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Abstract: The analytical expressions, allowing analyzing the laws of increase and decrease of the second harmonic at 

excitation of the finite amplitude wave in the air-horn, are obtained. The distance, where the second harmonic propagating 

along the air-horn reaches its maximum, is determined. Comparative analysis for air-horns of different shapes is performed. All 

calculations were made for the horn, whose length is 10 meters and the diameter of the outlet section 4 meters. The resonant 

frequency of the acoustic signal in such a mouthpiece is 20 Hz. 
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1. Introduction 

As a result of the sizeable increase of a loudspeaker’s 

power there occurs the displacement of a membrane set in the 

trans-horn chamber. In this case the wave known in acoustics 

as a wave of finite amplitude is realized in the system [1-3]. 

Horns are considered in the following sources [4-6]. 

It propagates along the horn and the nonlinear acoustical 

effects have become significant at some distance from the 

horn throat. This appears in transferring of the energy part 

of a fundamental tone wave to the higher order harmonics 

[7, 8], the largest share of energy falling on the second 

harmonic. It is necessary to realize damping the second 

harmonic to guarantee effective emission on a major tone 

frequency. 

Some methods of oscillations damping are known, which 

are applied in the technical systems with the conduits. The 

necessary effect is reached, for example, by installing a 

screen filter in the conduits and by lining a wall with a 

sound-absorbing material. But usually this task is solved 

without taking the nonlinear effects into consideration. In 

addition, the methods of oscillations damping in the conduits 

of a variable cross-section and in the horns, which would 

take account of their specific shape and exponent of 

extension, are insufficiently studied. 

This work is aimed at studying changes of acoustic 

pressure amplitude of the second harmonic in the horn at 

excitation in horn throat of the finite amplitude wave as well 

as a determination of the coordinate of the horn’s axial 

section at which the amplitude reaches its maximum value. 

2. Conditions of Nonlinear Effects’ 

Development During Realization of a 

Plane Wave of Finite Amplitude 

The intensive sound waves differ from low-amplitude 

disturbances described in linear acoustic approximation [1-3] 

considerably. During the intensive wave propagation a 

gradual change of a waveform occurs as a result of the 

difference in motion speeds of its profile’s different sections. 

Points referring to a bigger compression move faster, and as a 

result the steepness of compression fronts increases. 

Evolution of waveform can be rated as changing its spectral 

composition: the increase of the edges’ steepness 
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corresponds to high-frequency harmonics rising. A 

dissipation of wave energy and dispersion of its propagation 

speed opposes to the process of nonlinear increase of edges’ 

steepness. An influence of dissipative effects – the viscosity 

and the thermal conduction – leads to wave profile 

smoothing, to decreasing velocity gradient and temperature 

gradient, to a faster damping of high-frequency components 

of waves spectrum. An influence of sound dispersion leads to 

the blurring of fronts’ steepness as a result of the various 

harmonics “recession”, which moves at different speeds. 

Therefore the propagation of intense acoustic excitation is 

defined by the competition of nonlinearity, dissipation and 

dispersion. 

The comparative role of these factors is found out by 

means of searching the Korteweg-de Vries-Burgers equation 

[1-3]. 

The analysis of its solution for the case of a plane wave, 

propagating in the unlimited space, shows, that the 

nonlinearity generates the second harmonic. In case of 

absence of the dispersion the amplitude of second harmonic 

grows at first – reaching the peak at the distance Xmax of 

Xmax = ln2 / (2δω
2
) 

(here, δ is dissipation factor, ω is circular frequency) - and 

then it damps exponentially. 

3. The Nonlinear Oscillations in Horns at 

Propagation of the Wave of Finite 

Amplitude 

Often the occurrence of the nonlinear effects in system of 

sound transmission is concerned with the embodiment of a 

loudspeaker. For removing them, the special technical 

measures are taken in the mechanical part of a membrane 

suspension. Nonlinear distortions are also decreased by 

governing the irregularity of induction distribution in a gap 

[10]. Nonlinear distortions, connected with the magnetic field 

nonuniformity in a magnetic circuit’s gap and violation of 

Hooke law, are not so substantial. Factors, related to 

nonlinear effects in a horn and in the chamber ahead of a 

horn [7], are more substantial. 

