

American Journal of Networks and Communications
2015; 4(3): 67-74

Published online June 8, 2015 (http://www.sciencepublishinggroup.com/j/ajnc)

doi: 10.11648/j.ajnc.20150403.18

ISSN: 2326-893X (Print); ISSN: 2326-8964 (Online)

Performance Analysis of CPU-GPU Cluster Architectures

Ho Khanh Lam

Faculty of Information Technology, Hung Yen University of Technology and Education, Hung Yen, Vietnam

Email address:
lamhokhanh@gmail.com

To cite this article:
Ho Khanh Lam. Performance Analysis of CPU-GPU Cluster Architectures. American Journal of Networks and Communications.

Vol. 4, No. 3, 2015, pp. 67-74. doi: 10.11648/j.ajnc.20150403.18

Abstract: High performance computing (HPC) encompasses advanced computation over parallel processing, enabling faster

execution of highly compute intensive tasks such as climate research, molecular modeling, physical simulations, cryptanalysis,

geophysical modeling, automotive and aerospace design, financial modeling, data mining and more. High performance

simulations require the most efficient compute platforms. The execution time of a given simulation depends upon many factors,

such as the number of CPU/GPU cores and their utilization factor and the interconnect performance, efficiency, and scalability.

CPU and GPU clusters are one of the most progressive branches in a field of parallel computing and data processing nowadays.

GPUs have become increasingly common in supercomputing, serving as accelerators or "co-processors" in every node

CPU-GPU to help CPUs get work done faster. In this paper I use the Multiclass Closed Product-Form Queueing Network

(MCPFQN) and Mean Value Analysis (MVA) to analyze effects of the CPU-GPU cluster interconnect on the performance of

computer systems.

Keywords: CPU-GPU Clusters, Performance, Multiclass Product Form Queueing Network

1. Introduction

Efficient high performance computing systems require high

bandwidth, low latency connections between thousands of

multiprocessor nodes, as well as high speed storage.

Parallel computing using accelerators has gained

widespread research attention in the past few years. In

particular, using GPUs (Graphics Processing Units) for

general purpose computing (GPGPU) has brought forth

several success stories with respect to time taken, cost, power,

and other metrics. . In the most recent list of the world's fastest

500 supercomputers, 53 systems used co-processors and 38 of

these used Nvidia chips. The second and sixth most powerful

supercomputers used Nvidia chips along side CPUs. Intel still

dominates, providing processors for 82.4 percent of Top 500

systems. As the price/performance of GPUs has improved, a

number of petaflop supercomputers such as Tianhe-I and

Nebulae have started to rely on them. However, other systems

such as the K computer continue to use conventional

processors such as SPARC-based designs and the overall

applicability of GPUs in general purpose high performance

computing applications has been the subject of debate, in that

while a GPU may be tuned to score well on specific

benchmarks its overall applicability to everyday algorithms

may be limited unless significant effort is spent to tune the

application towards it. China Tianhe-1A, an upgraded

supercomputer in 2010, was equipped with every node of

14,336 Xeon X5670 processors and 7,168 NVIDIA Tesla

M2050 GPGPUs. It has a theoretical peak performance of

4.701 petaflops. NVIDIA suggests that it would have taken

"50,000 CPUs and twice as much floor space to deliver the

same performance using CPUs alone." The current

heterogeneous system consumes 4.04 megawatts compared to

over 12 megawatts had it been built only with CPUs.

The overall most efficient GPU processing model

determined thus far is Single Instruction Multiple Data

(SIMD). The SIMD model has been leveraged to great

advantage in traditional vector processor/supercomputer

designs. As displayed in figure 1, the SIMD GPU is nominally

organized as an assembly of ‘N’ distinct multiprocessors

(
/MP TPC

N) in every thread processing cluster (TPC). Each

multiprocessor per TPC consists of ‘M’ cores - distinct thread

processors. (
/TP MP

M). There are some TPC in one GPU

(
/TPC GPU

N). Total number of thread processors (core) per

GPU is:

/ / / /Thread GPU TPC GPU MP TPC TP MP
N N N M= (1)

SIMD-Cores share an Instructiuon Unit with other cores in

a multiprocessor. Multiprocessors have local registers (splits

to local memory), local L1 cache, shared L2 cache, constant

cache, texture cache, and shared memory. Constant/texture

68 Ho Khanh Lam: Performance Analysis of CPU-GPU Cluster Architectures

cache are readonly and have faster access than shared memory.

