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Abstract: In this article are given definitions definition for measurable is-functions of the first, second, third, fourth and fifth 

kind. They are given examples when the original function is not measurable and the corresponding iso-function is measurable 

and the inverse. They are given conditions for the isotopic element under which the corresponding is-functions are measurable. 

It is introduced a definition for equivalent iso-functions. They are given examples when the iso-functions are equivalent and 

the corresponding real functions are not equivalent. They are deducted some criterions for measurability of the iso-functions of 

the first, second, third, fourth and fifth kind. They are investigated for measurability the addition, multiplication of two iso-

functions, multiplication of iso-function with an iso-number and the powers of measurable iso-functions. They are given 

definitions for step iso-functions, iso-step iso-functions, characteristic iso-functions, iso-characteristic iso-functions. It is 

investigate for measurability the limit function of sequence of measurable iso-functions. As application they are formulated the 

iso-Lebesgue’s theorems for iso-functions of the first, second, third, fourth and fifth kind. These iso-Lebesgue’s theorems give 

some information for the structure of the iso-functions of the first, second, third, fourth and fifth kind. 
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1. Introduction 

Genious idea is the Santilli’s generalization of the basic 

unit of quantum mechanics into an integro-differential 

operator �� which is as positive-definite as +1 and it depends 

of local variables and it is assumed to be the inverse of the 

isotopic element ��  
+1 > 0 → ��
�, 
, �, �, �,⋯ � = 1�� > 0 

and it is called Santilli isounit. Santilli introduced a 

generalization called lifting of the conventional associative 

product �� into the form 

�� → ���� = ���� 

Called isoproduct for which 

����� = 1�� ��� = ����� = ���
1
�� = � 

For every element � of the field of real numbers, complex 

numbers and quaternions. The Santilli isonumbers are defi 

ned as follows: for given real number or complex number or 

quaternion �, 

�� = ��� 
With isoproduct 

������ = ������ = � ��� ��� ��� = �� ��� = ��� . 

If � ≠ 0 , the corresponding isoelement of 
�
�  will be 

denoted with	����or �� ↘ ��. 
With ��ℝ we will denote the field of the is-numbers �� for 

which � ∈ ℝ and basic isounit ���. 

In [1], [3]-[12] are defined isocontinuous isofunctions and 

isoderivative of isofunction and in [1] are proved some of 

their properties. If "#�  is an isoset in ��ℝ , the class of 

isofunctions is denoted by �$�%&  and the class of 

isodifferentiable isofunctions is denoted by �$�%&� , with the 

same basic isounit �� = �
��, it is supposed 

�� ∈ '�
"��, �� > 0	()	"�. 

Here "�  is the corresponding real set of "#� . If � is an 

independent variable, then the corresponding lift is 
*
��
*�, if + 

is real-valued function on "�, then the corresponding lift of 

first kind is defined as follows 
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+�^
��� = + -�̂
��
��	
��/0

��
�� = +
����
�� 
and we will denote it by +1⋀⋀. 

In accordance with [1], the isodifferential is defined as 

follows 

3�
∙� = ��
��3
∙�. 
Then 

3�
��� = ��
��3
��� = ��
��3 5 *
�
*�/6 = ��
�� 5 �

�	
7�/ −
9 �� :
*�
��;
*�6 3� = 51 − � �� :
*���
*� 6 3�,, 

3� 5+�∧
���6 = ��
��3 5+�∧
���6 = �
��3 5=
*���
*�6/ =
5+>
�� − +
�� �� :
*���
*� 6 3�.. 

In accordance with [1], the first is-derivative of the is-

function +�∧∧ is defined as follows 

@+�⋀⋀ 
��A*⊗ = 3� 5+�⋀
���6 ↗ 3�
��� = 1
��
��

3� 5+�∧
���6
3�
���

= +>
����
�� − +
���>
��/
��D
�� − ���
���� >
�� . 

When ��
�� ≡ 1, then 

5+�⋀
���6*
⨂ = +>
��. 

Our aim in this article is to be investigated some aspects of 

theory of measurable iso-functions. The paper is organized as 

follows. In Section 2 are defined measurable iso-functions 

and they are deducted some of their properties. In Section 3 

is investigated the structure of the measurable iso-functions. 

2. The Definition and the Simplest 

Properties of Measurable Is-Functions 

We suppose that G  is a given point set, �� ∶ G ⟶ ℝ , ��
�� > 0  for every � ∈ G,  ��� > 0  be a given constant, +: G ⟶ ℝ  bea given real-valued function. With +�  we will 

denote the corresponding is-function of the first, second, 

third, fourth and fifth kind. More precisely, 

1. f�
x� ≡ f� ∧
x�� = M
N�
O#
N�, when f� is an is-function of the first 

kind. 

