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Abstract: High performance computing (HPC) encompasses advanced computation over parallel processing, enabling faster 

execution of highly compute intensive tasks such as climate research, molecular modeling, physical simulations, cryptanalysis, 

geophysical modeling, automotive and aerospace design, financial modeling, data mining and more. High performance 

simulations require the most efficient compute platforms. The execution time of a given simulation depends upon many factors, 

such as the number of CPU/GPU cores and their utilization factor and the interconnect performance, efficiency, and scalability. 

CPU and GPU clusters are one of the most progressive branches in a field of parallel computing and data processing nowadays. 

GPUs have become increasingly common in supercomputing, serving as accelerators or "co-processors" in every node 

CPU-GPU to help CPUs get work done faster. In this paper I use the Multiclass Closed Product-Form Queueing Network 

(MCPFQN) and Mean Value Analysis (MVA) to analyze effects of the CPU-GPU cluster interconnect on the performance of 

computer systems. 
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1. Introduction 

Efficient high performance computing systems require high 

bandwidth, low latency connections between thousands of 

multiprocessor nodes, as well as high speed storage.  

Parallel computing using accelerators has gained 

widespread research attention in the past few years. In 

particular, using GPUs (Graphics Processing Units) for 

general purpose computing (GPGPU) has brought forth 

several success stories with respect to time taken, cost, power, 

and other metrics. . In the most recent list of the world's fastest 

500 supercomputers, 53 systems used co-processors and 38 of 

these used Nvidia chips. The second and sixth most powerful 

supercomputers used Nvidia chips along side CPUs. Intel still 

dominates, providing processors for 82.4 percent of Top 500 

systems. As the price/performance of GPUs has improved, a 

number of petaflop supercomputers such as Tianhe-I and 

Nebulae have started to rely on them. However, other systems 

such as the K computer continue to use conventional 

processors such as SPARC-based designs and the overall 

applicability of GPUs in general purpose high performance 

computing applications has been the subject of debate, in that 

while a GPU may be tuned to score well on specific 

benchmarks its overall applicability to everyday algorithms 

may be limited unless significant effort is spent to tune the 

application towards it. China Tianhe-1A, an upgraded 

supercomputer in 2010, was equipped with every node of 

14,336 Xeon X5670 processors and 7,168 NVIDIA Tesla 

M2050 GPGPUs. It has a theoretical peak performance of 

4.701 petaflops. NVIDIA suggests that it would have taken 

"50,000 CPUs and twice as much floor space to deliver the 

same performance using CPUs alone." The current 

heterogeneous system consumes 4.04 megawatts compared to 

over 12 megawatts had it been built only with CPUs.  

The overall most efficient GPU processing model 

determined thus far is Single Instruction Multiple Data 

(SIMD). The SIMD model has been leveraged to great 

advantage in traditional vector processor/supercomputer 

designs. As displayed in figure 1, the SIMD GPU is nominally 

organized as an assembly of ‘N’ distinct multiprocessors 

(
/MP TPC

N ) in every thread processing cluster (TPC). Each 

multiprocessor per TPC consists of ‘M’ cores - distinct thread 

processors. (
/TP MP

M ). There are some TPC in one GPU 

(
/TPC GPU

N ). Total number of thread processors (core) per 

GPU is: 

/ / / /Thread GPU TPC GPU MP TPC TP MP
N N N M=        (1) 

SIMD-Cores share an Instructiuon Unit with other cores in 

a multiprocessor. Multiprocessors have local registers (splits 

to local memory), local L1 cache, shared L2 cache, constant 

cache, texture cache, and shared memory. Constant/texture 
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cache are readonly and have faster access than shared memory. 

Global/Device memory for GPU (shared for all 

multiprocessors) is DRAM (DDR3 or DDR5). Threads are 

organized into blocks, which are organized into a grid. A 

multiprocessor executes one block at a time. A warp is the set 

of threads executed in parallel. The number of thread per a 

warp may be same as the number of thread processor cores. 