Global/Device memory for GPU (shared for all

multiprocessors) is DRAM (DDR3 or DDR5). Threads are

organized into blocks, which are organized into a grid. A

multiprocessor executes one block at a time. A warp is the set

of threads executed in parallel. The number of thread per a

warp may be same as the number of thread processor cores.

Programming model of GPU is heterogeneous Computing,

where GPU and CPU execute different types of code. CPU

runs the main program, sending tasks to the GPU in the form

of kernel functions, and multiple kernel functions may be

declared and called, but only one kernel may be called at a

time. Nvidia developed Compute Unifed Device Architecture

(CUDA), a simple language for GPU computing allows a

programmer to use the C programming language to code

algorithms for executions on the GPU. Using CUDA or

OpenCL programming toolkits many real-world applications

can be easily implemented and run significantly faster than on

multi-processor or multi-core systems. The CUDA framework

allows to lower the CPU load and send the computations to the

GPU which by construction has a highly parallel architecture,

thus accelerating the processing of large amounts of data

arrays using an identical set instructions (called kernel) for

each element in one data array. In this way the processor is

only busy with supplying the data and the kernels to the GPU

and then collecting the results. Although the transfer between

CPU (host) and GPU (device) might appear as a bottleneck

due to the slow speed of the bridge bus. One could obtain very

good results if it exposes as much data parallelism as possible

in the algorithm and also takes care of mapping it to the

hardware as eficiently as possible in such a way that the

transfers are minimized.

Figure 1. GPU hardware.

2. Choice of the CPU-GPU Cluster

Typical cluster consists of homogenous Central Processing

Units (CPUs). A new model for parallel computing based on

using CPUs and GPUs together to perform a general purpose

scientific and engineering computing was developed in the

last years, and used to solve complex scientific and

engineering problems. Craving for more computational power

led to the idea of plunging the CUDA framework in a Message

Passing Interface (MPI) environment, thus arising the concept

of cluser of GPUs. Inside the cluster each node of the MPI

network would pass most of intensive parallel tasks to the

GPU, off-loading the CPU which is free to handle the network

communication between nodes. A cluster is a computer

system comprising two or more computers (“nodes”)

connected with a high-speed network. Cluster computers can

achieve higher availability, reliability, and scalability than is

possible with an individual computer. There are three

principal components used in a GPU cluster: host nodes,

GPUs, and interconnect.

Figure 2. CPU/GPU interconnect.

Figure 3. 2CPU/2GPU interconnect.

Since the expectation is for the GPUs to carry out a

substantial portion of the calculations, host memory, PCIe bus,

 American Journal of Networks and Communications 2015;

and network interconnect performance characteristics need to

be matched with the GPU performance in order to maintain a

well-balanced system. In particular, high-end GPUs, such as

the NVIDIA Tesla, require full-bandwidth PCIe Gen 2 x16

slots that do not degrade to x8 speeds when multiple GPUs are

used. Also, InfiniBand QDR interconnect is highly desirable

to match the GPU-to-host bandwidth. Host memory also

needs to at least match the amount of memory on the GPUs in

order to enable their full utilization, and a one

CPU cores to GPUs may be desirable from the software

development perspective as it greatly simplifies the

development of MPI-based applications.

The figures 2 and 3 show typical CPU/GPU interconnect

with 1 and 2 CPUs and 2GPU. The figure 4 shows a

CPU/GPU desktop supercomputer organized in clusters.

The System interconnect (cluster interconnect) is

1GbE/10GbE Ethernet or InfiniBand switch. Every node in a

cluster consist of one/or two multicore-multithreading CPU

chips on two sockets with high speed CPU interconnect, e.g.