2. f�
x� = f� ∧
x� = M@NO#
N�A
O#
N� , when 

N
O#
N� ∈ A for x ∈ A, when f� 

is an is-function of the second kind. 

3. f�
x� = f�
x�� = MQ RS#
R�TO#	
N� , 
N
O
N�/ ∈ A for x ∈ A, when f� is an is-

function of the third kind. 

4. f�
x� ≡ f ∧
x� = f@xT#
x�A,  when xT#
x� ∈ A  for x ∈ A , 

when f�	is an is-function of the fourth kind. 

5. f�
x� = f ∨
x� = f 5 N
O	
N�	/ 	6 , 

N
O
N�/ ∈ A  for x ∈ A,  when f�  is 

an is-function of the fifth kind. 

For � ∈ G with G@+� > �A we will denote the set 

G@+� > �A ≔ X� ∈ G: +�
�� > �Y. 
We define the symbols G@+� 	≥ �A, G@+� = �A, G
+� < ��, G@� < +� < �A and etc., in the same way. 

If the set on which the is-function +�  is defined is 

designated by a letter C or D, we shall write $
+�>a) or "
+�>a). 

Definition 2.1. The is-function +� is said to be measurable if 1. The	set	A	is	measurable.	2. The	set	A
f� > ��	is	measurable	for	all	a ∈ A.	
Theorem 2.3. Let +�	be a measurable is-function defined on 

the set A. If B is a measurable subset of A, then the is-

function +�
��, considered only for� ∈ i, is measurable. 

Proof. Let � ∈ ℝ be arbitrarily chosen and fixed. We will 

prove that 

i@+� > �A = i ∩ G@+� > �A.                         (1) 

Really, let � ∈ i
+� > �� be arbitrarily chosen. Then � ∈ i 

and +�(x)>a. Since i ⊂ G, we have that � ∈ G. From � ∈ G 

and +�
�� > �  it follows that � ∈ G@+� > �A . Because � ∈ i@+� > �A was arbitrarily chosen and for it we get that it 

is an element of the set i ∩ G
+� > ��, we conclude that 

i ⊂ @+� > �A ⊂ i⋂G@+� > �A.                   (2) 

Let now � ∈ i ∩ G
+� > ��  be arbitrarily chosen. Then � ∈ i  and � ∈ G
+� > �� . Hence � ∈ i  and +�
�� > � . 

Therefore � ∈ i@+� > �A.  Because � ∈ i ∩ G
+� > ��  was 

arbitrarily chosen and we get that it is an element of i@+� >�A,	we conclude that 

i ∩ G
+� > �� ⊂ i
+� > ��. 
From the last relation and from (2) we prove the relation 

(1). 

Since the iso-function +� is a measurable function on the set 

A, we have that G
+� > ��  is a measurable set. As the 

intersection of two measurable sets is a measurable set, we 

have that i ∩ G
+� > �� is a measurable set. Consequently, 

using (1), the set i
+�>a) is measurable set. In this way we 

have 

1. B is a measurable set, 

2. i
+� > �� is a measurable set for all � ∈ ℝ. 

Therefore the iso-function +� , considered only for � ∈ i, is 

a measurable is-function. 

Theorem 2.4. Let +� be defined on the set A, which is the 

union of a finite or denumerable number of measurable sets Gm , G = ⋃ Gom . If +� is measurable on each of the sets Go , 

then it is also measurable on A. 

Proof. Let � ∈ ℝ be arbitrarily chosen. We will prove that 
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G@+� > �A = ⋃ Go
+�o > ��.            (3) 

Let � ∈ G
+� > ��  be arbitrarily chosen. Then � ∈ G  and +�
�� > �. Since � ∈ G and G = ⋃ Goo , there exists k such 

that � ∈ Go . Therefore � ∈ Go  and +�
�� > � . Hence, � ∈ Go@+� > �A	 and � ∈ ⋃ Go
+� > ��o . Because � ∈G@+� > �A was arbitrarily chosen and for it we get that it is an 

element of ⋃ Go
+� > ��o  , we conclude that 

G
+� > �� ⊂ ⋃ Go
+� > ��o .                (4) 

Let now p ∈ ⋃ Go
+� > ��o  be arbitrarily chosen. Then 

there exists l such that p ∈ Gq
+�>a). From here � ∈ Gq  and +�
p� > �.  Hence, p ∈ G = ⋃ Goo  and +�
p� > �. 
Consequently ∈ G
+� > �� . Because p ∈ ⋃ Go
+� > ��o  was 

arbitrarily chosen and for it we get that it is an element of G
+� > �� we conclude that 

G
+� > �� ⊂rGo@+� > �A.
o

 

From the last relation and from (4) we prove the relation 

(3). 

Since the union of finite or denumerable number of 

measurable sets is a measurable set, using that the sets Go
+� > �� are measurable, we obtain that A and G
+� > �� 
are measurable sets. Therefore +� is a measurable is-function. 