Programming model of GPU is heterogeneous Computing, 

where GPU and CPU execute different types of code. CPU 

runs the main program, sending tasks to the GPU in the form 

of kernel functions, and multiple kernel functions may be 

declared and called, but only one kernel may be called at a 

time. Nvidia developed Compute Unifed Device Architecture 

(CUDA), a simple language for GPU computing allows a 

programmer to use the C programming language to code 

algorithms for executions on the GPU. Using CUDA or 

OpenCL programming toolkits many real-world applications 

can be easily implemented and run significantly faster than on 

multi-processor or multi-core systems. The CUDA framework 

allows to lower the CPU load and send the computations to the 

GPU which by construction has a highly parallel architecture, 

thus accelerating the processing of large amounts of data 

arrays using an identical set instructions (called kernel) for 

each element in one data array. In this way the processor is 

only busy with supplying the data and the kernels to the GPU 

and then collecting the results. Although the transfer between 

CPU (host) and GPU (device) might appear as a bottleneck 

due to the slow speed of the bridge bus. One could obtain very 

good results if it exposes as much data parallelism as possible 

in the algorithm and also takes care of mapping it to the 

hardware as eficiently as possible in such a way that the 

transfers are minimized. 

 

Figure 1. GPU hardware. 

2. Choice of the CPU-GPU Cluster 

Typical cluster consists of homogenous Central Processing 

Units (CPUs). A new model for parallel computing based on 

using CPUs and GPUs together to perform a general purpose 

scientific and engineering computing was developed in the 

last years, and used to solve complex scientific and 

engineering problems. Craving for more computational power 

led to the idea of plunging the CUDA framework in a Message 

Passing Interface (MPI) environment, thus arising the concept 

of cluser of GPUs. Inside the cluster each node of the MPI 

network would pass most of intensive parallel tasks to the 

GPU, off-loading the CPU which is free to handle the network 

communication between nodes. A cluster is a computer 

system comprising two or more computers (“nodes”) 

connected with a high-speed network. Cluster computers can 

achieve higher availability, reliability, and scalability than is 

possible with an individual computer. There are three 

principal components used in a GPU cluster: host nodes, 

GPUs, and interconnect.  

 

Figure 2. CPU/GPU interconnect. 

 

Figure 3. 2CPU/2GPU interconnect. 

Since the expectation is for the GPUs to carry out a 

substantial portion of the calculations, host memory, PCIe bus, 
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and network interconnect performance characteristics need to 

be matched with the GPU performance in order to maintain a 

well-balanced system. In particular, high-end GPUs, such as 

the NVIDIA Tesla, require full-bandwidth PCIe Gen 2 x16 

slots that do not degrade to x8 speeds when multiple GPUs are 

used. Also, InfiniBand QDR interconnect is highly desirable 

to match the GPU-to-host bandwidth. Host memory also 

needs to at least match the amount of memory on the GPUs in 

order to enable their full utilization, and a one

CPU cores to GPUs may be desirable from the software 

development perspective as it greatly simplifies the 

development of MPI-based applications.  

The figures 2 and 3 show typical CPU/GPU interconnect 

with 1 and 2 CPUs and 2GPU. The figure 4 shows a 

CPU/GPU desktop supercomputer organized in clusters. 

The System interconnect (cluster interconnect) is

1GbE/10GbE Ethernet or InfiniBand switch. Every node in a 

cluster consist of one/or two multicore-multithreading CPU 

chips on two sockets with high speed CPU interconnect, e.g. 

used Intel QuickPath Interconnect – QPI with a clock rate of 

3.2 GHz yields a data rate of 25.6 GB/s = (3.2 GHz x 2 bits/Hz 

(double data rate) x 20 (QPI link width) x (64/80) (data bits/flit 

bits) x 2 (unidirectional send and receive operating 

simultaneously))/8 (bits/byte), or AMD HyperTransport bus 

with a clock rate 3.2 GHz yields a data rate of 25.6 GB/s = (3.2 

GHz x 2 bits/Hz (double data rate) x 32 bits/s))/8 bits/byte; 

two/or three multiprocessor-multithreading GPU installed on 

PCI Express 2 x16 slots (for all sorts of graphics cards, can 

access a total bandwidth of 8 GB/s). The Cluster Interconnect 

is QDR (40 Gbps) InfiniBand connectivity on each node in 

one cluster. An Infiniband link is a serial link operat

of five data rates: single data rate (SDR) switch chips have a 

latency of 200 ns (12X: 24 Gbit/s), double date rate (DDR) 

switch chips have a latency of 140 ns (12X: 48 Gbit/s and 

quad data rate (QDR) switch chips have a latency of 100 

(12X: 96 Gbit/s), fourteen data rate (FDR

163.64 Gbit/s), and enhanced data rated (EDR) (12X: 300 

Gbit/s). Larger systems with 12X links are typically used for 

cluster and supercomputer interconnects and for inter

connections. For cluster interconnect, the InfiniBand uses a 

switched fabric topology, as opposed to a hierarchical 

switched network like traditional Ethernet

although emerging Ethernet fabric architectures propose many 

benefits which could see Ethernet replace InfiniBand. Most of 

the cluster interconnect topologies 

2D-mesh/2D-Torus or 3D-Torus, butterfly (

Figure 4. CPU/GPU supercomputer organized in clusters
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(12X: 48 Gbit/s and 

quad data rate (QDR) switch chips have a latency of 100 ns 

(12X: 96 Gbit/s), fourteen data rate (FDR-10, FDR) (12X: 

