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Abstract: One may observe that the fermionic U(N) Gross-Neveu model at imaginary chemical potential and finite
temperature for odd d dimensions, in the strong coupling regime, by using the gap (saddle point) equation for the fermion
condensate of the model. This equation describes the phase transitions from weak to strong coupling regime. It is pointed out
that the higher odd dimensional gap equations are linear combinations of the lower dimensional equations in a way that as the
dimension of the model increases the lower dimensions are weaker coupled but still in the strong coupling regime. Interestingly,
at a specific value of the chemical potential, exactly in the middle of the thermal windows that separate the fermionic from the
bosonic (condensed) state of the fermions, it is found that the mass of the fermion condensate for d = 3, 5, 7, 9. An anomaly
occurs at the 5 dimensional theory where it is stronger coupled against other theories in higher dimensions and lower energy.
The main idea of this work is that the cut-off Λ regulator for the UV divergent parts of the fermion mass saddle point equation,
plays the role of a physical parameter that makes the separation of the odd dimensional fermionic theories according to how
deep they are in the strong coupling regime. This idea is based on the identity of the asymptotic freedom of the Gross-Neveu
model as a toy model for QCD.
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1. Introduction
One of the most extensively used model for the study

of chiral symmetry, bosonisation physics [1] via statistical
transmutation [2, 3] and condensed matter physics, is the
Gross-Neveu model and its generalizations in the presence
of real and imaginary chemical potential. Recently it has
been connected (see e.g. [4–8]) to particle-vortex duality e.g.
[9]. The extension of fermionic theories to finite temperature
thermal field theory has also been considered (see for example
[10, 11] and references therein), in the context of various
models that describe matter coupled to non-abelian Chern-
Simons fields but also the more recent works about exploring
the symmetry-breaking of conformal theories in the large-
charge limit like [12]. Interestingly, fermion condensation
have been studied at higher dimensions [13, 14] as well as
the anomalies [15, 16] in non-abelian gauge theories like the 5
dimensional Yang Mills-theories, where we have instantons,
associated with a global U(1) symmetry. It seems that the

Gross-Neveu model at imaginary chemical potential and finite
temperature has an interesting identity at 5 dimensions (4 + 1
dimensions for the compact dimension of temperature) that
creates an anomaly of the original asymptotic freedom, arises
from the gap equations of the model.

2. Fermions Coupled to Chern-Simons
in a Monopole Background at 3d

When fermions are coupled to a Chern-Simons gauge
field in a monopole background, unique characteristics arise
within their system. These characteristics include the
manifestation of anyonic statistics. These statistics differ
from both fermionic and bosonic statistics, yet they can
take fractional values. Exploring theories of this nature
holds relevance in the realm of condensed matter physics,
notably in phenomena like the Fractional Quantum Hall Effect
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(FQHE) and topological insulators. Instantons [29] become
relevant during the analysis of an efficient field theory, such
as the Chern-Simons theory, which elucidates the low-energy
behavior of the Fractional Quantum Hall Effect (FQHE).
They offer a structure for comprehending fractionalized
excitations, representing intricate transitions between distinct
topological sectors through nontrivial tunneling processes.
Within these frameworks, one can investigate shifts between
various fractional quantum Hall states, alterations in excitation
statistics, and the creation of energy spectrum gaps.

In scenarios involving finite temperature, fermions coupled

with a gauge field Bν exhibit a temporal component B0. This
component akin to an imaginary chemical potential for the
U(1) charge, as elaborated in references such as [32]. The
work presented in [17] proposed that in the context of three
dimensional Eucliden space, Dirac fermions coupled to an
abelian Chern-Simons field at level k, exhibit a significant link
between the existence of a monopole charge and the existence
of an imaginary chemical potential 1. This relationship can
be comprehended by examining the subsequent fermionic
partition function at finite temperature

Zfer(β, k) =

∫
[DBν ][Dψ̄][Dψ] exp

[
−Sfer(ψ̄, ψ,Bν)

]
, (1)

Sfer(ψ̄, ψ,Bν) = −
∫ β

0

dx0

∫
d2x̄

[
ψ̄(/∂ − i/B)ψ + i

k

4π
ενλρBν∂λBρ + ...

]
. (2)

Additionally, there exist fermionic self-interactions denoted by dots. One may proceed by expanding the Chern-Simons field
around a static monopole configuration, which is independent of time B̄ν [24]

Bν = B̄ν + bν , B̄ν = (0, B̄1(x̄), B̄2(x̄)) , bν = (b0(x0), b1(x0, x̄), b2(x0, x̄)) , (3)

which is normalized as2

1

2π

∫
d2xF̄12 = 1 , F̄νλ = ∂νB̄λ − ∂λB̄ν (4)

and bν is a backround gauge field. Therefore, equation (2) encapsulates the potential for monopole configurations within the
fermionic theory. This corresponds to the scenario where fermions are associated with the attachment of k units of monopole
charge as

Sfer(ψ̄, ψ,Bν) = −
∫ β

0

dx0

∫
d2x̄

[
ψ̄(/∂ − iγiB̄i − iγνbν)ψ + i

k

4π
ενλρbν∂λbρ + ..