Definition 2.5. Two is-functions +� and s�, defined on the 

same setr A, are said to be equivalent if 

t 5G@+� ≠ s�A6 =0. 

We will write 

+� ∼ s�. 
Remark 2.6. There is a possibility + ≁ s and in the same 

time+� ∼ s�. 
Let 

G = w1, 2x, +
�� = �, s
�� = � + 1, 
��
�� = −1 + √1 + 4�D2� , � ∈ G. 

Then 

+ ≁ s. 

On the oth-1+er hand, 

+�∧
��� = +
����
�� =
�

−1 + √1 + 4�D�
 

= 2�D
−1 + √1 + 4�D =

2�D@1 + √1 + 4�DA
@√1 + 4�D − 1A@√1 + 4�D − 1A

= 2�D@1 + √1 + 4�DA4�D = 1 + √1 + 4�D2 , 

s∧
�� = s@���
��A = ���
�� + 1 

= �−1 + √1 + 4�D + 12� = −1 + √1 + 4�D2 + 1
= 1 + √1 + 4�D2 . 

We have that 

t 5G@+�∧∧ ≠ s∧A6 = 0 

Or 

+�∧∧ ∼ s∧. 
Remark 2.7. There is a possibility + ∼ s and in the same 

time +� ≁ s�. Let 

G = w1, 2x, +
�� = s
�� = �D, ��
�� = � + 1, � ∈ G. 
Then 

+ ∼ s. 

On the other hand, 

+∧
�� = +@���
��A = �D��D
�� = �D
� + 1�D, s∨
�� =
s 5 *

��
*�6 = *;
��;
*�=

*;

*{��;. 

Then 

+∧
�� = s∨
�� 	⟺ 	�D
� + 1�D = �D
� + 1�D 	⟺ 	 
� + 1�}
= 1	 ⟺ 	� = 0 ∉ G. 

Therefore 

t@G
+∧ = s∨�A = 0, 
Hence, 

t@G
+∧ ≠ s∨�A = 1. 
Consequently 

+∧ ∼ s∨. 

Proposition 2.8. The fuAnctions f and g are equivalent if 

and only if the functions +�∧∧ and s�∧∧ are equivalent 

Proof. We have 

t@G
+ ≠ s�A = 0	 ⟺ 	t �G Q+�� ≠
s
��T� = 0 

⟺ t5G@+�∧∧ ≠ s�∧∧A6 = 0. 
Definition 2.9. Let some property P holds for all the points 

of the set A, except for the points of a subset B of the set A. If = 0 , we say that the property P holds almost everywhere on 

the set A, or for almost all points of A. 

Definition 2.10. We say that two is-functions defined on 
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the set A are equivalent if they are equal almost everywhere 

on the set A. 

Theorem 2.11. If +�
�� is a measurable is-function defined 

on the set A, and if +� ∼ s�, then the is-function s�
�� is also 

measurable. 

Proof. Let 

i ≔ G@+� ≠ s�A, " ≔ G ∖ i. 
Because +� ∼ s� we have that 

t 5G@+� ≠ s�A6 = 0 

or ti = 0. 
Since every function, definite on a set with measure zero is 

measurable on it, we have that the is-function s�  is 

measurable on the set B. 

We note that the is-functions +�
�� and s�
�� are identical 

on D and since the is0-function +� is measurable on D, we get 

that the is-function s� is measurable on D. 

Consequently the is-function s�	is measurable on 

i ∪ " = G. 
Theorem 2.12. If the is-function +�
��, defined on the set A, 

is measurable, then the sets 

G@+� ≥ �A, G@+� = �A, G
+� ≤ �), G
+� < �� 
Are measurable for all � ∈ ℝ. 

Proof. We will prove that 

G@+� ≥ �A = ∏ G 5+� > � − �
�6 .����            (5) 

Really, let � ∈ G
+� ≥ �� be arbitrarily chosen. Then � ∈ G 

and +�
�� ≥ �. Hence, for every ) ∈ ℕ we have +�
�� > � −�
�. Therefore 

� ∈ ∏ G 5+� > � − �
�6���� . 

Because � ∈ G
+� ≥ �� was arbitrarily chosen and for it we 

obtain � ∈ ∏ G 5+� > � − �
�6∞��� , 

We conclude that 

G
+� ≥ �� ⊂ ∏ G 5+� > � − �
�6���� .            (6) 

Let now � ∈ ∏ G 5+� > � − �
�6∞���  be arbitrarily chosen. 