163.64 Gbit/s), and enhanced data rated (EDR) (12X: 300 

Gbit/s). Larger systems with 12X links are typically used for 

interconnects and for inter-switch 

connections. For cluster interconnect, the InfiniBand uses a 

topology, as opposed to a hierarchical 

Ethernet architectures, 

although emerging Ethernet fabric architectures propose many 

benefits which could see Ethernet replace InfiniBand. Most of 

 are Fat-Tree, 

(Clos) as well. 

 

CPU/GPU supercomputer organized in clusters. 

In this context, multiprocessor operation is defined modulo 

an ensemble of threads scheduled (by hardware scheduler) and 

managed as a single entity across thread processing clusters. 

In this manner, shared-memory access, SIMD instruction 

fetch and execution, and cache operation

synchronized. Memory is organized hierarchically 

Device -> Shared where Global/Device memory transactions 

are understood as mediated by high

(PCIe, HyperTransport, or QPI). A key subtlety associated 

with the CPU/GPU processing architecture is GPU processing 

is effectively non-blocking. Thus, CPU processing may 

continue as soon as a work-unit has been written to the GPU 

transaction buffer. Host (CPU) processing and GPU 

processing may be overlapped as displayed

principle, GPU work unit assembly/disassembly and I/O at the 

GPU transaction buffer may to large extent be hidden. In such 

case, GPU performance will effectively dominate system 

performance. As might be expected, optimal GPU processing 

gain is achieved at an I/O constraint boundary whereby thread 

processors never stall due to lack of data. 

At an application level, the maximum achievable speedup is 

governed by Amdahl’s Law; 

thread parallelization will criticall

fraction of code than can be parallelized (

of parallelization (‘N’), and (3) any overhead associated with 

parallelization. Thus, expected acceleration is modeled by:

(1 ) /
A

P P N
=

− +

A key consideration is the limiting case:

1 1
lim

(1 ) / 1N P P N P→∞

 
 − + − 

This indicates a theoretical maximum acceleration for the 

complete application. However, CPU code pipelining, (i.e. 

overlap with GPU processing), must also be factored into any

calculation for ‘P’; pipelining effectively parallelizes CPU 

and GPU code segments reducing the non

fraction (1-P). Thus, under circumstances where decrease is 

sufficient to claim (1 )
P

N
>> −

becomes: 

1
A N

P

N

≅ = ≅

CPU/GPU-based desktop supercomputing model is cluster 

architecture (figure 1), that characteristic acceleration values 

approaching a limit:  

/ /Cluster Node CL Thread GPU GPU
A N N N≅

/Node CL
N - number of nodes per cluster, 

NGPU - number of GPUs in the cluster . 

Total acceleration of the system with 
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processor operation is defined modulo 

an ensemble of threads scheduled (by hardware scheduler) and 

managed as a single entity across thread processing clusters. 

memory access, SIMD instruction 

fetch and execution, and cache operations are maximally 

synchronized. Memory is organized hierarchically Global -> 

where Global/Device memory transactions 

are understood as mediated by high-speed bus transactions 

(PCIe, HyperTransport, or QPI). A key subtlety associated 

CPU/GPU processing architecture is GPU processing 

. Thus, CPU processing may 

unit has been written to the GPU 

transaction buffer. Host (CPU) processing and GPU 

processing may be overlapped as displayed in figure 1. In 

principle, GPU work unit assembly/disassembly and I/O at the 

GPU transaction buffer may to large extent be hidden. In such 

case, GPU performance will effectively dominate system 

performance. As might be expected, optimal GPU processing 

n is achieved at an I/O constraint boundary whereby thread 

processors never stall due to lack of data.  

