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Abstract: In 1927, Earle Hesse Kennard derived an inequality describing Heisenberg’s uncertainty principle. Since then, we 
have traditionally been using the standard deviation as the measure of uncertainty in quantum mechanics. But Jan Hilgevoord 
asserts that the standard deviation is neither a natural nor a generally adequate measure of quantum uncertainty. Specifically, he 
asserts that the standard deviations are inadequate to use as the quantum uncertainties in the single- and double-slit diffraction 
experiments. He even tells that from these examples it will become clear that the standard deviation is the wrong concept to 
express the uncertainty principle generally and that the Kennard relation has little to do with the uncertainty principle. We will 
investigate what are adequate as the measures of quantum uncertainty. And, beyond that, we will investigate the effects of 
multiplying the two uncertainties; namely, characteristics which is hiding in deep interior of the Kennard inequality. Through 
investigations we’ll come to naturally realize that his assertions were wrong. All of our discussions will help raise understanding 
of the Heisenberg uncertainty principle. Our discussions will afford us an opportunity to think about the essence of the Fourier 
transform. The aim of this paper is to draw conclusions about whether the Kennard inequality is justified or not. 
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1. Introduction 

Heisenberg’s uncertainty principle [1] is one of the most 
famous foundations of quantum mechanics. Shortly after 
the publication by Werner Heisenberg, Earle Hesse 
Kennard derived ���� ≥ ℏ 2⁄  describing Heisenberg 
uncertainty principle, where �� and �� are the standard 
deviations of position �  and momentum 	  [2]. Since 
then, we have traditionally been using the Kennard 
inequality as the uncertainty relation [3-11]. However Jos 
B. M. Uffink and Jan Hilgevoord assert that using the 
standard deviation and the Kennard inequality is not 
generally justified [12, 13]. Specifically, Hilgevoord 
asserts that using the standard deviation in the experiments 
in which electrons are incident on a slit is unjustified [13]. 
In regard to such a historical fact, we can doubt the 
followings: is there the reason why we use the standard 
deviation as the measure of uncertainty in quantum 
mechanics?; may we use some other quantities instead of 
using the standard deviation as the measure of quantum 
uncertainty?; if we may use some other quantities instead 

of the standard deviation, what are merits and demerits of 
each measure?; and so on. This article aims to arrive at 
rational conclusions on the justification and validity of the 
Kennard inequality by answering these questions. Finally, 
we will be able to better understand the essence of 
Heisenberg uncertainty principle. 

2. Discussions 

2.1. Measures of Spread in Mathematical Statistics 

The author makes it clear that all of the contents stated in 
current section are facts on usual mathematical statistics which 
has absolutely nothing to do with quantum mechanics. Let us 
recall some results from mathematical statistics. When a 
statistical distribution is given, there are various measures of 
spread: standard deviation, absolute deviation, and so on [14]. 
Note that absolute deviation in this article indicates absolute 
mean deviation which is defined as the average of the absolute 
deviations taken from mean. The quantity such as the sixth root 
of the average of the sixth powers of deviations is also possible as 
a measure of spread, although this measure is complicated. In this 
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way, we can define infinitely many measures of spread. In a 
purely notional aspect, we can tell that the absolute deviation of 
all possible measures of spread is the most ideal measure. But the 
absolute deviation is intricate to calculate; instead, we get around 
such a problem by adopting the standard deviation. Moreover, the 
standard deviation and various mathematical quantities build the 
simple relations such as the Chebyshev inequality [15]. 
Consequently, the advantage of being algebraically simpler is 
further highlighted than the advantage of being notionally more 
ideal. We eventually adopt the standard deviation as the measure 
of spread. Bear in mind that regardless of the shape of the curve 
of a statistical distribution, the defining equation of measure of 
spread is not changed. Additionally, when we determine what to 
adopt as the measure of spread, the shape of the curve of the 
distribution doesn’t affect the criteria of our choice. 

2.2. Absolute Deviation as a Measure of Quantum 

Uncertainty 

Now let us return to quantum mechanics. We raised a series of 
questions in the introduction. In Section 2.1, we can get clues to 
the solutions of those questions. The standard deviation has 
traditionally been used as the measure of quantum uncertainty 
[3-11]. The standard deviation is merely one of the measures of 
spread. But, if we only purely notionally consider what to adopt 
as the measure of quantum uncertainty, the absolute deviation is 
more ideal than the standard deviation. But in quantum 
mechanics as in usual statistics, the absolute deviation is 
algebraically much more complex than the standard deviation. 
Let’s take a look at the mathematical complexness of the absolute 
deviation through many concrete examples. Calculating the 
product of the two uncertainties of canonical variables � and 	 
will be sufficient. Table 1 shows the products of the two 
uncertainties in two situations: the first situation of adopting the 
standard deviation and the second situation of adopting the 
absolute deviation. The second column indicates the products of 
the two standard deviations for various wavefunctions in the 
situation that we adopt the standard deviation. The third column 
indicates the products of the two absolute deviations for various 
wavefunctions in the situation that we adopt the absolute 
deviation. Because 
 is a wavenumber, the Dirac constant ℏ 
doesn’t appear in Table 1. 