]
− ik

∫ β

0

dx0b0 . (5)

We can carry out the path integral over the Chern-Simons
fluctuations by focusing on a sector characterized by a fixed
total monopole charge. To achieve this, one may assume
the existence of a mean field approximation within this
sector, where the spatial fluctuations of the Chern-Simons field

balance the magnetic background gauge field, represented as
〈bi〉 = −B̄i [20]. 3 This is akin to envisaging a reduction
in which the integral of the background gauge field along the
thermal circle remains constant. Subsequently, we derive the
following expression:

Zfer(β, k) =

∫
[Db0][Dψ̄][Dψ] exp

[∫ β

0

dx0

∫
d2x̄

[
ψ̄(/∂ − iγ0b0)ψ + ..

]
+ ik

∫ β

0

dx0b0

]

=

∫
(Dθ)eikθZgc,fer(β,−iθ/β) , (6)

where θ =
∫ β

0
dx0b0(x0), Zgc,fer(β,−iθ/β) is the grand

canonical partition function for the fermionic theory and it
have been used standard formulae from [32]. We see that
the CS level k plays the role of the eigenvalue Q of the
U(1) charge operator. An essential inference can be drawn:
the partition function at finite temperature for Dirac fermions
coupled to an abelian Chern-Simons gauge field with a level
k in a monopole background is tantamount to the canonical
partition function of the fermions with a fixed fermion number
of k.

The preceding discourse underscores the close
interconnection between the partition function of fermions
coupled to an abelian Chern-Simons field in a monopole
environment and the corresponding canonical partition
function characterized by a constant total U(1) charge.
This charge, identified as the instanton number, is borne by
instanton configurations within the theory, akin to particles
in a 5d framework. This analogy resonates with the earlier
illustration of monopole operators in 3d gauge theories [15].

1 My notations follow [32].
2 For example, one may consider the theory on S1 × S2.
3 Further clarification might be valuable regarding the potential requirement of an appropriate large-N for the validity of this approximation.
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The 5d theories, resembling a Yang-Mills theory with a
background gauge field, exhibit infrared freedom and feature
a singularity pole in the ultraviolet regime, necessitating the
implementation of a cut-off regulator denoted as Λ. In this
study, our focus lies in delving into the conceptual significance
of this cut-off, accomplished through an exploration of the
gap equations pertaining to the fermionic Gross-Neveu model
operating under an imaginary chemical potential and at finite
temperature (or through the process of dimensional reduction
by considering the theory on a circle).

3. The U(N) Fermionic Gross-Neveu
at Imaginary Chemical Potential
and Finite Temperature in Odd
Dimensions - The Gap Equations

Within this study, there is an analysis of a fermionic
theory characterized by an odd dimension d, such as the
Gross-Neveu model, while considering an imaginary chemical
potential (linked to the temporal gauge field) and finite
temperature. Concurrently, one may explore the manifestation
of an anomaly within the 5d theory. Notably, the Gross-
Neveu model serves as a simplified representation of Quantum
Chromodynamics (QCD) and its property of asymptotic
freedom. It is well-established that the fermionic Gross-Neveu
model displays distinct patterns of symmetry breakdown at
finite temperature T , especially in the absence of a chemical
potential U(N). At lower temperatures, the model enters a

phase characterized by broken parity symmetry. This phase
diminishes as the temperature approaches a critical value.
Nonetheless, from a prior work in [17] it was demonstrated
a shift in this scenario owing to the presence of an imaginary
chemical potential and its consequent influence on the model’s
phase structure. It was further observed in the same study that
the renowned Bloch-Wigner function [21] bears relevance in
our calculations of the gap equations and free energies. In the
case of odd dimensions d, these calculations can be expressed
as finite sums of Nielsen’s generalized polylogarithms [17,
30, 31]. However, the expressions become significantly more
intricate for even dimensions d. Moreover, it was previously
noted the connection between 1d theories and the physics of
the 3dmodel, as well as the connection of 1d and 3d theories to
the physics of the 5d model, and so forth. Given these reasons,
my focus will be directed towards exploring the extensions of
the 3d model into higher odd dimensions (d > 3). The gap
equations for the model in arbitrary odd dimensions can be
articulated as follows:

3.1. The Gap Equations

The Gross-Neveu (GN) model in a Euclidean space with d
dimensions is characterized by the extension of the 3d action
[18, 19, 26, 27]. In this context, there is a performance
of a dimensional reduction of the d-dimensional theory over
the thermal circle, yielding an effective theory in d − 1
dimensions. This effective theory remains applicable for
distances significantly surpassing the radius β = 1

T , where
β is the inverse temperature.