At the same time, although the membrane executes a 

simple harmonic vibration, the wave’s propagation does not 

already go by the sine law, and there are both fundamental 

harmonic and the harmonics of higher orders [8] in it. In the 

well-known loudspeakers constructions, the elements 

decreasing or removing the nonlinear effects in a horn 

completely were not provided. This decreased the efficiency 

of fundamental tone’s sound generation. 

In the systems of sound transmission and in the 

broadcasting systems the horns of different shapes are used 

extensively, in that way the active component of acoustic 

power is increased significantly [7-10]. 

The exact shape of a horn determinates the law of change 

of cross-sectional area. The longitudinal sections of the most 

often occurring horns are depicted in Figure 1. 

 

Figure 1. The shapes of horns: 1: the conical shape; 2: the exponential 

shape; 3: the catenoid shape; x0, y0 are coordinates of the initial cross-

section of a horn throat; a is apex angle. 

3.1. The Exponential Horn 

The sectional area of an exponential horn is measured by 

such a law 

Sx = S0e
βx

, 

where So is the sectional area of a horn throat, β is the index 

of extension per one meter. 

The sound pressure in each harmonics propagating along 

the axis of the horn is described by equation, binding the 

value of sound pressure (p) in any point (x) along the 

longitudinal axis OX of the horn, the peak value of sound 

power in the horn throat (pm) and the exponent of the horn 

extension (β). 

To the horn exponential form 

� = 	��exp	(−0,5
�)                             (1) 

To the first and second harmonics the equation (1) is 

written in the form of 

�� = ���exp	(−0,5
�)                            (2) 

Let us consider the process of changing of the sound 

pressure amplitude in the second harmonic p2Σ along the axis 

of the horn not only at the expense of axial section changing, 

but also at the expense of nonlinear effects’ appearing. 

The theory of wave of finite amplitude lets us know that as 

range of the wave the amplitude of second harmonic is 

changed by the law 

�� = � ∙ ��� ∙ �, � = �
� ∙

���
�∙�� ∙

�
��. 

C is parameter, γ is specific gravity of air, po is air 

pressure, ω is circular frequency, co is speed of sound in a 

medium. 

In accordance with technique, suggested by V. V. Furdujev 

in his work [6] we can define p2Σ as: 

��� = 2� ∙ ����

 [exp(−0,5
�) − exp	(
�)] 
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The rate of change of the second harmonic amplitude is 

solved by the equation 

 !"
 # +

%
� ∙ �� = � ∙ ���� exp	(−
�).                  (4) 

The equation (4) is solved in the work [8] concerning p2, 

and the expression is found, which shows the change of the 

second harmonic amplitude along a horn of exponential 

form: 

��&# = �'()"
% exp *− %#

� + − *��� ∙ exp *− %#
� ++          (5) 

3.2. The Horn in a Catenoid Shape 

In sound’s broadcasting horns of the exponential form are 

commonly used for the reproduction of high frequencies. 

Now the attention is paid to the efficient reproduction in the 

low-frequency region. In this case using of horns of catenoid 

shape is more profitable [9]. 

Let a wave of finite amplitude with quantity of sound 

pressure ���  be realized in a horn throat. The walls of the 

horn are considered absolutely stiff in comparison with the 

air quality filing it. Then we are finding the expression for 

the nonlinear distortion factor ,�-.  and for the second 

harmonic amplitude ���-.  in case of horn in form of a 

catenoid Changing the sectional area Sx in the horn in 

catenoid shape occurs by the law 

/# = /0 ∙ 1ℎ�(
�). 
The sound pressure amplitude of the first harmonic p1cat 

and the second harmonic p2cat along the horn in catenoid 

shape is changing along the axes according to the relations 

���-. = ��� 1ℎ⁄ (
�), 
���-. = ��� 1ℎ⁄ (
�), 4 = 1, 2.                   (6) 

Changing the sound pressure of the second harmonic p1cat 

at small value in the horn throat ��� is depicted in Figure 2. 