Then � ∈ G 5+� > � − �
�6 for every natural number n. From 

here � ∈ G and 

+�
�� > � − 1) 

For all natural number n. Consequently 

lim�→� +�
�� ≥ lim�⟶� Q� − 1)T 
or 

+�
�� ≥ � 

and � ∈ G
+� ≥ �� . Since � ∈ ∏ G 5+� > � − �
�6∞���  was 

arbitrarily chosen and we get that � ∈ G
+� ≥ �� , we 

conclude 

�GQ+� > � − 1)T ⊂ G@+� ≥ �A.
�

���
 

From the last relation and from (6) we obtain the relation 

(5). 

Because the intersection of denumerable measurable sets is 

a measurable set, using the relation (5) and the fact that all 

sets G 5+� > � − �
�6 are measurable for all natural numbers n, 

we conclude that the set G
+� ≥ �� is a measurable set. 

The set G
+� = �� is a measurable set because 

G@+� = �A = G@+� ≥ �A ∖ G@+� > �A. 
The set G
+� ≤ �� is measurable set since 

G@+� ≤ �A = G ∖ G@+� > �A. 
The set G
+� < �� is measurable since 

G@+� < �A = G ∖ G@+� ≥ �A. 
Remark 2.13. We note that if at least one of the sets 

G@+� ≥ �A, G@+� = �A, G
+� ≤ �), G
+� < �� 
Is measurable for all � ∈ ℝ , then the iso-function +�  is 

measurable on the set A. 

Really, let G
+� ≥ ��  is measurable for all � ∈ ℝ . Then, 

using the relation 

G@+� > �A = ∏ G 5+� ≥ � − �
�6���� ,                   (7) 

we obtain that the set G
+� > �� is measurable for all � ∈ ℝ. 

If G@+� ≤ ��A is measurable for all � ∈ ℝ, then using the 

relation 

G@+� > �A = G ∖ G@+� ≤ �A, 
we get that the set G
+� > �� is measurable for all � ∈ ℝ. 

If G@+� < �A is measurable for all � ∈ ℝ, then using the 

relation 

G@+� > �A = G ∖ G
+� ≤ ��, 
We conclude that the set G
+� > �� is measurable for all � ∈ ℝ. 

Theorem 2.14. If +�
�� = � = ��)��  for all points of a 

measurable set A, then the is-function +�
�� is measurable. 

Proof. For all � ∈ ℝ we have that 

G@+� > �A = G	(+	� > �	�)3	G@+� > �A = ∅	(+	� ≤ �. 

Since the sets A and ∅ are measurable sets, then G
+� > �� 
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is measurable for all � ∈ ℝ. Therefore the is-function +�
�� is 

measurable. 

Definition 2.15. An is-function +�
�� defined on the closed 

interval [a, b] is said to be a step is-function if there is a finite 

number of points 

� = �� < �� < ⋯ < ���� < �� = � 

Such that +�
��  is a constant on 
�� , ��{�� , ( =0, 1, 2,⋯ , ) − 1. 

Proposition 2.16. A step is-function is measurable. 

Proof. Let +�(x) is a step is-function on the closed interval 

[a, b]. Let also, 

� = �� < �� < �D < ⋯ < ���� < �� = � 

be such that +�
��  is a constant on 
�� , ��{�� , ( =0, 1, 2,⋯ , ) − 1. From the previous theorem we have that +�
�� is measurable on 
�� , ��{��, ( = 0, 1, 2,⋯ , ). We note 

that 

the sets ����, ( = 0, 1, 2,⋯ , ) − 1, are sets with measure zero. 

Therefore the is-function +�
�� is measurable on ����, ( = 0, 1, 2,⋯ , ) . From here, 

using that 

w�, �x =r
�� , ��{��
�

���
rr����,

�

���
 

We conclude that the is-function +�
�� is measurable on [a, 

b]. 

Theorem 2.17. If the is-function +�
��, defined on the set A 

is measurable and � ∈ ℝ, � ≠ 0, then the is-functions 

1. +�
�� + �, 
2. �+�
��, 
3. �+�
��, � 
4. +�D
��, 
5. 

�
=�
*�, 

are also measurable. 

Proof. Let � ∈ ℝ  be arbitrarily chosen. The assertion 

follows from the following relations. 

1. G@+� + � > �A = G@+� > � − �A. 
2. G@�+� > �A = G 5+� > �

�6  if c>0, G@�+� > �A =
G 5+� < �

�6 if c<0. 

3. G@�+�� > �A = G  if a<0, G@�+�� > �A = G@+� > �A ∪G
+� < −�� if � ≥ 0. 
4. G@+�D > �A = G if a<0, w G@+�D > �A = G
�+�� > √�� 

if � ≥ 0. 

5. G 5�=� > �6 = G
+� > 0� ∩ G 5+� < �
�6  if a>0, G 5�=� >

�6 = G
+� > 0� ∪ QG
+� < 0� ∩ G 5+� < �
�6T  if a<0, 

G 5�=� > �6 = G
+� > 0� if a=0. 