Sfer = −
∫ β

0

dx0

∫
dd−1x̄

[
ψ̄i(/∂ − iγ0b)ψ

i +
Gd

2(TrId−1)N

(
ψ̄iψi

)2
+ ibNQd

]
, (7)

with Qd the N -normalized d-dimensional fermionic number
density and i = 1, 2, ..N that plays the role of the eigenvalue
of the U(1) charge operator. For odd d we take the dimension
of the gamma matrices to be TrId−1 = 2

d−1
2 .

The d-dimensional gap equation for the fermionic
condensate becomes (by introducing the auxiliary scalar fields
m∗ and b∗):
m∗
Gd

=
m∗
β

∞∑
n=−∞

∫ Λ dd−1p̄

(2π)d−1

1

p̄2 + (ωn − b∗)2 +m2
∗

(8)

The primary challenge encountered when considering the
Gross-Neveu (GN) model in dimensions greater than 3 (d > 3)
is that the gap equation acquires a finite count of higher-order

divergent terms as the ultraviolet cut-off Λ approaches infinity.
Unlike the scenario in d = 3, it’s not feasible to solely manage
these divergences through the adjustment or renormalization
of a single coupling constant Gd. Consequently, we must
address this particular matter by employing an alternative
renormalization technique.

In the subsequent discussion, one will delve into specific
cases to provide a comprehensive understanding of the higher-
dimensional models. I will elaborate on the instances where
d = 5, d = 7, and d = 9 to highlight some of the overarching
traits of these models. Beginning with the case of d = 5
and building upon the findings presented in references such
as [17, 18], we can outline the structure of the gap equation as
follows:

m∗

[
−(M5β

3 +D3(−z∗))−
1

2!
ln2|z∗|

(
D1(−z∗)−

2Γ

3π

)]
= 0 (9)

where

M5

(2π)2
=

1

G5,∗
− 1

G5
, Γ = Λβ (10)
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(for the cut-off Λ regulator I will examine a new approach in
the next subsection) and z∗ = e−ib∗β−m∗β .

In the context of the equation (9), G5 represents the bare
coupling, while G5,∗ signifies the critical coupling at zero
temperature. Should M5 possess a value greater than zero,
it implies that G5 exceeds G5,∗, thereby entering the domain
of strong coupling. Consequently, the existence of a non-zero
solution for m∗ in equation (9) would lead to the breaking of
parity symmetry by giving mass to elementary fermions.

In deriving the gap equation, one has omitted an infinite
number of terms that scale inversely with powers of Λ, and
also observed that the last term within the parentheses mirrors
the analogous gap equation in three dimensions. Notably, we
discern indications of a partial deconstruction of the higher-
dimensional models, where they can be expressed in terms of
lower-dimensional quantities.

As we move into dimensions d > 3, a pivotal aspect
emerges in the explicit inclusion of the cut-off within the gap
equation. This becomes evident when comparing the 5d case
with the 3d counterpart. One may underscored the fact that

M5 remains independent of the cut-off Λ. As a result, for a
given temperature, the 5d gap equation transforms into a two-
parameter equation for z∗. This implies that there is no clear-
cut method to manipulate the single coupling constant of the
theory, represented by the parameter M5, in a manner that
yields a result free from cut-off dependence. This is indicative
of the nonrenormalizability of the 5-dimensional theory unless
an alternate method is employed.

When introducing an imaginary chemical potential, the
situation grew more intriguing. One may encountered once
again nontrivial roots of D3(−z∗) situated on the unit circle.
This discovery enabled me to explore the critical theory
while setting M5 to zero. Through a brief exploration using
Mathematica, one may identifies two zeros of D3(−z) on the
unit circle. These zeros hold significance in determining the
thermal windows where the system undergoes bosonization.
Interestingly, in [18], there is an approximation of their
positions to a high degree of precision, and their values
were found to be rational multiples of π, as highlighted in a
comprehensive study [25], as:

D3(−e−iβb∗) = Cl3(βb∗ ± π) = 0⇒ βb∗ ≈
7π

13
or

19π

13
(mod 2π) . (11)

Using the periodic properties of the Clausen functions, the
relevant results are

Cl3

(
6π

13

)
= Cl3

(
20π

13

)
= 0.000362159 . (12)

One may observe that this pattern extends across all odd
dimensions. The charge becomes zero, and the system

undergoes bosonization. Nevertheless, in distinction from the
analogous scenario in d = 3, a non-zero solution for m∗ in the
critical conditionM5 = 0 becomes contingent on the arbitrary
parameter Γ.