used Intel QuickPath Interconnect – QPI with a clock rate of

3.2 GHz yields a data rate of 25.6 GB/s = (3.2 GHz x 2 bits/Hz

(double data rate) x 20 (QPI link width) x (64/80) (data bits/flit

bits) x 2 (unidirectional send and receive operating

simultaneously))/8 (bits/byte), or AMD HyperTransport bus

with a clock rate 3.2 GHz yields a data rate of 25.6 GB/s = (3.2

GHz x 2 bits/Hz (double data rate) x 32 bits/s))/8 bits/byte;

two/or three multiprocessor-multithreading GPU installed on

PCI Express 2 x16 slots (for all sorts of graphics cards, can

access a total bandwidth of 8 GB/s). The Cluster Interconnect

is QDR (40 Gbps) InfiniBand connectivity on each node in

one cluster. An Infiniband link is a serial link operat

of five data rates: single data rate (SDR) switch chips have a

latency of 200 ns (12X: 24 Gbit/s), double date rate (DDR)

switch chips have a latency of 140 ns (12X: 48 Gbit/s and

quad data rate (QDR) switch chips have a latency of 100

(12X: 96 Gbit/s), fourteen data rate (FDR

163.64 Gbit/s), and enhanced data rated (EDR) (12X: 300

Gbit/s). Larger systems with 12X links are typically used for

cluster and supercomputer interconnects and for inter

connections. For cluster interconnect, the InfiniBand uses a

switched fabric topology, as opposed to a hierarchical

switched network like traditional Ethernet

although emerging Ethernet fabric architectures propose many

benefits which could see Ethernet replace InfiniBand. Most of

the cluster interconnect topologies

2D-mesh/2D-Torus or 3D-Torus, butterfly (

Figure 4. CPU/GPU supercomputer organized in clusters

American Journal of Networks and Communications 2015; 4(3): 67-74

and network interconnect performance characteristics need to

be matched with the GPU performance in order to maintain a

end GPUs, such as

bandwidth PCIe Gen 2 x16

grade to x8 speeds when multiple GPUs are

used. Also, InfiniBand QDR interconnect is highly desirable

host bandwidth. Host memory also

needs to at least match the amount of memory on the GPUs in

nd a one-to-one ratio of

CPU cores to GPUs may be desirable from the software

development perspective as it greatly simplifies the

3 show typical CPU/GPU interconnect

figure 4 shows a

CPU/GPU desktop supercomputer organized in clusters.

The System interconnect (cluster interconnect) is

1GbE/10GbE Ethernet or InfiniBand switch. Every node in a

multithreading CPU

ets with high speed CPU interconnect, e.g.

QPI with a clock rate of

GHz yields a data rate of 25.6 GB/s = (3.2 GHz x 2 bits/Hz

(double data rate) x 20 (QPI link width) x (64/80) (data bits/flit

nal send and receive operating

or AMD HyperTransport bus

with a clock rate 3.2 GHz yields a data rate of 25.6 GB/s = (3.2

GHz x 2 bits/Hz (double data rate) x 32 bits/s))/8 bits/byte;

ng GPU installed on

PCI Express 2 x16 slots (for all sorts of graphics cards, can

access a total bandwidth of 8 GB/s). The Cluster Interconnect

connectivity on each node in

one cluster. An Infiniband link is a serial link operating at one

of five data rates: single data rate (SDR) switch chips have a

(12X: 24 Gbit/s), double date rate (DDR)

(12X: 48 Gbit/s and

quad data rate (QDR) switch chips have a latency of 100 ns

(12X: 96 Gbit/s), fourteen data rate (FDR-10, FDR) (12X:

163.64 Gbit/s), and enhanced data rated (EDR) (12X: 300

Gbit/s). Larger systems with 12X links are typically used for

interconnects and for inter-switch

connections. For cluster interconnect, the InfiniBand uses a

topology, as opposed to a hierarchical

Ethernet architectures,

although emerging Ethernet fabric architectures propose many

benefits which could see Ethernet replace InfiniBand. Most of

 are Fat-Tree,

(Clos) as well.

CPU/GPU supercomputer organized in clusters.

In this context, multiprocessor operation is defined modulo

an ensemble of threads scheduled (by hardware scheduler) and

managed as a single entity across thread processing clusters.

In this manner, shared-memory access, SIMD instruction

fetch and execution, and cache operation

synchronized. Memory is organized hierarchically

Device -> Shared where Global/Device memory transactions

are understood as mediated by high

(PCIe, HyperTransport, or QPI). A key subtlety associated

with the CPU/GPU processing architecture is GPU processing

is effectively non-blocking. Thus, CPU processing may

continue as soon as a work-unit has been written to the GPU

transaction buffer. Host (CPU) processing and GPU

processing may be overlapped as displayed

principle, GPU work unit assembly/disassembly and I/O at the

GPU transaction buffer may to large extent be hidden. In such

case, GPU performance will effectively dominate system

performance. As might be expected, optimal GPU processing

gain is achieved at an I/O constraint boundary whereby thread

processors never stall due to lack of data.

