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Abstract: Using Rossby wave equations, the dispersion equation is developed. The wave normal diagram for Rossby waves 

on a beta plane is a circle in wave number (k, l) space whose center is displaced along the negative X axis, and whose radius 

is less than this displacement, which means that phase propagation is entirely westward. The phase velocity diagram is a circle 

whose center is displaced along the negative X axis, the group velocity diagram is an ellipse whose center is displaced 

westward and whose major and minor axes give the maximum all the directions group speeds as function of the frequency and 

parameter Q. 
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1. Introduction 

The wave type that is of most importance for large-scale 

meteorological processes is the Rossby wave, or planetary 

wave. In an inviscid barotropic fluid of constant depth (where 

the divergence of the horizontal velocity must vanish), the 

Rossby wave is an absolute vorticity-conserving motion that 

owes its existence to the variation of the Coriolis parameter 

with latitude, the so-called β-effect. More generally, in 

baroclinic atmosphere, the Rossby wave is a potential 

vorticity conserving motion that owes its existence to the 

isentropic gradient of potential vorticity [1]. Rossby waves 

play a central role in geophysical fluid dynamics and 

dynamical meteorology, particularly in the dynamics of 

quasi-geostrophic flow [2]. Their reflection properties at 

coast lines help to explain certain features of western 

boundary currents [3]. The anisotropic and dispersive 

propagation properties of Rossby waves (in particular the 

“backward” property in which phase and group velocities are 

opposite in the N-S direction) have been invoked, together 

with equatorial heating, to explain dipole-like formation of 

equatorial easterly jets accompanied, at higher latitudes, by 

westerly jets [4]. In addition, an inverse turbulent cascade 

together with Rossby waves can lead to the formation of 

zonal flows [2]. These ideas have been further developed 

recently [5] in models of an eddy-driven jet. Rossby wave 

propagation can be understood in a qualitative fashion by 

considering a closed chain of fluid parcels initially aligned 

along a circle of latitude [1]. 

The major type of planetary scale waves can be classified 

into several cases, based on energy source or horizontal and 

vertical structure. Based on energy source, of planetary scale 

waves can be divided into free and forced modes. The free 

modes are the normal oscillations in the atmosphere. They 

can be excited by small random forcing and are limited in 

amplitude by dissipation. The free planetary (rossby) modes 

are global extent and with periods of about 2, 5, 10 and 16 

days [6, 7]. The forced Rossby modes can be excited by flow 

over topography or by land-sea heating contrasts. Based on 

horizontal structure classification, planetary waves can be 

divided into two, global modes and equatorial modes. The 

global modes are the planetary waves can propagate both 

meridionally and zonally. Rossby waves are the most 

important global modes. The equatorial modes are trapped in 

the equatorial wave-guide and propagate zonally along the 

equator. Kelvin and Rossby-gravity waves are the most 
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important equatorial modes. In addition to the above two 

classification, planetary waves can be divided into external 

and internal modes from their vertical structure. External 

modes are vertically trapped modes and the energy density of 

such modes decays exponentially in the vertical. Internal 

modes are vertically propagating (phase surfaces tilt with 

height) modes and they can transfer momentum and energy 

vertically over many scale heights. The forced Rossby waves, 

Kelvin waves, Rossby-gravity waves and Gravity waves can 

propagate vertically and transfer energy and momentum 

between the lower and upper atmosphere under suitable 

background conditions [8]. 

Rossby waves play a vital role in the dynamics of the 

middle atmosphere. They primarily responsible for the 

asymmetries in the polar vortex, sudden warming in the 

stratosphere, forcing of the Quasi-biennial Oscillation 

(OBO), Semi-Annual Oscillation (SAO). Meridionally 

propagating Rossby waves carry angular momentum between 

the tropics and middle latitudes. Planetary waves can reach 

large amplitudes if they propagate upwards to the MLT 

region. Vertical propagation is determined by wave/mean 

flow interactions [9]. Most traveling waves are westward 

propagating, and so they can propagate through the eastward 

winds of the winter stratosphere, but not the westward winds 

of the summer stratosphere. The continental configuration 

and topography of the northern hemisphere produces more 

planetary wave activity than in the southern hemisphere. This 

planetary wave activity acts to cause sudden stratospheric 

warming and break down the polar vortex at the end of 

winter in the northern hemisphere. In contrast, the southern 

polar vortex is more stable and there has only been one major 

sudden stratospheric warming in the southern hemisphere, 

which occurred in 2002. [7] 