Recalling the seven-dimensional case, which effectively
demonstrates how my findings hold true for higher dimensions
[18], the gap equation can be expressed as follows:

m∗

[
(−M7β

5 +D5(−z∗)) +
1

3!
ln2|z∗|

(
D3(−z∗) +

Γ3

45π

)
+

1

4!
ln4|z∗|

(
D1(−z∗)−

4Γ

15π

)]
= 0 (13)

where the parameter Γ has been defined above, and

3M7

(2π)3
=

1

G7,∗
− 1

G7
. (14)

As in previous case, it’s evident from the initial equation of
the d = 7 scenario that terms corresponding to the respective
three- and five-dimensional gap equations are present.

Additionally, as previously mentioned, we observe that
attempting to adjust Γ to eliminate the constant terms D3(−1)

andD1(−1) in the expansion of the gap equation nearm∗ = 0,
and consequently achieve a definite multicritical behavior for
the effective action, turns out to be unfeasible. This challenge
persists clearly for all dimensions d > 7.

Proceeding to the case of a non-zero chemical potential,
we can seek the roots of the critical gap equation located on
the unit circle. Once again, their positions are strikingly well
approximated, even more precisely than in the d = 5 case, by
rational multiples of π, as follows:

D5(e−iβb∗) = Cl5(βb∗ ± π) = 0⇒ βb∗ ≈
26π

51
or

76π

51
(mod 2π) . (15)

The relevant result is

Cl5

(
25π

51

)
= Cl5

(
77π

51

)
= 0.000129657 (16)

The 9d gap equation in the same way is:
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m∗[−(M9β
7 +D7(−z∗))−

ln2 |z∗|
4!

(D5(−z∗)−
4Γ5

1

525π
)−

− ln4 |z∗|
5!

(D3(−z∗) +
4Γ3

2

315π
)− ln6 |z∗|

6!
(D1(−z∗)−

16Γ3

175π
)] = 0 (17)

where Γ = Λβ the cut-off and

15M9

(2π)4
=

1

G9,∗
− 1

G9
. (18)

An intriguing observation, as highlighted in the Introduction, is that the gap equation for higher odd dimensions (such as the
9d case) can be expressed as a linear combination of the equations from lower dimensions (3d, 5d, and 7d). This relationship can
be articulated as follows:

m∗(−g9 −
ln2 |z∗|

4!
g7 −

ln4 |z∗|
5!

g5 −
ln6 |z∗|

6!
g3) = 0 (19)

and for m∗ 6= 0

g9 = − ln2 |z∗|
4!

g7 −
ln4 |z∗|

5!
g5 −

ln6 |z∗|
6!

g3 (20)

where gd the gap equation for d = 3, 5, 7, 9. I believe that this result could also be repeated in the case of fermions coupled with
a non-Abelian Chern-Simons field in a suitable gauge approximation, constituting a generalization of [11] for d = 5, 7, 9, ....

Again for non-zero values of the chemical potential we have the thermal window’s opening and closing values of βb∗

D7(e−iβb∗) = Cl7(βb∗ ± π) = 0⇒ βb∗ ≈
103π

205
or

307π

205
(mod 2π) . (21)

The relevant result is

Cl7

(
102π

205

)
= Cl7

(
308π

205

)
= −0.000101475 (22)

The fundamental characteristics outlined earlier remain
consistent as we transition to higher dimensions. The
partial deconstruction of d-dimensional gap equations into
components from lower dimensions persists. In specific terms,
the d-dimensional gap equation incorporates elements from
gap equations of dimensions d− 2, d− 4, ..., 5, 3.

The thermal windows are:

Table 1. Thermal Windows for the Gross-Neveu model.

Dimensions Closing T Opening T

3 3b∗
4π

3b∗
2π

5 13b∗
19π

13b∗
7π

7 51b∗
76π

51b∗
26π

9 205b∗
307π

205b∗
103π

11 819b∗
1228π

819b∗
410π

Let’s direct our attention to the scenario concerning the
thermal window of the 3d theory. The borders for b∗ are
2πT/3 and 4πT/3. These are the points where D2(−z∗)
[21, 23] takes its maximum value (imaginary part) on the unit
circle. On the unit circle D2(−z∗) = Cl2(π ± βb∗). At the
middle point of the thermal windows Deven(−z∗) is zero and
we are at the full bosonisation points.