At an application level, the maximum achievable speedup is

governed by Amdahl’s Law;

thread parallelization will criticall

fraction of code than can be parallelized (

of parallelization (‘N’), and (3) any overhead associated with

parallelization. Thus, expected acceleration is modeled by:

(1) /
A

P P N
=

− +

A key consideration is the limiting case:

1 1
lim

(1) / 1N P P N P→∞

 
 − + − 

This indicates a theoretical maximum acceleration for the

complete application. However, CPU code pipelining, (i.e.

overlap with GPU processing), must also be factored into any

calculation for ‘P’; pipelining effectively parallelizes CPU

and GPU code segments reducing the non

fraction (1-P). Thus, under circumstances where decrease is

sufficient to claim (1)
P

N
>> −

becomes:

1
A N

P

N

≅ = ≅

CPU/GPU-based desktop supercomputing model is cluster

architecture (figure 1), that characteristic acceleration values

approaching a limit:

/ /Cluster Node CL Thread GPU GPU
A N N N≅

/Node CL
N - number of nodes per cluster,

NGPU - number of GPUs in the cluster .

Total acceleration of the system with

 69

processor operation is defined modulo

an ensemble of threads scheduled (by hardware scheduler) and

managed as a single entity across thread processing clusters.

memory access, SIMD instruction

fetch and execution, and cache operations are maximally

synchronized. Memory is organized hierarchically Global ->

where Global/Device memory transactions

are understood as mediated by high-speed bus transactions

(PCIe, HyperTransport, or QPI). A key subtlety associated

CPU/GPU processing architecture is GPU processing

. Thus, CPU processing may

unit has been written to the GPU

transaction buffer. Host (CPU) processing and GPU

processing may be overlapped as displayed in figure 1. In

principle, GPU work unit assembly/disassembly and I/O at the

GPU transaction buffer may to large extent be hidden. In such

case, GPU performance will effectively dominate system

performance. As might be expected, optimal GPU processing

n is achieved at an I/O constraint boundary whereby thread

processors never stall due to lack of data.

At an application level, the maximum achievable speedup is

 any acceleration (‘A’) due to

thread parallelization will critically depend upon: (1) the

fraction of code than can be parallelized (‘P’), (2) the degree

), and (3) any overhead associated with

parallelization. Thus, expected acceleration is modeled by:

1

(1) /P P N− +
 (2)

ideration is the limiting case:

1 1

(1) / 1P P N P

 
= − + − 

 (3)

This indicates a theoretical maximum acceleration for the

complete application. However, CPU code pipelining, (i.e.

overlap with GPU processing), must also be factored into any

’; pipelining effectively parallelizes CPU

and GPU code segments reducing the non-parallelized code

). Thus, under circumstances where decrease is

(1)P>> − , Amdahl’s Law then

1 N
A N

P P

N

≅ = ≅

 (4)

based desktop supercomputing model is cluster

1), that characteristic acceleration values

/ /Cluster Node CL Thread GPU GPU
A N N N (5)

number of nodes per cluster,

number of GPUs in the cluster .

Total acceleration of the system with
CL

N clusters:

70 Ho Khanh Lam: Performance Analysis of CPU-GPU Cluster Architectures

/()Supercomputer Node Thread GPU GPU CLA N N N N≅ (6)

3. The MCPFQN of the CPU/GPU Node

Queueing networks [1] consisting of several service

stations are more suitable for representing the structure of

many systems with a large number of resources than models

consisting of a single service station. In a queueing network

(QN) at least two service stations are connected to each other.

A station, i.e., a node, in the network represents a resource in

the real system. Jobs in principle can be transferred between

any two nodes of the network; in particular, a job can be

directly returned to the node it has just left. The QN is called

open when jobs can enter the network from outside and jobs

can also leave the network. Jobs can arrive from outside the

network at every node and depart from the network from any

node. The QN is said to be closed when jobs can neither enter

nor leave the network. The number of jobs in a closed network

is constant. Jobs can be different in their service times and in

their routing probabilities. Jobs with same service times and

routing probabilities belong to one class. So QNs can be single

class or multiclass networks (MCQN). It is also possible that a

job changes its class when it moves from one node to another.