2. The −ββββ Plane 

We saw in the derivation of the barotropic vorticity 

equation the potential importance of the fact that the Coriolis 

parameter varies with latitude, a consequence of spherical 

geometry. However, dealing with spherical geometry is (a 

little) more complicated than with planar geometry, so it is 

common to represent a strip of the sphere-limited in latitude 

but going all the way around the world in longitude-as a 

plane, as in Figure 1. 

 
Figure 1. Shows the β − plane. 

Let us consider a strip centered on longitude 0ϕ , and 

define a y coordinate 0( )y a ϕ ϕ= − , and an x coordinate 

x aλ= , where λ  Is longitude. Since ( ) 2 sinf f ϕ ϕ= = Ω , 

in the ( , )x y system it becomes ( )f f y= . Assuming that the 

width of the strip is small enough, we can approximate ( )f ϕ
as Taylor series about the central latitude: 

0 0 0( ) ( ) ( )( )( ) ...
df

f f
d

ϕ ϕ ϕ ϕ ϕ
ϕ

≈ + − +  

Where 0 0 , 0 0( ) 2 sin . 2 cosf df dϕ ϕ ϕ ϕ= Ω = Ω . Substituting 

for y , we get 

0( )f y f yβ= +  

Where 0 02 sinf ϕ= Ω and 0

2
cos

a
β ϕΩ= . For a latitude 

of 
11 1 1

, 1.617 10
4

m s
π β − − −= × . the sign of f changes from 

north to south hemisphere, β Is always positive (since f

always increase northward)[1]. 

Figure 2 shows Rossby waves in the atmosphere. 

 
Figure 2. Shows Rossby waves in the atmosphere at 500 mb pressure. 

3. Purpose of Study 

Study of relationship between the phase velocity and the 

group velocity of Rossby waves in the atmosphere. 

4. Results and Discussion 

4.1. The Dispersion Equation 

To get the dispersion equation for Rossby waves lets 

depend on the quasi-geostrophic equations: 

0 0g g a gD u f v yvβ− − =                           (1) 

0 0g g a gD v f u yuβ+ + =                             (2) 
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0a a au v w

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
                              (3) 

2

0

( ) 0g a

g
D N wβ

ρ
ρ

′
− + =                               (4) 

g g gD u v
t x y

∂ ∂ ∂= + +
∂ ∂ ∂

 

Where: 

Where , ,a g a g au u u v v v w w= − = − = are the difference 

between the true velocity and the geostrophic flow, 
2

Nβ  is the 

square of the buoyancy frequency, 0ρ is reference value of 

the background density, ρ ′ is perturbation in density, g is 

acceleration gravity, 0f is Coriolis parameter. 

Where 0 02 sinf ϕ= Ω  

Geostrophic balance can be expressed by: 

gu u
y

ψ∂≈ = −
∂

 ، gv v
x

ψ∂≈ =
∂

 

Where 
0 0

p

f
ψ

ρ
′

=  is the geostrophic stream function, p′  is 

the perturbation in pressure. 

Hydrostatic balance can be written as: 

0 0f

g z

ρ ψρ ∂′ = −
∂

                               (5) 

Take x

∂
∂

(1), 
y

∂
∂  (2) to obtain: 

0 0g g a gD u f v yv
y

β∂
 − − = ∂

                       (6) 

0 0g g a gD v f u yu
x

β∂
 + + = ∂

                     (7) 

Subtraction (7) from (6) and using the mass-continuity 

equation (3) to obtain: 

0
a

g

w
D f

z
ζ ∂

=
∂

 

2 2
0 0 2 2

g gu v
f y f y

y x x y

ψ ψζ β β
∂ ∂ ∂ ∂

= + − + = + + +
∂ ∂ ∂ ∂

 (8) 

is the Z component of the absolute vorticity associated with 

the geostrophic flow. Using equations (4) and(5) the vertical 

velocity can be expressed as: 