Table 1. The products of the two uncertainties for various wavefunctions. 

wavefunction 
�〈
�〉 − 〈
〉� ×�〈��〉 − 〈�〉�  

〈|
 − 〈
〉|〉 × 〈|� − 〈�〉|〉 
���������
�� 

�� = 0.524  "#$%&' "()� = 0.306  

,-.
�/�.�0
 

1" = 0.5  
1� = 0.318  

44� + 
�/�4�  �1" = 0.707  
1� = 0.318  

� 708
9,-�
  

: ≤ 
  

√="√> = 0.592  @=AB= 1�=>� = 0.354  

�0C
0,-�
  
√>"√D = 0.645  @>AB> 11E� = 0.372  

wavefunction 
�〈
�〉 − 〈
〉� ×�〈��〉 − 〈�〉�  

〈|
 − 〈
〉|〉 × 〈|� − 〈�〉|〉 
: ≤ 
  

#�� − 
�(� F8F9�8  

|
| ≤ �  

� >1G = 0.598  
=>�G� = 0.373  

#
 − 
�(√C:  : ≤ 
 ≤ F  
� >1G = 0.598  

=>�G� = 0.373  

√0
�,-�
  : ≤ 
  

√D" = 0.866  @DABD 1� = 0.428  

We can see from this table that when we adopt the absolute 
deviation as the measure of quantum uncertainty, the result 
values of multiplying the two uncertainties are relatively more 
intricate numbers. As we might expect, not only the result 
values but also intermediate calculation processes are more 
intricate. This one fact tells a great deal about justification of 
the standard deviation adoption. Thus we come to an 
important conclusion: from a perspective of algebraical 
complexity, the standard deviation is the best measure of 
quantum uncertainty. But algebraic simplicity isn’t everything. 
In fact, there are much more important considerations which 
soon we will discuss. Even though algebraic simplicity is an 
important consideration, it is never the essential consideration. 
By the way, there is an interesting fact about the Gaussian 
wavefunction. You know, when we adopt the standard 
deviation as the measure of quantum uncertainty, the Gaussian 
wavefunction hits the position-momentum uncertainty limit. 
But, note that if we adopted the absolute deviation, it would be 
very difficult to know what is the minimum-uncertainty 
wavefunction. 

2.3. Standard Deviation as a Measure of Quantum 

Uncertainty 

We are now in a position to discuss the essence of the 
Kennard inequality in earnest. While Uffink and Hilgevoord 
assert that in the slit diffraction experiments, the standard 
deviation is not adequate as the measure of quantum 
uncertainty, they propose certain concepts related to the width 
of a function as an alternative [12, 13]. They try to express 
mathematically the uncertainty principle using those concepts 
[12]. Hilgevoord concludes that the Kennard inequality is not 
always an adequate expression of the uncertainty principle 
[13]. Hilgevoord seems to believe that we must be able to 
explain the uncertainty principle using the concept of the 
width of a function. However, he is losing sight of at least 
three facts. One fact which he is missing is that for us to 
explain the uncertainty principle by drawing the width of a 
function is in order to explain the principle roughly, not 
rigorously. Even if we confine our discussion to the 
square-integrable wavefunctions, our explanation by drawing 
is rough explanation. Of course! Mathematicians have not 
given a general definition to the width of a function as well. 
But, even though there is not the rigorous concept of the width 
of a function, or, even if we do not use at all the concept of the 
width of a function, we have no trouble not only describing the 
physical meaning of the uncertain principle but also 
describing mathematically the uncertain principle. Such a fact 
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will become increasingly clear, as our discussion proceeds. 
Another fact which Hilgevoord is missing is that the Fourier 

transform has an extraordinary ability to control the measure 
of spread. Obviously, he is underestimating such an ability of 
the Fourier transform. He asserts that because the standard 
deviation gives a large weight to the tails of a distribution, the 
standard deviation is not an adequate measure [13]. But the 
defining equation of a measure of spread is not affected by the 
shape of the curve of a statistical distribution. The logic of his 
arguments is extremely similar to the following argument: 
when we evaluate the area under the graph of a function over 
an interval, the formula to calculate the area is influenced by 
the shape of the graph. Of course, actually, the formula which 
calculates the area isn’t influenced by the shape of the graph. 
All you have to do is to perform the definite integral without 
caring about the tails of the distribution curve. Don’t care 
about the shape of the graph of the original function, and find 
the antiderivative of the function. Even if we accept to some 
extent his worry about the weight, it will result in no problem 
at all. The reason for no problem is due to the extraordinary 
ability of the Fourier transform. We perform the Fourier 
transform to obtain other variable which constitutes a pair of 
canonical variables [15]. At this point the Fourier transform 
removes his worry. A detailed discussion of this will be 
continued in the next paragraph. 