Definition 2.18. An is-function +�, defined on the closed 

interval [pa, b], is said to be is-step is-function, if there is a 

finite number of points 

� = �� < �� < ⋯ < ���� < �� = �, 
such	that 
+�
�� = ����
�� , � ∈ w�� , ��{��, �� = ��)��, ( = 0, 1,⋯ , ) − 1. 

Theorem 2.19. Let T#
x�>0 for every x ∈ wa, bx and T#
x� is 

measurable on [a, b]. Let also, T#
x� is an iso-step is-function 

on [a, b]. Then f�
x� is measurable on [a, b]. 

Proof. Let 

a = a� < a� < ⋯ < a��� < a� = b, 
be such	that 
+�
�� = ����
�� , � ∈ w�� , ��{��, �� = ��)��, ( = 0, 1,⋯ , ) − 1. 

From the last theorem it follows that 
����
*� is a measurable 

is-function on w��,��{�� , ( = 0, 1, 2,⋯ , ) − 1. Fromn-1 here 

and from 

w�, �x =rw�� , ��{�� ∪ ���.
���

���
 

Since {b} is a set with measure zero, we conclude that the 

is-step is-function +� is measurable on [a, b]. 

Definition 2.20. Let M be a subset of the closed interval [a, 

b]. The function ��
�� = 0 for � ∈ w�, �x ∖ �  and �� = 1 

for � ∈ �, is called the characteristic function of the set M. 

Theorem 2.21. If the set M is a measurable subset of the 

closed interval A=[a, b], then the characteristic function ��
�� is measurable on [a, b]. 

Proof. The assertion follows from the following relations. G
�� > �� = ∅  if � ≥ 1,  G
�� > �� = �  if 1 > � ≥0, G
�� > �� = G if a<0. 

Definition 2.22. Let M be a subset of the set A=[a, b]. The 

iso- function ���
�� = 0  if � ∈ G ∖ �  and ��� = �
��
*�  if 

� ∈ �, will be called characteristic is-function of the set M. 

Theorem 2.23. Let ��
�� be a measurable function on A=[a, 

b], M be a measurable subset of A. Then the characteristic is-

function ���
�� of the set M is measurable. 

Proof. Let � ∈ ℝ be arbitrarily chosen. Then 

G
��� > �� = 
G ∖ ��
0 > ��⋃� 5 �
��(*) > �6, 

From here, using that the sets (G ∖ �)(0 > �)  and 

�5 �
��(*) > �6 are measurable sets, we conclude that G(��� >

�) is a measurable set. Because the constant a was arbitrarily 

chosen, we have that the characteristic function ���  is a 

measurable is-function. 

Theorem 2.24. Let f and ��  are continuous functions on the 

closed set A. Then the is-function +�∧(��) is measurable. 

Proof. Let � ∈ ℝ be arbitrarily chosen. Since every closed 

set is a measurable set, we conclude that the set A is a 

measurable set. 
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We will prove that the set G@+�∧∧ ≤ �A is a closed set. 

Let �������∞  be a sequence of elements of the set G@+�∧∧ ≤
�A such that 

lim�→� �� = ��. 
Since G@+�∧∧ ≤ �A is a subset of the set A we have that �������∞ ⊂ G. Because the set A is a closed set, we obtain that 

�� ∈ G. From the definition of the set G@+�∧∧ ≤ �A we have 

that 

+�∧(���) = +(��)��(��) ≤ �, 
Hence, when ) → ∞ , using that f and ��  are continuous 

functions on the set A, we get 

lim�→� +�∧(���) = lim�→�
+(��)
��(��) =

+(��)
��(��) = +�

∧(���) ≤ �, 
i.e., �� ∈ G@+�∧∧ ≤ �A . Therefore the set G@+�∧∧ ≤ �A	 is a 

closed set. From here, the set G@+�∧∧ ≤ �A is a measurable set. 

Because the difference of two measurable sets is a 

measurable set, we have that the set 

G@+�∧∧ > �A = G ∖ G@+�∧∧ ≤ �A 
Is a measurable set. 

Since � ∈ ℝ was arbitrarily chosen, we obtain that the is-

function of the first kind +�∧∧ is measurable. 

Theorem 2.25. Let f and ��  are continuous functions on the 

closed set A. The the is-functions 

+�∧(�), +�(��), +∧(�), +∨(�) 
are measurable on A. 

Theorem 2.26. If two measurable is-functions +� and s� are 

defined on the set A, then the set G(+� > s�) is measurable. 

Proof. We enumerate all rational numbers 


�, 
D, 
�, ⋯. 