At an application level, the maximum achievable speedup is 

 any acceleration (‘A’) due to 

thread parallelization will critically depend upon: (1) the 

fraction of code than can be parallelized (‘P’), (2) the degree 

), and (3) any overhead associated with 

parallelization. Thus, expected acceleration is modeled by: 

1

(1 ) /P P N− +
               (2) 

ideration is the limiting case: 

1 1

(1 ) / 1P P N P

 
= − + − 

         (3) 

This indicates a theoretical maximum acceleration for the 

complete application. However, CPU code pipelining, (i.e. 

overlap with GPU processing), must also be factored into any 

’; pipelining effectively parallelizes CPU 

and GPU code segments reducing the non-parallelized code 

). Thus, under circumstances where decrease is 

(1 )P>> − , Amdahl’s Law then 

1 N
A N

P P

N

≅ = ≅

 

               (4) 

based desktop supercomputing model is cluster 

1), that characteristic acceleration values 

/ /Cluster Node CL Thread GPU GPU
A N N N         (5) 

number of nodes per cluster,  

number of GPUs in the cluster .  

Total acceleration of the system with 
CL

N  clusters:  
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/( )Supercomputer Node Thread GPU GPU CLA N N N N≅       (6) 

3. The MCPFQN of the CPU/GPU Node 

Queueing networks [1] consisting of several service 

stations are more suitable for representing the structure of 

many systems with a large number of resources than models 

consisting of a single service station. In a queueing network 

(QN) at least two service stations are connected to each other. 

A station, i.e., a node, in the network represents a resource in 

the real system. Jobs in principle can be transferred between 

any two nodes of the network; in particular, a job can be 

directly returned to the node it has just left. The QN is called 

open when jobs can enter the network from outside and jobs 

can also leave the network. Jobs can arrive from outside the 

network at every node and depart from the network from any 

node. The QN is said to be closed when jobs can neither enter 

nor leave the network. The number of jobs in a closed network 

is constant. Jobs can be different in their service times and in 

their routing probabilities. Jobs with same service times and 

routing probabilities belong to one class. So QNs can be single 

class or multiclass networks (MCQN). It is also possible that a 

job changes its class when it moves from one node to another. 

If the QN contains both open and closed classes, then it is said 

to be the mixed network. Behaviours of many queueing 

system models can be described using Continuous –time 

Markov chains (CTMCs). The QNs that have an unambiguous 

solution of the local balance equations are called product-form 

queueing networks (PFQNs). The term product-form of open 

and closed queueing networks with exponentially distributed 

interarrival and service times. The queueing discipline at all 

stations was assumed to be FCFS. As the most important 

result for the queueing theory, it is shown that for these 

networks the solution for the steady-state probabilities can be 

expressed as a product of factors describing the state of each 

node. This solution is called product-form solution. For the 

performance analysis of CPU/GPU architectures, we can use 

MCPFQN with fixed number of jobs, which are threads.  

Figure 5 shows the 
21MC

p MCPFQN model of the 

CPU/GPU architecture in figure 3. 2 CPUs are 2-core 

multithreading: CPU 1 server node (include private L1 and L2 

caches) with: CPU core 11 and CPU core 21, CPU 2 server 

node: CPU core 21 and CPU core 22; every threads are 

modeled by thread processor with service rate 
T

µ . CPUint 

node with service rate 
int

µ is the CPU interconnect (e.g. Intel 

QPI or AMD HyperTransport bus). 2 GPUs (GPU 1 and GPU 

2 nodes include caches, have local thread processors with 

service rate 
TP

µ  ) are installed on the PCIe 2.0 x 16 slots 

(node CPU-GPU int with service rate 
PCi

µ ) of CPU 

mainboard. The Memory bus (via MCH chip of the chipset) is 

the node Memory bus with service rate 
MB

µ . Memory 

modules are nodes System Memory with service rate
M

µ . 

Every GPU connect to the local Device Memory modules 

(with service rate 
DM

µ ) via interconnect bus (nodes 

GPU1-Device Memory, GPU2-Device Memory) with service 

rate 
GM

µ .  

The connection between System memory and Device 

Memories may be PCIe 2.0 x16 or Infiniband (node DM-SM 

int with service rate 
MG

µ ). Nodes CPU and GPU are type 

M/G/m-PS with service disciplines: FCFS, all other nodes are 

type M/M/m – FCFS.  

 

Figure 5. Closed queue network of 2CPU/2GPU desktop supercomputer 

model in figure 3. 