If the QN contains both open and closed classes, then it is said

to be the mixed network. Behaviours of many queueing

system models can be described using Continuous –time

Markov chains (CTMCs). The QNs that have an unambiguous

solution of the local balance equations are called product-form

queueing networks (PFQNs). The term product-form of open

and closed queueing networks with exponentially distributed

interarrival and service times. The queueing discipline at all

stations was assumed to be FCFS. As the most important

result for the queueing theory, it is shown that for these

networks the solution for the steady-state probabilities can be

expressed as a product of factors describing the state of each

node. This solution is called product-form solution. For the

performance analysis of CPU/GPU architectures, we can use

MCPFQN with fixed number of jobs, which are threads.

Figure 5 shows the
21MC

p MCPFQN model of the

CPU/GPU architecture in figure 3. 2 CPUs are 2-core

multithreading: CPU 1 server node (include private L1 and L2

caches) with: CPU core 11 and CPU core 21, CPU 2 server

node: CPU core 21 and CPU core 22; every threads are

modeled by thread processor with service rate
T

µ . CPUint

node with service rate
int

µ is the CPU interconnect (e.g. Intel

QPI or AMD HyperTransport bus). 2 GPUs (GPU 1 and GPU

2 nodes include caches, have local thread processors with

service rate
TP

µ) are installed on the PCIe 2.0 x 16 slots

(node CPU-GPU int with service rate
PCi

µ) of CPU

mainboard. The Memory bus (via MCH chip of the chipset) is

the node Memory bus with service rate
MB

µ . Memory

modules are nodes System Memory with service rate
M

µ .

Every GPU connect to the local Device Memory modules

(with service rate
DM

µ) via interconnect bus (nodes

GPU1-Device Memory, GPU2-Device Memory) with service

rate
GM

µ .

The connection between System memory and Device

Memories may be PCIe 2.0 x16 or Infiniband (node DM-SM

int with service rate
MG

µ). Nodes CPU and GPU are type

M/G/m-PS with service disciplines: FCFS, all other nodes are

type M/M/m – FCFS.

Figure 5. Closed queue network of 2CPU/2GPU desktop supercomputer

model in figure 3.

Assume that: GPUs and CPUs (include private L1 and L2

caches) work in 2GHz have average service time for every

tread is 0.5ns (0.5)
T TP

nsµ µ= = . From every CPU there are

4 routing directions with probabilities (their sum = 1): core

loopback
11 21 12 22

(, , ,)
c c c c

p p p p , to other core in one CPU

11 21 12 22
(,),

c c c c
p p to other CPU

 American Journal of Networks and Communications 2015; 4(3): 67-74 71

Figure 6. MCPFQN of the CPU-2-core-4-thread/2GPU-448-core desktop architecture. 11int 21int 12int 22int(, , ,)c c c cp p p p and to System memory

(11 21 12 22, , ,c M c M c M c Mp p p p).

From every GPU there are 2 routing flows: GPU loopback

1 2
(,)

G G
p p and to Device memories

1 2
(,)

G DM G DM
p p .

From CPUs to GPUs (via node CPU-GPU int) there are 2

flows: to GPU1
1

()
CG

p , to GPU2
2

()
CG

p .

From GPU Device memories there are 2 routing flows:

loopback to GPU
1 2

(,)
DM DM

p p to bus connect (node

DM-SM int) to System memory
1 2

(,)
DM PCIe DM PCIe

p p .

From node DM-SM int there are 2 routing flows: to System

memory ()
DMSM

p , to Device memory ()
SMDM

p .

From System memory there are 2 routing flows: to CPU

cores
11 12 21 22

(, , ,)
MC Mc MC MC

p p p p .

For QN, most important performance measures are:

� Marginal probabilities ()
i

kπ for closed queueing

networks, that ith node in the state
i

S k= , is :

1
&

1
() (,...,)

N

j

j
S ki

i N

S K

k k kπ π

=
=

=

=
∑

∑ (7)

� Utilization
ir

ρ of the ith node with respect to jobs of the

rth class is:

1
0

1
() min(,),

r

R
ir

ir i i i i ir

all states k ri i
with k

k
k m k k k

m k
ρ π

=
>

= =∑ ∑ (8)

And if the service rates are independent on the load:

ir

ir

i ir
m

λρ
µ

= . (9)

Throughput
ir

λ is the rate at which jobs of the rth class are

services and leave the ith node:

0

() ()

r

ir

ir i i i

all states k i
with k

k
k k

k
λ π µ

>

= ∑ (10)

Or if the service rates are independent on the load:

. .
ir i ir ir

mλ ρ µ= .