3.2. The Running Cut-off Λd

The concept of a running cut-off Λd in the context of
quantum field theory refers to the idea of using a momentum
(energy) dependent scale in the regularization of divergent
loop integrals. Unlike a fixed cut-off Λ, which imposes a
universal upper limit on momenta in all processes, a running
cut-off varies with the momentum involved in a specific
process [35–38]. The purpose of using a running cut-off is
to better capture the energy scale of the physics being probed
in a given calculation.

In quantum field theory, loop diagrams involving virtual
particles can lead to divergent integrals that do not produce
meaningful results without regularization. A fixed cut-off
involves truncating momenta above a fixed scale Λ, but this
can be overly simplistic, as different processes might involve
vastly different energy scales.

By using a running cut-off Λd, the regularization takes
into account the fact that different loop momenta contribute
differently to the overall process depending on their energy
scale. At low momenta, the cut-off is effectively larger,
allowing for a broader range of momenta to contribute. At
high momenta, the cut-off is smaller, regulating the potentially
divergent behavior of the loop integrals.

The running cut-off may be used in theoretical studies,
especially in the context of effective field theories or models
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that aim to describe physics at different energy scales, like
the Gross-Neveu model at finite temperature and for arbitrary
odd dimensions of this work. However, it introduces its
own complexities and challenges, particularly in the context
of renormalization, where the regulator’s behavior must be
carefully controlled to ensure that physical predictions remain
consistent and meaningful.

The running cut-off concept is particularly relevant when
trying to bridge the gap between high-energy and low-energy
descriptions of particle interactions and when dealing with
strongly interacting systems like Quantum Chromodynamics
(QCD). We have to explore different functional forms for the
running cut-off in order to achieve physically meaningful and

consistent results in our calculations. In the next section it will
be presented a completely new method of regularization for
theories with fermions when d > 3.

4. Strongly Coupled Fermions and
Anomaly of the 5d Gap Equation

To calculate the condensate gap-equation of the U(N)
Gross-Neveu model in arbitrary odd dimensions and in the
presence of imaginary chemical potential µ = −ib we may
use the Euclidean action from [18].

Sfer = −
∫ β

0

dx0

∫
dd−1x̄

[
ψ̄i(/∂ − iγ0b)ψ

i +
Gd

2(TrId−1)N

(
ψ̄iψi

)2
+ ibNQd

]
, i = 1, 2, ..N. (23)

where Qd is the eigenvalue of the N -normalized fermion number density operator Q̂d = ψi†ψi/N in d odd dimensions and it
comes from the Lagrangian of the model that possesses a U(1) global symmetry. Introducing an auxiliary scalar field m the
canonical partition function is given by

Sfer,eff = iQd

∫ β

0

dx0

∫
dd−1x̄ b− TrId−1

2Gd

∫ β

0

dx0

∫
dd−1x̄m2 + Tr ln(/∂ − iγ0b + m)β (24)

To evaluate the condensate gap equation one may look for constant saddle points b∗ and m∗. At large-N we have the gap
equation

∂

∂m
Sfer,eff

∣∣∣∣∣
m∗,b∗

= 0 ⇒ −m∗
Gd

+
m∗
β

∞∑
n=−∞

∫ Λ dd−1p̄

(2π)d−1

1

p̄2 + (ωn − b∗)2 +m2
∗

= 0 (25)

where the fermionic Matsubara sums are over the discrete
frequencies ωn = (2n + 1)π/β. The divergent integrals are
regulated by the cut-off Λ.

The main issue with the GN model in d > 3 is that the gap
equation has a finite number of higher order divergent terms

as Λ → ∞, which cannot be simply taken care of by the
adjustment/renormalization of the single couplingGd. In order
to calculate the above integral of the general d gap equation we
may use a standard inversion formula for the hypergeometric
function which allows to obtain the cut-off Λ part.

∫ Λ ddp

(2π)d
1

p2 +m∗2
=

1

Gd,∗
− Λd−2

d− 2

Sd
(2π)d

2F1

(
1,
d

2
− 1;

d

2
;− Λ2

m∗2

)
=

1

Gd,∗
− Sd

(2π)d

[
Γ

(
d

2

)
Γ

(
2− d

2

)
m∗d−2

d− 2
+
m2
∗Λ

d−4

d− 4
2F1

(
1, 2− d

2
; 3− d

2
;−m∗

2

Λ2

)]
(26)

where Sd = 2πd/2/Γ(d/2). This way we see that for
odd d there are a finite number of divergent terms as Λ →
∞. To avoid these divergent parts we have to try a kind
of regularization (similar to [22]) where the gap equation
is Dodd(−z∗) = 0 at the highest odd dimension and at
the critical point of the corresponding field theory. The
lower dimensions have their own gap equations inside the
gap equation of the d model. A new approach gives to the
cut-off Λ different values depending on the dimension of the
gap equation. It is like we change the bare cut-off Λ with a
running cut-off Λd that varies as a function of energy (see for
example [37–39]). It takes into account the renormalization
group flow of the theory, which describes how the theory’s
parameters evolve as the energy scale changes, instead of the
bare cut-off which is a fixed regularization scale introduced at

the beginning of a calculation to handle UV divergences. Let’s
see for example (26) at d = 7. The last hypergeometric term
gives us the sum:

m2
∗Λ

3
d

3
−m4

∗Λd −
m6
∗

Λd
(27)