Assume that: GPUs and CPUs (include private L1 and L2 

caches) work in 2GHz have average service time for every 

tread is 0.5ns ( 0.5 )
T TP

nsµ µ= = . From every CPU there are 

4 routing directions with probabilities (their sum = 1): core 

loopback 
11 21 12 22

( , , , )
c c c c

p p p p , to other core in one CPU 

11 21 12 22
( , ),

c c c c
p p  to other CPU 
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Figure 6. MCPFQN of the CPU-2-core-4-thread/2GPU-448-core desktop architecture. 11int 21int 12int 22int( , , , )c c c cp p p p and to System memory 

( 11 21 12 22, , ,c M c M c M c Mp p p p  ). 

From every GPU there are 2 routing flows: GPU loopback 

1 2
( , )

G G
p p and to Device memories 

1 2
( , )

G DM G DM
p p . 

From CPUs to GPUs (via node CPU-GPU int) there are 2 

flows: to GPU1 
1

( )
CG

p , to GPU2 
2

( )
CG

p . 

From GPU Device memories there are 2 routing flows: 

loopback to GPU 
1 2

( , )
DM DM

p p  to bus connect (node 

DM-SM int) to System memory 
1 2

( , )
DM PCIe DM PCIe

p p . 

From node DM-SM int there are 2 routing flows: to System 

memory ( )
DMSM

p , to Device memory ( )
SMDM

p . 

From System memory there are 2 routing flows: to CPU 

cores 
11 12 21 22

( , , , )
MC Mc MC MC

p p p p . 

For QN, most important performance measures are:  

� Marginal probabilities ( )
i

kπ for closed queueing 

networks, that ith node in the state 
i

S k=  , is : 

1
&

1
( ) ( ,..., )

N

j

j
S ki

i N

S K

k k kπ π

=
=

=

=
∑

∑           (7) 

� Utilization 
ir

ρ of the ith node with respect to jobs of the 

rth class is: 

1
0

1
( ) min( , ),

r

R
ir

ir i i i i ir

all states k ri i
with k

k
k m k k k

m k
ρ π

=
>

= =∑ ∑   (8) 

And if the service rates are independent on the load:  

ir

ir

i ir
m

λρ
µ

= .                 (9) 

Throughput 
ir

λ  is the rate at which jobs of the rth class are 

services and leave the ith node:  

0

( ) ( )

r

ir

ir i i i

all states k i
with k

k
k k

k
λ π µ

>

= ∑        (10) 

Or if the service rates are independent on the load: 

. .
ir i ir ir

mλ ρ µ= . 

� System throughput 
r

λ of jobs of the rth class:  

ir

r

ir
e

λλ =                     (11) 

Mean number of Jobs (or customer number) irK of the rth 

class at the ith node is: 

0

. ( )

r

ir r i

all states k
with k

K k kπ
>

= ∑             (12) 

Little’s theorem can also be used here: .ir irirK Tλ=  

Mean Response Time irT  of the jobs of the rth class at the 

ith can also be determined using Little’s theorem: 

ir
ir

ir

K
T

λ
=                (13) 

• Mean Waiting Time irW : if the service rates are 

load-independent, then the mean waiting time is given: 

1
irir

ir

W T
µ

= −            (14) 

For analysis, performance parameters are: Number of 

customers, Response Time, Utilization, Throughput, and 

System Throughput in relation with service times at 

interconnect networks (e.g. PCIe 2.0 x16) between CPU and 

GPU (node CPU-GPU int), and between System memory and 

Device memories (node DM-SM int). The analysis is made for 

architectures: 2-core/4-threading CPU, 2 GPUs with 448 

thread cores in each, number of jobs: 448, and exponential 

distribution service time, ( ) tf t e λλ −=  of interconnects 

(CPU-GPU int) and DM-SM int in figure 6) for three cases: i) 
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mean: 0.25, 4λ = ; ii) mean: 1, 1λ = ; iii) mean: 4, 

0.25λ = . Results of Performance parameters are given in 

figures 7. For the performane analysis, I take only response 

times and system throughput of three cases.  

 

Figure 7(a). System Response Time T (seconds): mean: 4167.3293, 

min:4047.4249, max:4287.2338 in case i) Secvice Time distribution of 

CPU-CPU int=DM-SM int: mean:0.25. 4λ = . 

 

Figure 7(b). System Throughput (jobs/sec): mean: 0.2143, min:0.2108, 

max:0.2178 in case i) Secvice Time distribution of CPU-CPU int=DM-SM int: 

mean:0.25. 4λ = . 