2
0

0

2

( )

( )

a g

a g

g
w D

N

f
w D

zN

β

β

ρ
ρ

ψ

′
=

∂= −
∂

                              (9) 

Substitution of this expression into the vorticity equation 

(8) and further careful manipulation lead finally to the quasi-

geostrophic potential vorticity equation: 

2
0

2

2
02 2

0 2 2 2

0

( )

( )

gD q

f
q

z zN

f
q f y

z zx y N

β

β

ψζ

ψ ψ ψβ

=

∂ ∂= +
∂ ∂

∂ ∂ ∂ ∂= + + + +
∂ ∂∂ ∂

      (10) 

Let us consider small-amplitude disturbances to a uniform 

zonal background flow ( , 0,0)u , where u  is a constant; by 

this uniform flow corresponds to a geostrophic stream 

function uyψ = − . For the total flow (the background plus a 

small disturbance): 

uyψ ψ ′= − +                                       (11) 

Substitute into the equation (10) and neglect terms that are 

quadratic in ψ ′ . The quasi-geostrophic potential vorticity 

equation for this flow is: 

0q f yβ ψ ′= + + Γ                             (12) 

Where Γ  is the elliptic operator. 

2
02 2

2 2 2
( )

f

z zx y Nβ

∂ ∂ ∂ ∂Γ = + +
∂ ∂∂ ∂

 

In addition, the quasi-geostrophic potential vorticity 

equation linearizes to: 

( ) 0u
t x x

ψψ β
′∂ ∂ ∂′+ Γ + =

∂ ∂ ∂
                   (13) 

Let us take
2

Nβ  to be constant and look for plane-wave 

solutions to this equation by substituting: 

[ ]ˆRe exp ( )i kx ly mz tψ ψ ω′ = + + −  

Where ψ̂  is a complex amplitude, , ,k l m  are 

wavenumbers on X, Y, Z. We obtain the dispersion relation 

for Rossby waves: 

2 2
2 2 0

2

k
ku

f m
k l

Nβ

βω = −
+ +                           (14) 

When 0u = , the dispersion relation for Rossby waves [10]: 
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2 2
2 2 0

2

k

f m
k l

Nβ

βω = −
+ +                             (15) 

Or 

2 22
2 2 0

2 2
( )

2 4

f m
l k

Nβ

β β
ω ω

+ + = −                    (16) 

The latter wave normal form is a circle centred at 

( ,0)
2

β
ω

− and radius given by
2 22

0

2 2
4

f m

Nβ

β
ω

− . 

4.2. The Phase Velocity 

The phase velocity pv
K

ω=  can be written: 

2 2
2 2 4

( ) (1 )
2 4

py px

Q Q
v v

Q

ω+ + = −                 (17) 

Where 

2

2 2
0

N
Q

f m

β= , 
ωω
β

= and
p

p

v
v

β
=  

The phase velocity diagram is a circle of radius 

24
(1 )

2

Q

Q

ω− whose origin is displaced westward by
2

Q−  

units and therefore lies entirely in the regime of Westward 

propagation. It represented in Figure 3. The smallest value of 

the westward 0pyv = : 

2

min

4
( ) 1

2 2
px

Q Q
v

Q

ω−= + −                       (18) 

Which approaches 2
min( )pxv ω→ −  when Q → ∞  

 

Figure 3. Shows the phase velocity when 4 , 0.6Q ω= = .
.
 