The other fact which Hilgevoord is missing is about the 
effects and/or results of multiplying the two uncertainties. It 
seems that he has not thought deeply about the validity of 
multiplying the two uncertainties. We will be able to say that a 
superficial reason why we multiply the two uncertainties is the 
fact that the product of position and momentum has the same 
units as the product of energy and time. Moreover, we can 
additionally think over a more important reason which 
approaches the essence of the Kennard inequality. This 
essential reason is closely related with our discussion in the 
previous paragraph. View Table 1 again. We can see that the 
range of the results of multiplications for many wavefunctions 
is narrow, although there is a case, such as a particle in the 
infinite square well, in which the product of the two 
uncertainties infinitely increases with increasing quantum 
number. The result values of multiplication are in the range of 
about 0.3~0.9 for the wavefunctions given in Table 1. Here we 
can realize the mighty power of the Fourier transform. 
Regardless of whether we adopt the standard deviation or the 
absolute deviation, and no matter which wavefunction we 
choose, the values of the product of the two uncertainties in 
the table are roughly equal; namely, there is a tendency for the 
value of the uncertainty of one variable to be inversely 
proportional to the value of the uncertainty of the other 
variable. This tendency originates in amazing ability of the 
Fourier transform to control the spread of data. Therefore, we 
don’t have to think seriously of the shape of the curve of a 
distribution. This is the very mighty power of the Fourier 
transform. 

2.4. Confirmation of the Ideality of Absolute Deviation 

Because of the two facts, we can once again confirm that the 
absolute deviation is notionally more ideal than the standard 
deviation. The most important fact of the two facts is that for 
the same wavefunction, the value of multiplication in the 
situation of the absolute deviation is always smaller than the 
value of multiplication in the situation of the standard 
deviation. The other fact of the two facts is that the range of 
the results of the products in the situation of the absolute 
deviation is narrower than the range of the results of the 
products in the situation of the standard deviation: for the 
wavefunctions given in Table 1, the range is approximately 0.428 − 0.306 = 0.122  in the situation of the absolute 
deviation and approximately 0.866 − 0.5 = 0.366  in the 
situation of the standard deviation. 

2.5. Infimums in Uncertainty Relations 

For a long time, the Kennard inequality has been a strong 
expressive means to describe mathematically the uncertainty 
principle. By the way, it is always highlighted only that we can 
calculate the minimum value of the products of the two 
uncertainties. However, the author thinks that for the range of 
the result values of the products to be narrow is more 
important than for us to be able to calculate the minimum 
value of the result values. If we adopt the absolute deviation, it 
seems that it is almost impossible to obtain the infimum of the 
products of the two uncertainties. Of course, even if so, the 
interpretation and physical meaning of the uncertainty 
principle are maintained. 

3. Conclusions 

As we have seen in Section 2.1, the shape of the curve of a 
distribution in usual statistics doesn’t affect the defining 
equation of a measure of spread. The same goes for quantum 
mechanics. It is not reasonable that we are into the concept of 
the width of a function so we consider measures of quantum 
uncertainty according to the shape of the curve of a 
distribution. Another reason why we needn’t consider the 
width of a function is based on the nature of the Fourier 
transform. In conclusion, it is fully reasonable that we adopt 
the standard deviation as the measure of spread putting a lot of 
value on simplification of mathematical treatment. Although 
notionally less ideal than the absolute deviation, the standard 
deviation is algebraically more simple and hence is more 
practical. The adoption of the standard deviation greatly 
simplifies the calculation of the product of the two 
uncertainties. Again, we can use the existing measures of 
spread in order to express mathematically the uncertainty 
principle. 

Since the publication of Kennard, we have traditionally 
been using the standard deviation as the measure of 
uncertainty in quantum mechanics. Fourier transform has its 
own ability to control the spread of data. The products of the 
measures of spread of the two canonical variables are roughly 
equal. This nature of the Fourier transform justifies 
constructing the uncertainty relation by multiplying the two 
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uncertainties. Specifically, the nature of the Fourier transform 
justifies the Kennard inequality. We may adopt other 
quantities instead of the standard deviation as measure of 
quantum uncertainty. For example, we can adopt the absolute 
deviation. However, if we adopt the absolute deviation, the 
infimum of the product of the absolute deviations of two 
variables would be next to impossible to obtain. But it is not a 
serious problem. Even if we can’t obtain the infimum, the 
uncertainty principle doesn’t crack. Consequently, we will not 
need to put too many overtones on the constant value, ℏ 2⁄ , 
given as the minimum value. The most important fact in the 
uncertainty relation is that, regardless of the measure of 
uncertainty, neither of the two uncertainties multiplied are 0. 
This fact is the very essence of the uncertainty principle.  
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