

information and also its communication object host2. Then in

step 3, controller would exchange the same information with

host2. When the process of handshake succeeds, host1 will

communicate with host2 using randomized packets in step 4.

And since switch doesn't understand the packet, it would

send the packet to the controller. In step 5, controller delivers

corresponding flow entries to switches to instruct them to

forward the randomized packets between host1 and host2. In

step 6, the two hosts can communicate with each other using

our protocol fields randomization method.

4. Implementations and Evaluations

Due to our particular function requirement of protocol

oblivious forwarding for switches, we use pof controller [23]

and pof switch [24] to realize our two methods. And we use

pof-mininet plugin to embed pof switch into Mininet to

construct a topology. Although the working mechanism of

pof is not identical with OpenFlow, but it's based on

OpenFlow v1.3 [19] and their distinctions don't hinder our

demonstration to our countermeasure.

In realization of the flow entries integrity verification

method, we firstly construct a pair of new controller-to-switch

OpenFlow messages, FLOW_QUERY and FLOW_REPLY.

Secondly, we add a verification module in pof controller and a

flow entry reply function in pof switch.

In realization of the protocol fields randomization method,

at the host side, we use scapy [25] module of python to

encapsulate and parse the randomized packet. At the

controller side, we add a packet identification module, it will

deliver related flow entries to switches to instruct the packet

forwarding.

Our pof controller runs on a physical machine with Intel I5

3.1GHz CPU and 4GB memory. Pof switch-based Mininet

32 Fan Jiang et al.: Combat-Sniff: A Comprehensive Countermeasure to Resist Data Plane

Eavesdropping in Software-Defined Networks

runs on a physical machine with Intel E5-2600 v3 1.6GHZ

CPU and 16GB memory.

4.1. Reliability Analysis

(1) Flow Entries Integrity Verification

Assume the attacker tampers Et flow entries out of total En

flow entries. And we sample Es flow entries during every

round query. We compute Px, the probability that at least one

of the flow entries selected by sampling matches one of the

flow entries tampered by the attacker. Let X be a discrete

random variable. It is the number of flow entries selected by

sampling that match the flow entries tampered by attacker. So

we have:

�� � ��� � 1� � 1 	 ��
 � 0�

� 1 	
��
�

�

·
����
�

��� ·
����
�

��� �
��
����
�

��
��� (1)

Since

����
�

��� �
������
�

����� , so �� � 1 	 �
��
�

�
�

� . We

plot figure 5 to express the relationships among sampling

ration Sr, detection probability Px, and total number of flow

entries En. When tampering ratio i.e.
�

�

, is a certain

probability, say 1%, we can detect the flow entry tampering

by sampling a constant amount of flow entries, independently

of the total number of the flow entries. For example, if we

require a detection probability of 99%, we need only to

sample 460 flow entries.

Figure 5. The probabilistic relationships among sampling ratio, detection

probability and total number of flow entries.

Probabilistic analysis reveals that when the tampering ratio

is a constant value, the detection ratio can be pretty high

while maintaining a constant number of sampling quantity,

independently of the total number of flow entries.

(2) Protocol Fields Randomization

Assume the total length of a data packet is N bytes, and the

total number of protocol fields is M. Then the number of

reordering schemes, Scheme_N, is computed in equation 2.

 Scheme# � $%�&
%

� 'M) N+ · 'M) N 	 1+ · 'M) N 	 2+ � 'N) 1+ (2)

And after the reordering, we also use a secret key, whose

length is 8*(N+M), to encode the packet with XOR. Then we

compute Pparse, which represents the possibility that an

attacker can parse the packet to get the correct value in

equation 3:

�-.�/0 � 1/2�34565& 7 287'%�&+9 (3)

The possibility value demonstrates the difficulty for an

attacker to parse the packet and obtain the private

information. Of course, we are not specialized in encryption

and we just give an instance of our protocol fields

randomization method. Professional encryption can be

combined to our protocol oblivious method.

4.2. Experiment Effect

(1) Flow Entries Integrity Verification

As the number of flow entries sampled is constant,

analyzed in section 4.1, we measure the time needed for

sampling different number of flow entries from different

number of switches. Table 1 shows that when sampling the

same number of flow entries, the more switches we sample,

the time consumption is lower. So, we had better collect the

sampled flow entries proportionately from as more switches

as possible. Because the result data represents that the

bottleneck of our method is in performance of a single

switch.

Table 3. The time consumption of flow entries integrity verification in

different situations.

(2) Protocol Fields Randomization

We test the performance of our protocol fields

randomization method with a file transmission experiment in

a 3-switch linear topology. And the time delay comparison

with the normal file transmission is in figure 6. When the file

size varies from 1KB to 100KB, the transmission delay keeps

at about 46%, compared to normal transmission time. The

time consumption lies in randomization and

de-randomization within communication hosts. And the split

 American Journal of Networks and Communications 2016; 5(2): 27-34 33

protocol fields also increase the match fields for a switch to

search. It is a tradeoff between randomization complexity and

data transmission efficiency.