� System throughput
r

λ of jobs of the rth class:

ir

r

ir
e

λλ = (11)

Mean number of Jobs (or customer number) irK of the rth

class at the ith node is:

0

. ()

r

ir r i

all states k
with k

K k kπ
>

= ∑ (12)

Little’s theorem can also be used here: .ir irirK Tλ=

Mean Response Time irT of the jobs of the rth class at the

ith can also be determined using Little’s theorem:

ir
ir

ir

K
T

λ
= (13)

• Mean Waiting Time irW : if the service rates are

load-independent, then the mean waiting time is given:

1
irir

ir

W T
µ

= − (14)

For analysis, performance parameters are: Number of

customers, Response Time, Utilization, Throughput, and

System Throughput in relation with service times at

interconnect networks (e.g. PCIe 2.0 x16) between CPU and

GPU (node CPU-GPU int), and between System memory and

Device memories (node DM-SM int). The analysis is made for

architectures: 2-core/4-threading CPU, 2 GPUs with 448

thread cores in each, number of jobs: 448, and exponential

distribution service time, () tf t e λλ −= of interconnects

(CPU-GPU int) and DM-SM int in figure 6) for three cases: i)

72 Ho Khanh Lam: Performance Analysis of CPU-GPU Cluster Architectures

mean: 0.25, 4λ = ; ii) mean: 1, 1λ = ; iii) mean: 4,

0.25λ = . Results of Performance parameters are given in

figures 7. For the performane analysis, I take only response

times and system throughput of three cases.

Figure 7(a). System Response Time T (seconds): mean: 4167.3293,

min:4047.4249, max:4287.2338 in case i) Secvice Time distribution of

CPU-CPU int=DM-SM int: mean:0.25. 4λ = .

Figure 7(b). System Throughput (jobs/sec): mean: 0.2143, min:0.2108,

max:0.2178 in case i) Secvice Time distribution of CPU-CPU int=DM-SM int:

mean:0.25. 4λ = .

Figure 7(c). System Response Time T (seconds): mean: 7188.6417,

min:7073.0428, max:7304.2406 in case i) Secvice Time distribution of

CPU-CPU int=DM-SM int: mean:1. 1λ = .

Figure 7(d). System Throughput (jobs/sec): mean: 0.1244, min:0.1223,

max:0.1265 in case i) Secvice Time distribution of CPU-CPU int=DM-SM int:

mean:1, 1λ = .

Figure 7(e). System Response Time: mean: 2.853E4, min:2.807E4,

max:2.900E4 in case iii) Secvice Time CPU-CPU int=DM-SM int: mean:4,

0.25λ =

Figure 7(f). System Throughput: mean: 0.0313, min:0.0307, max:0.0320 in

case iii) Secvice Time distribution of CPU-CPU int=DM-SM int: mean:4,

0.25λ =

 American Journal of Networks and Communications 2015; 4(3): 67-74 73

Table 1. Avarage service times of queue nodes.

 Class 1 Class 2 Class 3 Class 4 Class 5

CPU core 1 1.0 0.5 0.25 0.15 0.1

CPU core 2 1.0 0.5 0.25 0.15 0.1

GPU 1 1.0 0.5 0.25 0.15 0.1

GPU 2 1.0 0.5 0.25 0.15 0.1

CPU-GPU int 4.0 2.0 1.0 0.5 0.25

GPU1-DevMem 2.0 1.0 0.5 0.25 0.2

GPU2-DevMem 2.0 1.0 0.5 0.25 0.2

Device memory 1 40.0 35.0 30.0 25.0 20.0

Device memory 2 40.0 35.0 30.0 25.0 20.0

Memory bus 2.0 1.0 0.5 0.25 0.2

System memory 40.0 35.0 30.0 25.0 20.0

DM-SM int 4.0 2.0 1.0 0.5 0.25

Figure 8. Average service times for the MVA algorithm.

Table 2. Throughput of the CPU-GPU node.