We will prove that 

G@+� > s�A = ⋃ 5G
+� > 
o� ∩ G
s� < 
o�6�o�� .       (8) 

Let 

� ∈ G@+� > s�A 
Be arbitrarily chosen. Then 

� ∈ G, +�
�� > s�
��. 
There exists a rational number 
o such that 

+�
�� > 
o > s�
��. 
Therefore 

� ∈ G	�)3	+�
�� > 
o; � ∈ G	�)3	
o > s�
��, 

i.e., 

� ∈ G@+� > 
oA, � ∈ G
s� < 
o). 

Consequently 

� ∈ G@+� > 
oA ∩ G
s� < 
o) 

And 

� ∈r5G@+� > 
oA ∩ G
s� < 
o�6 .
�

o��
 

Because � ∈ G@+� > s�A  was arbitrarily chosen and for it 

we get  

� ∈ ⋃ 5G@+� > 
oA ∩ G
s� < 
o�6 ,∞o��  we conclude that 

G@+� > s�A ⊂ ⋃ 5G@+� > 
oA ∩ G
s� < 
o�6 .�o��        (9) 

Let no 

� ∈r5G@+� > 
oA ∩ G
s� < 
o�6
�

o��
 

be arbitrarily chosen. Then there exists a natural k so that 

� ∈ G
+� > 
o� ∩ G
s� < 
o�. 
Hence, 

� ∈ G@+� > 
oA, � ∈ G
s� < 
o�. 
Then 

� ∈ G, +�
�� > 
o,	
o < s�
�� 
or 

� ∈ G, +�
�� > 
o > s�
��. 
Therefore 

� ∈ G@+� > s�A. 
Because  

� ∈r5G@+� > 
oA ∩ G
s� < 
o�6
�

o��
 

Was arbitrarily chosen and for it we get that � ∈ G@+� > s�A, 
we conclude that 

r5G@+� > 
oA ∩ G
s� < 
o�6
�

o��
⊂ G@+� > s�A. 

From the last relation and from the relation (9) we get the 

relation (8). 

Since +� and s� are measurable iso-functions on A, we have 

that the sets 

G@+� > 
oA, G
s� < 
o� 
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are measurable sets for every natural k, whereupon the sets 

G@+� > 
oA ∩ G(s� < 
o) 
Are measurable sets for every natural k. 

Therefore, using the relation (8), we obtain that the set 

G@+� > s�A is a a measurable set. 

Theorem 2.27. Let +�(�) and s�(�) be finite measurable is-

functions on the set A. Then each of the is-functions 

1. +�(�) − s�(�), 
2. +�(�) + s�(�), 
3. +�(�)s�(�), 
4. 

=�(*)
��(*) if s�(�) ≠ 0 on A, 

Is measurable. 

Proof. 

1. Let � ∈ ℝ  be arbitrarily chosen. Since s�(�)  is 

measurable, then � + s�(�) is measurable. From here 

and from the last theorem it follows that the set 

G@+�(�) − s�(�) > �A = G@+�(�) > � + s�(�)A 
Is measurable. Because � ∈ ℝ	was arbitrarily chosen, 

we conclude that the function +�(�) − s�(�)	 is 

measurable. 

2. Since s� is a measurable is-function, we have that the 

function −s� is a measurable is-function. From here 

and from 1) we conclude that the is-function 

+� + s� = +� − (−s�) 
Is measurable. 

3. We note that 

+�(�)s�(�) = �
D @+�(�) + s�(�)AD − �

D @+�(�) − s�(�)AD.  (10) 

Since +�(�)  and s�(�)  are measurable iso-functions, 

using 1) and 2) we have that 

+�(�) + s�(�)�)3	+�(�) − s�(�) 
Are measurable is-functions. Hence the is-functions 

@+�(�) + s�(�)AD, @+�(�) − s�(�)AD 

Are measurable, whereupon 

1
2 @+�(�) + s�(�)A

D	�)3	 12 @+�(�) − s�(�)A
D
 

Are measurable. From here, using 1) and (10), we 

conclude that +�(�)s�(�) is measurable. 

4. Since s�(�)  is measurable and s�(�) ≠ 0  on A, we 

have that the is-function 
�

��(*)  is measurable. From 

here and from 3) the is-function 

+�(�)
s�(�) = +�(�)

1
s�(�) 

Is measurable. 

Theorem 2.28. Let X+��(�)Y����
 be a sequence of 

measurable is-functions defined on the set A. If 

lim�→� +��(�) = +�(�)                                (11) 

Exists for every � ∈ G,	 then the is-function +�(�)  is 

measurable. 

Proof. Let � ∈ ℝ be arbitrarily chosen. For ), �,� ∈ ℕ we 

define the sets 

G�,o ≔ GQ+�o > � + 1
�T , i�,� ≔�G�,o .