Figure 6. Comparing transmission delay of different size files.

5. Conclusion and Future Work

In this paper, we propose Combat-Sniff, a comprehensive

countermeasure including two methods to resist data plane

eavesdropping in SDN. The detection method can effectively

detect the flow entries falsification with a constant number of

sampled flow entries. And the defense method enhances a

considerable difficulty for attackers to parse the sniffed

packets.

In the future work, we plan to research the weight

dependent sampling scheme according to the importance of a

switch. Besides, we will also try to enhance the process of

protocol fields randomization transmission to improve the

performance.

Acknowledgements

This material is based upon work supported in part by the

Institute of Information Engineering, Chinese Academy of

Sciences under Y670021105 and Y5W0011105. Any

opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of Institute of Information

Engineering, Chinese Academy of Sciences.

References

[1] Open Network Foundation. Software-defined networking: the
new norm for networks [EB/OL]. [2012-04-13].

[2] MCKEOWN N, ANDERSON T, BALAKRISHNAN H, et al.
OpenFlow: enabling innovation in campus networks [J]. ACM.

[3] https://www.owasp.org/index.php/Network_Eavesdropping.

[4] Schultz E E. Assessing and combating the sniffer threat [J].
Local Area Network Handbook, 1999: 85.

[5] Hp switch software - openflow supplement.
http://h20000.www2.hp.com/bc/docs/support/SupportManual/
c03170243/c03170243.pdf, Feb 2012.

[6] Open vSwitch, 2013. [Online]. Available: http://vswitch.org/

[7] http://www.pcworld.com/article/2957175/sdn-switches-arent-h
ard-to-compromise-researcher-says.html.

[8] Benton K, Camp L J, Small C. Openflow vulnerability
assessment[C]//Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking. ACM,
2013: 151-152.

[9] M. Antikainen, T. Aura, and M. S¨arel¨a, “Spook in your
network: Attacking an SDN with a compromised openflow
switch,” in Secure IT Systems - 19th Nordic Conference,
NordSec 2014, Tromsø, Norway, October 15-17, 2014,
Proceedings, 2014, pp. 229–244.

[10] Chi P W, Kuo C T, Guo J W, et al. How to detect a compromised
SDN switch[C]//Network Softwarization (NetSoft), 2015 1st
IEEE Conference on. IEEE, 2015: 1-6.

[11] Duan Q, Al-Shaer E, Jafarian H. Efficient random route
mutation considering flow and network
constraints[C]//Communications and Network Security (CNS),
2013 IEEE Conference on. IEEE, 2013: 260-268.

[12] D. Kreutz, F. M. Ramos, and P. Verissimo. Towards secure and
dependable software-defined networks. in Proc.2nd ACM
SIGCOMM Workshop Hot Topics Softw. Defined Netw., 2013,
pp. 55–60

[13] Romão D, van Dijkhuizen N, Konstantaras S, et al. practical
security analysis of OpenFlow [J]. 2013.

[14] Shin S, Gu G. Attacking software-defined networks: A first
feasibility study[C]//Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined
networking. ACM, 2013: 165-166.

[15] https://en.wikipedia.org/wiki/Denial-of-service_attack

[16] Shin S, Yegneswaran V, Porras P, et al. Avant-guard: Scalable
and vigilant switch flow management in software-defined
networks[C]//Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. ACM,
2013: 413-424.

[17] Hong S, Xu L, Wang H, et al. Poisoning Network Visibility in
Software-Defined Networks: New Attacks and
Countermeasures [C]. NDSS, 2015.

[18] Song H. Protocol-oblivious forwarding: Unleash the power of
SDN through a future-proof forwarding plane[C]//Proceedings
of the second ACM SIGCOMM workshop on Hot topics in
software defined networking. ACM, 2013: 127-132.

[19] Specification, OpenFlow Switch. v1.3.0. (2012).

[20] S. Jain and al., “B4: Experience with a Globally-Deployed
Software Defined WAN,” in ACM SIGCOMM, 2013.

[21] Berde P, Gerola M, Hart J, et al. ONOS: towards an open,
distributed SDN OS[C]//Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014: 1-6.

[22] M. Miller, T. Burrell, and M. Howard. Mitigating software
vulnerabilities, July 2011.
http://www.microsoft.com/download/en/details.aspx?displayla
ng=en&id=26788.

34 Fan Jiang et al.: Combat-Sniff: A Comprehensive Countermeasure to Resist Data Plane

Eavesdropping in Software-Defined Networks

[23] http://www.poforwarding.org/pofcontroller-1-1-7-released/

[24] http://www.poforwarding.org/pofswitch-1-3-4-released/

[25] http://www.secdev.org/projects/scapy/doc/usage.html