 Class 1 Class 2 Class 3 Class 4 Class 5

CPU core 1 0.0012 0.0014 0.0016 0.0020 0.0025

CPU core 2 0.0012 0.0014 0.0016 0.0020 0.0025

GPU 1 0.0098 0.0112 0.0131 0.0158 0.0197

GPU 2 0.0098 0.0112 0.0131 0.0158 0.0197

CPU-GPU int 0.0020 0.0023 0.0026 0.0032 0.0039

GPU1-DevMem 0.0049 0.0056 0.0066 0.0079 0.0098

GPU2-DevMem 0.0049 0.0056 0.0066 0.0079 0.0098

Device memory 1 0.0049 0.0056 0.0066 0.0079 0.0098

Device memory 2 0.0049 0.0056 0.0066 0.0079 0.0098

Memory bus 2.5E-4 2.8E-4 3.3E-4 4.0E-4 4.9E-4

System memory 0.00227 0.0026 0.0030 0.0035 0.0044

DM-SM int 0.00201 0.0023 0.0026 0.0032 0.0039

Based on the MCPFQN in the figure 6, we can use Mean

Analysis (MVA) algorithm [1] for calculating performance

measures. For this case, I define CPU-GPU node: CPU core 1

and CPU core 2 by 6-core, GPU 1 and GPU 2 with 512 cores.

Average service times (ns) of all nodes and five classes are

listed in table 1 and in figure 8. The throughput (jobs/s) of the

CPU-GPU node with the initial setting 12 jobs (number of

customers) in CPU core 1 and CPU core 2 nodes for all classes

are listed in table 2 and in figure 9.

Figure 9. Throughput of CPU-GPU node is taken by the MVA algorithm.

4. Conclusion

The performance rerults in figures 7 and figure 9 of

MCPFQN model of the CPU-GPU node: system response

times T (sec) and system throughput (jobs/s) show that: The

changes of interconnect service times affect deeply system

performance parameters: system response time and

throughput that belong to service times of CPU-GPU

interconnect and GPU device memory-CPU system memory

interconnect, in fixed average service rates of all other nodes.

Clearly, more service time of interconnects, more system

response time and less system throughput. Using MCPFQN,

we can evaluate system performance depend on any other

node or complet CPU+GPU desktop supercomputers with

many cluster and diffrent cluster-to-cluster interconnect

network topologies and delays.

References

[1] Gunter Bolch, Stefan Greiner, Hermann de Meer, Kishor
S.Trivedi: Queueing Networks and Markov Chains; A John
Wiley & sons, Inc., Publication.

[2] Peng Wang, NVIDIA. Fundamental Optimizations in CUDA,
GPU technology conference.

[3] Bryan Schauer. “Multicore Processors-A Necessity”, 9/2008.

[4] John Mellor-Crummey, Department of Computer Science Rice
University: Caching for Chip Multiprocessor, 8/2009.

[5] Sarah Bird, …University of Texas at Austin, IBM Austin:
Performance Characterization of SPEC CPU Benchmarks on
Intel’s Core Microarchitecture based processor. 2006.

[6] R.Ubal, J.Sahuquillo,..:Multi2Sim. A Simulation Framework to
Evaluate Multicore-Multithreaded Processors, 2006.

[7] W.M.Zuberek. Performance eqivalence in the simulation of
Multiprocessor systems, 2002.

[8] Scott.T.Lentenegger, Mary K.Vernon. A mean-Value
performance Analysis of a New Multiprocessor Architecture,
12/1988.

[9] Angel Vassilev Nikolov, National University of Lesotho, 180,
Roma, May,2009. Model of a shared Memory Multiprocessor.

74 Ho Khanh Lam: Performance Analysis of CPU-GPU Cluster Architectures

[10] Susmit Biswas, Diana Franklin,,,2008. Multi-Execution.
Multicore Caching for Data- Similar Executions.

[11] Intel Multicore microprocessor technology.
http://www.Intel.ccom/.

[12] Rafael H. Saavedra-Barrera, David E.Culler. An analytical
solution for a markov chain modelling multithreaded
execution.

[13] Michael R.Marty, University of Wisconsin-madison, 2008.
Cache coherence techniques for multicore processors.

[14] Richard Mcdougall and James Laudon. Multi-core
microprocessors are here.

[15] Avinatan Hassidim, 16/09/2009. Cache replacement Policies
for Multicore processors.