For large energies (large running cut-off) the last term of
(27) goes to zero so, we may always regulate the theory of
higher dimension in higher energy in order to eliminate the 1

Λd
part. On the other hand the other terms are infrared free, so
we have to regularize the theory. As the dimension decreases
the running cut-off (energy) increases and the theory is at its
weak coupling. On the other hand as the dimension increases
the running cut-off decreases and the fermions are more
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stronger coupled according to asymptotic freedom. Similar
renormalisation methods have been used in [40, 41] with a hard
momentum cut-off with p2 < Λ2, where the only degrees of
freedom are those with momentum less than the cut-off. These
methods have application in determining the correspondence
between the Wilsonian cut-off scale on the boundary and its
holographically dual bulk theory. The critical gap equation
(Md = 0) in odd dimensions that determines the condensate
mass is (I assume that we are at T = 0 where we substitute the
bare coupling with its renormalized version):

−Mdβ
d−2 +Dd−2(−z∗) = 0→ Dd−2(−z∗) = 0 (28)

for d = 3, 7, 11, ...
and

Mdβ
d−2 +Dd−2(−z∗) = 0→ Dd−2(−z∗) = 0 (29)

for d = 5, 9, 13, ....
a. 3d gap equation
The gap equation in 3 dimensions of the Gross-Neveu model

at imaginary chemical potential at the critical pointM3 = 0
or G3 = G3,∗ and for b∗ = π/β, m∗ 6= 0 turns to:
m∗
[
−M3β +D1(e−m∗β)

]
= 0 → m∗D1(e−m∗β) =

0 → D1(e−m∗β) = 0 → ln(1 − e−m∗β) − ln |e
−m∗β |

2 = 0.
Then:

m∗β = lnφ2 (30)

[17, 28]. Also −z∗ = e−m∗β at b∗ = π/β and β = 1
T .

b. 5d gap equation
The gap equation in 5 dimensions of the Gross-Neveu model

at imaginary chemical potential for b∗ = π/β, m∗ 6= 0 turns
to:

m∗[−(M5β
3 +D3(e−m∗β))− ln2 |z∗|

2!
(D1(e−m∗β)− 2Γ

3π
)] = 0 (31)

where Γ = Λβ the cut-off. Obviously the gap equation
includes the D3 part for the 5d theory and the 3d gap equation
with the D1 part. If we set Γ = Λ3β, put the 5d theory
at the critical point M5 = 0 or G5 = G5,∗ and assume
that D1(e−m∗β) − 2Λ3β

3π = 0, we find from gap equation
D3(e−m∗β) = 0:

m∗β = 2.03185 (32)

and from the 3d equation that Λ3β = 4.12525.
We see that D1(e−m∗β)− 2Λ3β

3π = 0 is the 3d gap equation
so we may change 2Λ3β

3π withM(5)
3 β which is the mass scale

that separates weak from strong coupling of the 3d theory
included in the 5d theory.

c. 7d gap equation
The gap equation in 7 dimensions of the Gross-Neveu model

at imaginary chemical potential and for b∗ = π/β, m∗ 6= 0
turns to:

m∗[(−M7β
5 +D5(e−m∗β)) +

ln2 |z∗|
3!

(D3(e−m∗β) +
Γ3

1

45π
) +

ln4 |z∗|
4!

(D1(e−m∗β)− 4Γ2

15π
)] = 0 (33)

where Γ = Λβ the cut-off. Again the gap equation includes
the D5 part for the 7d theory and the 5d and 3d equations
with D3 and D1 parts respectively. If we set Γ2 = Λ3β and
Γ1 = Λ5β and put the 7d theory at the critical pointM7 = 0
or G7 = G7,∗, we find from gap equation D5(e−m∗β) = 0:

m∗β = 2.89218 (34)

and that Λ5β = 6.0403 from D3(e−m∗β) + (Λ5β)3

45π = 0 and
Λ3β = 16.3642 from D1(e−m∗β)− 4Λ3β

15π = 0.