4.3. The Group Velocity 

The group velocity gv
K

ω∂=
∂

 can be written 

2 2
2 2 0

2

2 2
2 2 20

2

( ( ))

( )

gx

f m
k l

N
v

f m
k l

N

β

β

β − +

=
+ +

                          (19) 

2 2
2 2 20

2

2

( )

gy

kl
v

f m
k l

Nβ

β=
+ +                         (20) 

by eliminating the denominator from equations (19) and (20) 

using the dispersion equation, so that in normalized form, 

equations (19) and (20) become 

2 1
(2 )gxv

k
ω

ω
= +                                 (21) 

22 ( )gy

l
v

k
ω=                               (22) 

It is now straightforward to eliminate k  in favour of gxv  

from equation (21), which on substitution into the square of 

equation (22) gives directly the group velocity curve in the 

form 

2
2 4 2

2 2
4 (1 ) ( 2)

gx gx

gy

v v
v

Q

ωω
ω ω

 
= − − − 

  
      (23) 

This equation can be written 

22 2 2 2

2

4 4
(1 ) (1 )

2 44

gy

gx

Qv Q Q
v

Q Q

ω ω
ω

 
+ + − = − 
  

     (24) 

The southward group velocity is simply a reflection of the 

northward group velocity in the x-axis. Equation (24) can be 

written 

22 2
2

2

4
(1 ) / 1

2

gy

gx

v Q
v b

Qd

ω 
+ + − = 
  

         (25) 

Where 
2 2 2

2 2 24 4
(1 ) , (1 )

4

Q
b d Q

Q Q

ω ωω= − = −  

Equation (25) can be written in the polar form 

1 cos
g

p
v

e χ
=

+
                                    (26) 

Where 
2 2 2 2

2 1/2 1/2

2

4 4
2 (1 ) , 1 (1 )

d d
p e

b Q Qb

ω ωω= = − = − = −  
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The shift along the negative xv  axis 

2

2

4
(1 )

2 1

Q ep

Q e

ω− =
−

                          (27) 

In terms of 
2ω  and Q , the ellipse (26) may be written 

1/2
2

2 4
2 / 1 cosgv

Q

ωω χ
−  

 = − +     

             (28) 

The group velocity diagram is a ellipse whose origin is 

displaced westward by
24

(1 )
2

Q

Q

ω− −  units along gxv . It 

represented in Figure 4. 

 

Figure 4. Shows The group velocity when 4 , 0.6= =Q ω . 

The maximum eastward and westward group speeds are 

given by 

2 2
1/2 1/24 4

(1 ) 1 (1 )
2

gx

Q
v

Q Q

ω ω±  
= − ± − − 

  
        (29) 

and the maximum northward (southward) group speed also 

follows as 

2
1/2 1/24

(1 )gyv m
m

ωω= ± −                (30) 

Examples of the behavior of external group velocities are 

shown in Figure 5. 

 

Figure 5. Shows the maximum northward and eastward group Speeds as a 

function of frequency for the case 4Q = . 

The ellipse collapses to the origin as 24Q ω→  at which 

the wave normal collapses to the point
1

2
k

ω
= − . In the 

limiting case in which 1Q >> , which can prevail quite near 

the equator, Equation (23) tends to the parabola [11]. 

2

2
2 (1 )

gx

gy

v
v ω

ω
= ± −                            (31) 

Which represented in Figure 6. 

 

Figure 6. Shows the group velocity (a parabola) and phase velocity (a line) 

Diagrams for the case → ∞Q . 

It is of some interest to emphasize that Rossby waves are 

backward in the sense that the latitudinal components of their 

phase and group velocities are always in opposite directions. 

This property 

can be invoked to describe the formation of a dipole pair 

of jets in the following way: Northward (away from the 

equator) wave energy flux is associated with southward, 

towards the equator, wave momentum flux; and the opposite 

in the case of southward directed energy flux, away from the 

equator, corresponds to northward (towards the equator) 

momentum flux. In other words, a pole ward energy flux 

from the equator is associated with an equator ward flux of 

momentum. Hence, Rossby wave dynamics implies that 

localized equatorial heating gives rise to equatorial easterly 

zonal jets. This “convergence” of equatorial momentum 

implies a deficit at higher latitudes such that a westerly jet 

must necessarily form there [12]. 

5. Conclusion 

the phase speed is negative, so the phase of rossby waves 

always propagates westward. Since ω  is a nonlinear 

function of k , Rossby waves are dispersive. The magnitude 

of the group velocity is, typically, greater for the westward 

propagating long waves than for the eastward propagating 

short waves. The latitudinal components for Rossby waves of 

their phase and group velocities are always in opposite 

direction. 
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