�

o��
 

We will prove that 

G@+� > �A = ⋃ i�,�.�,�                                 (12) 

Let 

� ∈ G@+� > �A 
Be arbitrarily chosen. Then 

� ∈ G	�)3	+�
�� > �. 
Hence, there is enough large natural number �� such that 

+�
�� > � + 1��. 
Using (11), there are enough large natural numbers k and 

m such that 

+�o
�� > � + 1�, 
i.e., � ∈ G�,o. 

From here, it follows that there is enough large n so that � ∈ G�,o  for every � ≥ ) , i.e., � ∈ i�,�  and then � ∈⋃ i�,� .�,�  

Since � ∈ G@+� > �A was arbitrarily chosen and we get that 

it is an element of the set ⋃ i�,��,� , we conclude that 

G
+� > �� ⊂ ⋃ i�,�.�,�  (13) 

Let now � ∈ ⋃ i�,��,�  be arbitrarily chosen. 

Then, there are �D, ) ∈ ℕ so that 

� ∈ i�;,�& = � G�;,o&
�

o��&
 

or 

+�o&
�� > � + �
�; 	+�
	∀� ≥ )�. 

Hence, 

limo&→� +�o&
�� ≥ limo&→� Q� +
1�DT 

or 
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+�(�) ≥ � + 1
�D > �. 

Therefore 

� ∈ G@+� > �A. 
Since � ∈ ⋃ i�,��,� 	was arbitrarily chosen and for it we 

obtain � ∈ G@+� > �A, we conclude that 

ri�,�
�,�

⊂ G@+� > �A. 
From the last relation and from (13) it follows the relation 

(12). 

Since +�o
�� are measurable, we have that the sets G�,o are 

measurable for every �, � ∈ ℕ,  hence i�,�  are measurable 

for every �, ) ∈ ℕ and then, using (12), the set G
+� > �� is 
measurable. Consequently the is-function +� is measurable. 

Theorem 2.29. be a sequence of measurable is-functions 

defined on the set A. If 

lim�→� +��
�� = +�
�� (14) 

Exists for almost everywhere � ∈ G,	then the is-function +�
�� is measurable. 

Proof. Let B be the subset of A so that the relation (14) 

holds for every � ∈ i. From the previous theorem it follows 

that the is-function +�
�� is measurable on the set B. 

We note that 

t
G ∖ i� = 0. 
Therefore the is-function +�
��  is measurable on G ∖ i . 

Hence, the is-function +�
�� is measurable on A. 

Let 

���, ��: G → 
0,∞�, +�, +: G → ℝ, 
0 < ¢� ≤ ���
��, ��
�� ≤ ¢D+�
	� ∈ G, ) ∈ ℕ. 

Then 

1. +��∧
��� = =£
*���£
*� , +�∧
�� = =
*�
��
*�, 

2. +��∧
�� = =£
*��£
*����£
*� , +�∧
�� = =
*��
*��
��
*�  

If 

����
��, ���
��, � ∈ G, 
3. +��
��� = =£Q ¤¥#£
¤�T��£
*� , +�
��� = =Q ¤¥#
¤�T��
*�  

If 

�
���
�� ,

�
��
�� , � ∈ G, 

4. +�∧
�� = +�@����
��A, +∧
�� = +@���
��A, 
If 

����
��, ���
��, � ∈ G, 

5. +�∨
�� = +� 5 *
��£
*�6 , +∨
�� = + 5 *

��
*�6 
If 

*
��£
*� , *

��
*� , � ∈ G. 

3. The Structure of the Measurable Is-

Functions 

Theorem 3.1. (is-Lebesgue theorem for is-functions of the 

first kind) Let there be given a sequence �+�
������∞  of 

measurable functions on a set A, all of which are finite 

almost everywhere. Let also, X���
��Y���∞
 be a sequence of 

measurable functions on the set A, 

0 < ¢� ≤ ���
�� ≤ ¢D 

For all natural numbers n and for all � ∈ G, where ¢� and ¢D are positive constants. Suppose that 

lim�→� +�
�� = +
��, 
lim�→����
�� = ��
�� 

Almost everywhere on the set A, and +
�� is finite almost 

everywhere on A, 

¢� ≤ ��
�� ≤ ¢D 

For all � ∈ G. Then 

lim�→�tG@�+��∧
	�	¦� − +�∧
��	�� ≥ §A = 0 

For all § ≥ 0. 
Proof. We will note that the limit functions f(x) and ��
�� 

are measurable and the sets under considerations are 

measurable. 

Let 

G ≔ G
|+| = ∞�, 
i� ≔ G
|+�| = ∞�, 
$ ≔ G
+� ↛ +�, 

" ≔ i ∪ �ri�
�

���
� ∪ $. 

Since 

ti = 0, μC = 0, μB� = 0, 

using the properties of the measurable sets, we have that 

tℚ = 0. 
Let 

Go
§� = G-®+o��o −
+
��® ≥ §0, 
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¯�(§) =rGo(§),
�

o��
 

� =�¯�(§).
�

���
 

We have that 

¯�(§) ⊃ ¯D(§) ⊃ ⋯. 