We will also change (like the 5d case) 4Λ3β
15π withM(7)

3 β and
(Λ5β)3

45π withM(7)
5 β3, which are the mass scales that separate

weak from strong coupling of the 3d and 5d respectively,
included in the 7d theory.

d. 9d gap equation
The gap equation in 9 dimensions of the Gross-Neveu model

at imaginary chemical potential for b∗ = π/β, m∗ 6= 0 turns
to:

m∗[−(M9β
7 +D7(e−m∗β))− ln2 |z∗|

4!
(D5(e−m∗β)− 4Γ5

1

525π
)− (35)

− ln4 |z∗|
5!

(D3(e−m∗β) +
4Γ3

2

315π
)− ln6 |z∗|

6!
(D1(e−m∗β)− 16Γ3

175π
)] = 0

where Γ = Λβ the cut-off. If we set Γ1 = Λ7β, Γ2 = Λ5β and
Γ3 = Λ3β and put the 9d theory at the critical pointM9 = 0
or G9 = G9,∗ we find from D7(e−m∗β) = 0:

m∗β = 3.68896 (36)

and that Λ7β = 3.8873 from D5(e−m∗β) − 4(Λ7β)5

525π = 0,

Λ5β = 9.8758 from D3(e−m∗β) + 4(Λ5β)3

315π = 0 and Λ3β =

65.0883 from D1(e−m∗β)− 16Λ3β
175π = 0.
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We will also change (like the 5d and 7d cases) 16Λ3β
175π with

M(9)
3 β, 4(Λ5β)3

315π with M(9)
5 β3 and 4(Λ7β)5

525π with M(9)
7 β5,

which are the mass scales that separate weak from strong
coupling of the 3d, 5d and 7d respectively, included in the 9d
theory. All the values of the mass scales were calculated and
listed in table 3 as parts of the odd dimensional gap equations
we study. For example as we see in table 3,M(5)

3 β = 0.8754,

M(7)
5 β3 = 1.5589,M(9)

7 β5 = 2.1527, etc.
The higher dimensions gap equations contain the lower

dimension equations giving us an idea of what happens to
the strong coupling in lower dimensions when in the upper
dimension we are at the critical point Modd = 0 (the lower
dimensions are weaker coupled but still in the strong coupling
regime, since Godd > Godd,∗). The overall picture inside the
strong coupling regime for various odd dimensions is:

Table 2. Inside the strong coupling regime.

Dimensions Λ3β Λ5β Λ7β Λ9β Λ11β Λ13β m∗β

3 0 − − − − − 0.9624 = lnφ2

5 4.1252 0 − − − − 2.03185 ≈ ln(3φ2)

7 16.3642 6.0403 0 − − − 2.89218 ≈ ln(7φ2)

9 65.0883 9.8758 3.8873 0 − − 3.68896 ≈ ln(15φ2)

11 ... ... ... ... 0 − 4.46019 ≈ ln(33φ2)

13 ... ... ... ... ... 0 5.21997 ≈ ln(71φ2)

∞ ∞ .... .... ... ... ... ∞

where φ = 1.618 is the golden ratio and the approximation of
the m∗β condensate mass at 5d is 98.5%, at 7d is 99.4%, at 9d
is 99.5%, at 11d is 99.9% and at 13d is 99.9%...

Interestingly, the fermion condensate mass has a general
value of the form:

m∗β = ln(αnφ
2) (37)

where αn = 1, 3, 7, 15, 33, 71, 151, 319..., (n = 1, 2, 3.. and
α1 = 1) [33]. These values are of the form:

αn+1 = 2αn + αk (38)

where αk = 1, 1, 1, 3, 5, 9, 17, 29..., (k = 1, 2, 3..) from
[34] with αk+1

αk
= φ and αk has the growth rate of the

Fibonacci numbers. One may find an interesting approach
to a finite temperature fermionic theory where the thermal
mass is calculated in [14]. We see that as dimension
increases the 3d theory at its strong coupling version always
contributes the lnφ2 part. All the other dimensions contribute
ln 3, ln 7, ln 15, .... By using the changes in the included Λ
parts in the 5d, 7d and 9d gap equations that mentioned
before, with the associated mass scales M, we end up with
the corresponding picture:

Table 3. Gap equations for arbitrary odd dimensions.

Dimensions gap 1 gap 2 gap 3 gap 4

3 D1(−z∗) = 0 − − −

5 D1(−z∗)− 0.8754 = 0 D3(−z∗) = 0 − −

7 D1(−z∗)− 1.3890 = 0 D3(−z∗) + 1.5589 = 0 D5(−z∗) = 0 −

9 D1(−z∗)− 1.8692 = 0 D3(−z∗) + 3.8933 = 0 D5(−z∗)− 2.1527 = 0 D7(−z∗) = 0

∞ .... .... .... ....