 

Figure 2. Changing the first harmonic along the axes of a horn. 1: the 

theoretical curve; 2: the experimental values. 

Let us write the expression for the rate of change of the 

second harmonic dp2cat /dx. 

6���-.
6� = � ∙ ���-.� − 
7ℎ(
�) ∙ ���-.  

This result in the following 

 !"89:
 # + 
7ℎ(
�) ∙ ���-. = � ∙ ���� /1ℎ�(
�).         (7) 

The equation (7) is the first-order non-homogeneous linear 

differential equation. The general solution is in the form 

���-. = �'∙!()" -<�.=	>?@	(%#)
%�A(#%) + B

�A(%#) , C − 1DEF7.      (8) 

As the second harmonic appears only during the 

propagation of wave the solution of equation should satisfy 

the boundary condition 

���-. = 0 by � = 0. 

The particular solution of the equation (7) satisfying the 

mentioned conditions has a form 

���-. = �'∙!()"
%�A(#%) ∙ GHI17J exp(
�) −

K
�L.             (9) 

Formula (9) implies the expression for the nonlinear 

distortion factor ,�-.: 
,�-. = 2� ∙ ���� ∙ GHI17J exp(
�) − K

�L /
.       (10) 

3.3. The Conic Horn 

Let us consider the horn of conical shape. The analytical 

dependence characterizing the depreciation of amplitude pi any 

harmonic along the axes of the conical shape horn has a form: 

�� = ��� ∙ #�
#�#�, �� = ��� ∙ #�

#�#�, 4 = 1, 2.          (11) 

where ��� is amplitude in the horn throat, xo is the distance 

from throat to the cone point (Figure 1). 

The second harmonic amplitude as wave is ranging at a 

conical horn goes up with the rate 

6��
6� = −��� ∙ �0

(� + �0)� = −�� ∙ 1
(� + �0), 

Recording the total rate of second harmonic amplitude 

change in conical horn (subject to nonlinear effects) results in 

the non-homogeneous linear differential equation 

 !"
 # = � ∙ ���� ∙ #�"

(#�#�)".                         (12) 

Having solved it, we will find the analytic dependence 

describing the change of second harmonic amplitude during 

its propagation along the conical horn subject to nonlinearity. 

���NO = '∙!()" ∙PQ	(#�#�)∙#�"
#�#� + B

#�#� , C − 1DEF7.      (13) 

The unknown arbitrary constant D is found, satisfying the 

equation (12) solution (13) for the boundary condition: 
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���NO = 0 by � = 0.                           (14) 

It is easy to verify that particular solution of the equation 

(12) subjecting to boundary condition has a form: 

���NO = 	� ∙ ���� #�"
(#�#�) ∙ ln *

#�#�
#� +.              (15) 

Using the derived expression, let us record the formula for 

the nonlinear distortion factor ,�NO: 

,�NO = !"8TU(#)
!)8TU(#) = � ∙ ���� ∙ ln *#�#�#� +.             (16) 

The comparison with the nonlinear distortion factors in 

horns of exponential shape and horns in catenoid shape 

shows that with increasing of the coordinate x in horn of 

conical shape ,�NO→, but this adversely affected work of an 

audio oscillator supplied with horns of such pattern. 

4. The Determining of Positions of 

Second Harmonics Peaks Xmax for 

Different Horns Shapes 

To the determination ��-# of distance from the horn throat 

to the point, where the second harmonic of sound pressure 

reaches its peak, we will use the necessary extreme condition 

[11]. 

4.1. The Exponential Horn 

According to relation (5) we have the following formula 

for second harmonic amplitude of sound pressure in horn of 

exponential shape: 

��&# = �'∙!()"
% exp *− %#

� + −
�'
� ∙ *��� exp *−

%#
� ++

�.   (17) 

Having calculated the first derivative of function of second 

harmonic amplitude and having equaled it to zero, we will 

determine the distance ��-#  from the horn throat to the peak 

of the second harmonic: 

 !"VW
 # = � ∙ ���� [− exp(−0,5
�) + 2 exp(−
�)] = 0. 