Hence, 

lim�⇢� t ¯�(§) = t�. 
Let us assume that �� ∉ ℚ.	Then, using the definition of 

the set ℚ , we have 

lim�→�
+o(��)
��o(��) =

+(��).
��(��) 

Since 

0 < ¢� ≤ ���(�), ��(�) ≤ ¢D	,o��,D,⋯,�, 
we have that 

+�(��)
���(��) ,

+D(��)
��D(��) ,⋯ ,

+o(��)
��o(��) ,⋯ 

and their limit 

+(��).
��(��) 

are finite. 

Therefore there is an enough large natural n such that 

®+o(��)��o(��) −
+(��).
��(��)® < § 

for every � ≥ ). Then �� ∉ Go(§), � ≥ ),	where �� ∉ ¯�(§) 
and from here �� ∉ �. 

Consequently � ⊂ ℚ. 
Because tℚ = 0 , from the last relation, we have that t� = 0, i.e., 

lim�→� ¯�(§) = 0, 

and since 

G�(§) ⊂ ¯�(§), 
lim�→�¯�(§) = 0 

or 

lim�→�tG@�+��∧(	�	¦) − +�∧(��	)� ≥ §A = 0. 

As in above one can prove the following results for the 

other kinds of is-functions. 

Theorem 3.2. (is-Lebesgue theorem for is-functions of the 

second kind) Let there be given a sequence �+�(�)����∞  of 

measurable functions on a set A, all of which are finite 

almost everywhere. Let also, X���(�)Y���∞
 be a sequence of 

measurable functions on the set A, 

0 < ¢� ≤ ���(�) ≤ ¢D 

For all natural numbers n and for all � ∈ G, where ¢� and ¢D are positive constants. Suppose that 

lim�→� +�(�) = +(�), 
lim�→����(�) = ��(�) 

Almost everywhere on the set A, and +(�) is finite almost 

everywhere on A, 

¢� ≤ ��(�) ≤ ¢D 

For all � ∈ G. Then 

lim�→�tG@�+��∧(	�) − +�∧(�)� ≥ §A = 0 

for all § ≥ 0. 
Theorem 3.3. (is-Lebesgue theorem for is-functions of the 

third kind) Let there be given a sequence �+�(�)����∞  of 

measurable functions on a set A, all of which are finite 

almost everywhere. Let also, X���(�)Y���∞
 be a sequence of 

measurable functions on the set A, 

0 < ¢� ≤ ���(�) ≤ ¢D 

For all natural numbers n and for all � ∈ G, where ¢� and ¢D are positive constants. Suppose that 

lim�→� +�(�) = +(�), 
lim�→����(�) = ��(�) 

Almost everywhere on the set A, and +(�) is finite almost 

everywhere on A, 

¢� ≤ ��(�) ≤ ¢D 

For all � ∈ G. Then 

lim�→�tG@�+�� (	�	¦) − +� (��	)� ≥ §A = 0 

for all § ≥ 0. 
Theorem 3.4. (is-Lebesgue theorem for is-functions of the 

fourth kind) Let there be given a sequence �+�(�)����∞  of 

measurable functions on a set A, all of which are finite 

almost everywhere. Let also, X���(�)Y���∞
 be a sequence of 

measurable functions on the set A, 

0 < ¢� ≤ ���(�) ≤ ¢D 

For all natural numbers n and for all � ∈ G, where ¢� and ¢D are positive constants. Suppose that 

lim�→� +�(�) = +(�), 
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lim�→����(�) = ��(�) 
Almost everywhere on the set A, and +(�) is finite almost 

everywhere on A, 

¢� ≤ ��(�) ≤ ¢D 

For all � ∈ G. Then 

lim�→�tG(|+�∧(�) − +∧(�)| ≥ §) = 0 

For all § ≥ 0. 
Theorem 3.5. (is-Lebesgue theorem for is-functions of the 

fifth kind) Let there be given a sequence �+�(�)����∞  of 

measurable functions on a set A, all of which are finite 

almost everywhere. Let also, X���(�)Y���∞
 be a sequence of 

measurable functions on the set A, 

0 < ¢� ≤ ���(�) ≤ ¢D 

For all natural numbers n and for all � ∈ G, where ¢� and ¢D are positive constants. Suppose that 

lim�→� +�(�) = +(�), 
lim�→����(�) = ��(�) 

Almost everywhere on the set A, and +(�) is finite almost 

everywhere on A, 

¢� ≤ ��(�) ≤ ¢D 

For all � ∈ G. Then 

lim�→�tG(|+�∨(�) − +∨(�)| ≥ §) = 0 

for all § ≥ 0. 
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