We see that as the dimension increases we need larger values
of the cut-off (more energy) to regulate the theories. But
according to asymptotic freedom of the Gross-Neveu model,
higher energies are equivalent to weaker coupling between
the fermions. This does not seem to happen when going
from 5 to 7 dimensions (at the 9d theory). Although the
cut-off Λ5β is larger than Λ7β (so the 5 dimensional theory
is in larger energy conditions and weaker coupling) the gap
equation that separates the weak from the strong coupling
implies that the 5 dimensional theory is deeper in the strong
coupling regime than the 7 dimensional theory (3.8933 >

2.1527 or M(9)
5 β3 > M(9)

7 β5). It would be interesting to

further examine this anomaly in the future, since it might be
another mechanism than strongly coupled dynamics that give
rise to Fermi condensation like [36] or instanton configurations
that behave like particles [15].

5. Free Energy at the Full Bosonisation
Points m∗β = ln (αnφ

2) and βb∗ =
π

Let’s see for example the free energy density for the model
at 5d by using a result from [18].
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1

NTrI4
∆f(5) =− m2

∗
2G5,∗

+
β4m4

∗Γ

24π3β5
+

3

4π2β5

[
D5(−z∗)−

1

24
ln4 |z∗|D1(−z∗)

]
+

βb∗
8π2β5

[
D4(−z∗) +

1

6
ln2 |z∗|D2(−z∗)

]
. (39)

The term that appears in the mass gap equation is β4m4Γ
24π3β5 −

1
32 ln4 |z∗|D1(−z∗) and it is zero for m∗ = ln(3φ2) and
βb∗ = π according to the 5d case above. For the system
to be in the chirally broken phase at T = 0 we set as
usual the corresponding value analogue toM5 (instead of the
renormalized G part) which is zero at the critical point. The

last term is the charge Q5 where at the full bosonisation point
is zero and there is an absence of charged excitations with the
canonical partition function of the system to be given by the
grand canonical partition function of the same system at fixed
imaginary chemical potential [17]. So the free energy at 5d and
at the full bosonisation point b∗ = π/β and m∗β = ln(3φ2) is

1

NTrI4
∆f(5) =

3

4π2β5
D5(e− ln(3φ2))→

∆f(5)

N
=

3

π2β5
D5(e− ln(3φ2)) ≈ 3

4ζ(5)

5π2β5
(40)

with 99% accuracy in the result.
A similar procedure is following for the higher odd dimensions from results in Appendices A and B of [18] and I end up with

the table above.

Table 4. The free energies.

Dimensions
∆f(3)

N

∆f(5)
N

∆f(7)
N

∆f(9)
N

∆f(11)
N m∗β

3 4ζ(3)

5πβ3
− − − − 0.9624 = lnφ2

5 − 3
4ζ(5)

5π2β5
− − − 2.03185 ≈ ln(3φ2)

7 − − 15
4ζ(7)

5π3β7
− − 2.89218 ≈ ln(7φ2)

9 − − − 105
4ζ(9)

5π4β9
− 3.68896 ≈ ln(15φ2)

11 − − − − 945
4ζ(11)

5π5β11
4.46019 ≈ ln(33φ2)

where

∆f(d)

N
= 0.96166/πβ3, 2.46186/π2β5, 12.13245/π3β7, 85.42275/π4β9, 774.9189/π5β11, ... (41)

for d = 3, 5, 7, 9, 11 dimensions respectively. We observe the
fractional number c̃ = 4

5 that appears in [28] as a factor in
all the free energy densities at the full bosonisation point with
an approximation with accuracy over 97.6%. The generalized
form of the free energy densities at the full bosonisation points
is:

∆f(2n+1)

N
= an

c̃ζ(2n+ 1)

πnβ2n+1
(42)

where ζ(2n+1) is the Riemann zeta function, n = 1, 2, 3, 4, ..
and an = 1, 3, 15, 105, .., (2n− 1)!! , with a1 = 1.

6. Conclusion

The main message of this work is that although there
are infrared free terms in the gap equations of the odd d
Gross-Neveu model at imaginary chemical potential and finite
temperature (large N approximation), we can deal with them
by using the higher odd dimensional gap equation as a linear
combination of the lower dimensional equations. In the whole
process there is an introduction of a new idea of the running
cut-off Λd that varies as a function of energy and describes the

connection between the theory’s parameters with the energy
scale. My calculations have unveiled a generalized form of the
mass of the fermionic condensate (37) inside the temperature
windows of the model and the values of the free energy
densities of the form (42) which are analogous to the rational
number c̃ = 4

5 with a very good approximation.
I believe that my results offer a new window into the physics

of bosonisation. As it was briefly alluded to in the text there
is a kind of anomaly in the gap equation in 5d which may
be due to another mechanism of fermion condensation than
the strongly coupled dynamics or instanton configurations. It
would be interesting to examine this identity better in future
work.
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