 

Figure 7(c). System Response Time T (seconds): mean: 7188.6417, 

min:7073.0428, max:7304.2406 in case i) Secvice Time distribution of 

CPU-CPU int=DM-SM int: mean:1. 1λ = . 

 

Figure 7(d). System Throughput (jobs/sec): mean: 0.1244, min:0.1223, 

max:0.1265 in case i) Secvice Time distribution of CPU-CPU int=DM-SM int: 

mean:1, 1λ = . 

 

Figure 7(e). System Response Time: mean: 2.853E4, min:2.807E4, 

max:2.900E4 in case iii) Secvice Time CPU-CPU int=DM-SM int: mean:4, 

0.25λ =  

 

Figure 7(f). System Throughput: mean: 0.0313, min:0.0307, max:0.0320 in 

case iii) Secvice Time distribution of CPU-CPU int=DM-SM int: mean:4, 

0.25λ =  
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Table 1. Avarage service times of queue nodes. 

 Class 1 Class 2 Class 3 Class 4 Class 5 

CPU core 1 1.0 0.5 0.25 0.15 0.1 

CPU core 2 1.0 0.5 0.25 0.15 0.1 

GPU 1 1.0 0.5 0.25 0.15 0.1 

GPU 2 1.0 0.5 0.25 0.15 0.1 

CPU-GPU int 4.0 2.0 1.0 0.5 0.25 

GPU1-DevMem 2.0 1.0 0.5 0.25 0.2 

GPU2-DevMem 2.0 1.0 0.5 0.25 0.2 

Device memory 1 40.0 35.0 30.0 25.0 20.0 

Device memory 2 40.0 35.0 30.0 25.0 20.0 

Memory bus 2.0 1.0 0.5 0.25 0.2 

System memory 40.0 35.0 30.0 25.0 20.0 

DM-SM int 4.0 2.0 1.0 0.5 0.25 

 

Figure 8. Average service times for the MVA algorithm. 

Table 2. Throughput of the CPU-GPU node. 

 Class 1 Class 2 Class 3 Class 4 Class 5 

CPU core 1 0.0012 0.0014 0.0016 0.0020 0.0025 

CPU core 2 0.0012 0.0014 0.0016 0.0020 0.0025 

GPU 1 0.0098 0.0112 0.0131 0.0158 0.0197 

GPU 2 0.0098 0.0112 0.0131 0.0158 0.0197 

CPU-GPU int 0.0020 0.0023 0.0026 0.0032 0.0039 

GPU1-DevMem 0.0049 0.0056 0.0066 0.0079 0.0098 

GPU2-DevMem 0.0049 0.0056 0.0066 0.0079 0.0098 

Device memory 1 0.0049 0.0056 0.0066 0.0079 0.0098 

Device memory 2 0.0049 0.0056 0.0066 0.0079 0.0098 

Memory bus 2.5E-4 2.8E-4 3.3E-4 4.0E-4 4.9E-4 

System memory 0.00227 0.0026 0.0030 0.0035 0.0044 

DM-SM int 0.00201 0.0023 0.0026 0.0032 0.0039 

Based on the MCPFQN in the figure 6, we can use Mean 

Analysis (MVA) algorithm [1] for calculating performance 

measures. For this case, I define CPU-GPU node: CPU core 1 

and CPU core 2 by 6-core, GPU 1 and GPU 2 with 512 cores. 

Average service times (ns) of all nodes and five classes are 

listed in table 1 and in figure 8. The throughput (jobs/s) of the 

CPU-GPU node with the initial setting 12 jobs (number of 

customers) in CPU core 1 and CPU core 2 nodes for all classes 

are listed in table 2 and in figure 9. 

 

Figure 9. Throughput of CPU-GPU node is taken by the MVA algorithm. 

4. Conclusion 

The performance rerults in figures 7 and figure 9 of 

MCPFQN model of the CPU-GPU node: system response 

times T (sec) and system throughput (jobs/s) show that: The 

changes of interconnect service times affect deeply system 

performance parameters: system response time and 

throughput that belong to service times of CPU-GPU 

interconnect and GPU device memory-CPU system memory 

interconnect, in fixed average service rates of all other nodes. 

Clearly, more service time of interconnects, more system 

response time and less system throughput. Using MCPFQN, 

we can evaluate system performance depend on any other 

node or complet CPU+GPU desktop supercomputers with 

many cluster and diffrent cluster-to-cluster interconnect 

network topologies and delays. 
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