As Cp²m1 ≠ 0, let us analyze the expression 

2 exp(−
�) − exp(−0,5
�) = 0, 

where we have derived the following after taking the 

logarithm 

��-# = (2 ln 2)/
.                            (18) 

As the second derivative of function (17) is equal 

 "!"VW
 #" = � ∙ ���� ∙ 
(0,5 exp(−0,5
�) − 2 exp(−
�)), 

and possesses the negative value in the ��-#  point, the 

function of the second harmonic amplitude of the sound 

pressure obtains its peak in this point. 

��&#∗ = '∙!()"
�% . 

4.2. The Catenoid Horn 

Having equaled the first derivative of function described 

by the expression (9) to zero we will obtain 

 !"89:
 # = '∙!()"

�A"(%#) Y
�
�− (HI17J	(exp(
�)) − HI17J	1)Fℎ(
�)Z = 0. 

As � ∙ ���� /1ℎ�	(
�) ≠ 0 whatever value of x is we will 

equal the second multiplier to zero to finding out the X max 

�
�− (HI17J	(exp(
�)) − HI17J	1)Fℎ(
�) = 0.     (19) 

We will expand the function HI17J	(exp(
�))into series. 

It is showed, that type of such expansion depend on if its 

argument will be greater or less then one. Obviously, that 

exp(
�) < 1, at 
� < 0. This condition is inadmissible to 

the problem of waves propagation in horn, as � ≥ 0  and 

. Therefore we will analyze the case exp(
�) ≥ 1. 

Then, according to [11], the function HI17J	 exp(
�)  is 

expanding into series in the following way: 

HI17J	 exp(
�) = K
^ −

_
>?@(%#) +

_
[` >?@(`%#)] −⋯    (20) 

The expression in the right side of the formula (20) is 

alternating series. Solving the equation (19), we will be 

limited by the two first summands of the expansion (20). 

According to a well-known property of alternation series 

[11], the absolute magnitude error appearing in this case will 

not rank over the first neglected term (in our case 1 / exp (3 

βx)). 

Based on this, we will record the equation (19) in the form: 

*K� − exp(−
�)+ (exp(
�) − exp(−
�)) = 1     (21) 

Having entered the designation b = exp(
�) , we will 

derive the nonlinear equation: 

*K� −
�
c+ ∙ *b −

�
c+ = 1. 

Allowing, that , we will come to the cubic equation 

dbe − 8b� − db + 4 = 0,                        (22) 

studying which, we deduce, that it has three real roots, 

contained in the ranges of (-1, -0.15), (0, 1), (2, 3). As we 

deal with values , we will search the solution of 

equation (22) on the segment (2, 3). By means of Newton’s 

method (or method of tangent lines) we determine the sought 

root b∗ = 2,741832 accurate within 10-10. 

Consequently, the peak position of the sound pressure’s 

second harmonic concerning catenoid shape horn throat is 

defined as: 

0>β
0≠y

1>y
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��-# = �
% ∙ ln(2,741832	).                   (23) 

The peak value of the second harmonic amplitude is equal 

to: 

���-.∗ = 0,jee'∙!()"
% .                            (24) 

4.3. The Conic Horn 

Let us find out X max for the conical shape horn. The 

derivative of function of the sound pressure’s second 

harmonic ���NO(�)  represented by formula (15) after 

transformation has the form: 

6��
6� = � ∙ ���� ∙ k1 − ln l ��0 + 1m	n /(� + �0)�. 

Obviously, given � = �0, the analyzed derivative goes to 

infinity just as function itself. Therefore, � = �0 is the 

minimal coordinate. 

To the defining of ��-# we have the equation: 

1 − ln * ##� + 1+ = 0. 

This result in the following 

��-# = 1,718�0.                              (25) 

As �0 = b0/7J	o, then 

��-# = 1,718	b0/7J	o. 

We can simply see, that the bigger the horn’s apex angle is, 

the closer to the horn throat the nonlinear effects appear. We 

have to point for completeness that the second harmonic 

amplitude’s peak value is equal to: 

���NO∗ = '∙!()" ∙.=p
�,j�qc� = '∙!()"

�,j�q#�.                     (26) 

5. The Comparative Analysis of the 

Second Harmonic Amplitudes Change 

In Figure 3 the curves showing the second harmonic’s 

change in horns of exponential, conic and catenoid shapes are 

depicted. 

The calculations of the second harmonics’ curves were 

made for the following initial data: the velocity of sound in 

medium с0 = 340 м/sec, exponent of the horn extension β = 

0.63, the critical frequency fcr = 17 Hz, the circular frequency 

ω 0 = 106.8 rad/с, the displacement amplitude in the horn 

throat ξ  = 0.05 м, the major tone’s initial amplitude in the 

horn throat pm1 = 2.2 kPa. The curves were constructed on the 

frequencies f = 17 Hz, 20 Hz, 23 Hz, 26 Hz, 29 Hz. 

It is clear from the graph that for the horns of exponential 

and catenoid shapes the peaks are clear retraced. There is no 

clear peak for the horn of conical shape. And at the same 

time, in horns of exponential and catenoid shapes values of 

second harmonic verge toward zero in the horn’s orifices, but 

in a conical shape horn the second harmonic, approaching to 

the orifices, decreases very lightly. 

We should notice that �rs? �-.  < �rs? &# , i.e. the second 

harmonic in catenoid shape horn reaches its peak value more 

rapidly. In addition, for the same working frequencies and at 

the identical particle displacements in a horn throat the 

second harmonic amplitude’s peak value is 1.25 times as big 

as in the catenoid shape horn, then in the horn of exponential 

shape. 

All calculations were made for the horn, whose length is 

10 meters and the diameter of the outlet section 4 meters. The 

resonant frequency of the acoustic signal in such a 

mouthpiece is 20 Hz. 

 

Figure 3. Graph of the second harmonic amplitudes’ change along the 
horns. 1: the catenoid shape of horn; 2: the exponential shape of horn; 3: 

the conical shape of horn, = Xmax is the coordinate of horn’s axial section, 

 is its finite length. 

6. The Comparative Analysis of 

Nonlinear Distortion Factors Change 

We will assay the effect of damping, the nonlinear 

distortion factor ν, which is defined as a relation of the first 

and second harmonics’ amplitudes. In particular, in the work 

[8] the expression for nonlinear distortion factor in case of 

finite amplitude wave propagation in the exponential shape 

horn is found. The graphs of nonlinear distortion factors 

,&#! , ,�-.  and ,�NO , depicted in Figure 4, for horns of 

exponential, catenoid and conical shapes on emission 

frequency f = 17 Hz, ξ = 0,05 m, were calculated on the basis 

of the expressions (10) and (16), where t0 is the limit value 

of nonlinear distortion factor. For the exponential shape horn 

it is equal to 2� ∙ ���/
, for the catenoid shape horn it is 

,0 = d ∙ � ∙ ���/2
 . At the same time, ,�-./,&#! =
[HI17J exp(
�) − K

�]/[1 − exp(−0,5
�)]  is true for the 

factors ,&#!, ,�-. . 

x′
l
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The nonlinear distortion factor ν con for the conical shape 

horn increases at the horn extension while for the horns of 

exponential and catenoid horns the factors ,&#! and ,�-. tend 

to the certain limit value. 

 

Figure 4. The nonlinear distortion factors changer. 1: the graph of 

nonlinear distortion factor ν con, 2: the graph of nonlinear distortion factor 

ν ex, 3: the graph of nonlinear distortion factor ν cat. 

7. Conclusion 

1. The equations have been received, describing the 

amplitude of the second harmonic’s sound pressure and it’s 

analog of velocity of propagation in horns of catenoid and 

conical shapes. 

2. The analytical expressions have been obtained, allowing 

defining the coordinate ��-#  of cross-section, where the 

sound pressure’s second harmonic reaches its peak, for the 

horns of conical, exponential and catenoid shapes. 

3. The expressions have been derived, defining the 

nonlinear distortion coefficients , for the horns of three 

shapes. 
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