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Abstract: To reveal the physical nature of Planck’s constant, an analytic expression of Planck's constant is presented, and 

based on this expression, the De Broglie’s relation and the expression of momentum operator are derived. To calculate Planck’s 

constant, the shielding effect of the fundamental interaction is introduced, and found that Planck’s constant can be calculated for 

the fundamental interaction fields with shielding effects, thus have obtained the general quantization principle: the systems with 

shielding effects can be quantized. As a result, the representation of Planck's constant in the gravitational field is derived, 

indicating that although the gravitational field can’t be quantified, which has effects on quantum phenomena through expressing 

Planck’s constant based on the curvature of space-time. This work is of significance for deepening the understanding of quantum 

mechanics, and for exploring the quantum mechanism in the cosmic celestial bodies. 
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1. Introduction 

Quantum mechanics is a basic theory in physics. It 

describes the minimum scale properties of atoms and 

subatomic particles. The difference between quantum 

mechanics and classical physics is that the energy, momentum 

and other quantities of systems can be restricted to discrete 

values and objects [1-4]. Quantum mechanics originated from 

Planck's theoretical explanation of blackbody radiation 

phenomenon and was gradually improved. It has experienced 

many milestones, including the assumption of Planck's and 

Einstein's energy quantization, the establishment of 

Schrodinger's equation, the proposal of De Broglie’s relation, 

the establishment of Heisenberg's uncertain principle and so 

on. Although quantum mechanics has entered a perfect stage, 

there are still some unsolved theoretical suspense, such as: 

why can energy be quantized? What is the theoretical basis of 

De Broglie's relation? What is the physical property of 

Planck’s constant? Why can't the gravitational field be 

quantized? How can Planck’s constant in the gravitational 

field be expressed? How to deduce the expression of the 

momentum operator? 

The author has thought over these problems for many years, 

and finally found a way to understand Planck’s constant. 

Based on this method, the analytical expression of Planck’s 

constant is proposed, and some quantization principles are 

explained. The work is reported in this article. First, the 

analytical expression of Planck’s constant is given. On this 

basis, the expressions of De Broglie’s relation and momentum 

operator are derived, which are in agreement with the existing 

theories and experiments, and can be extended to a more 

general form. Secondly, the shielding effect of fundamental 

interactions is introduced to calculate Planck’s constant and to 

explain the quantization principles. It is found that whether the 

force fields can be quantized depends on whether the 

fundamental interaction has shielding effects in the occupied 

area of the topological charges. This conclusion reasonably 

explains the problem that the gravitational field can’t be 

quantized. Thirdly, the expression of Planck’s constant in the 

gravitational field has been derived, indicating that although 

the gravitational field can’t be quantized, which has effects on 

quantum phenomena through expressing Planck’s constant 

based on the curvature of space-time. 

In the following derivations and discussions, the space-time 

dimension defaults to 4, and the vectors are all 4-dimensional. 

Thus, the 4-dimensional position vector, momentum, wave 
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vector and velocity are �� = (��, �	), �� = (
 �⁄ , �	), �� =
(� �⁄ , �	)  and �� = (�, �	),  respectively. Where, c is 

vacuum light speed, � is angular frequency, E is energy, t is 

time, �, � = 0, 1, 2, 3, and � = 1, 2, 3.	Note that, use ���  as 

the space-time metric tensor, and establish it by orthogonal 

processing the time axis, so in this article adopting the 

orthogonal system of time axis is default [5], namely: 

��� > 0, ��	 = 0. 

2. An analytic Expression of Planck's 

Constant 

According to the field theory [6-9], when a topological 

charge insert the field produced by the same topological 

charge, the related force will be produced. Generally, the 

fundamental interaction force is proportional to the amount of 

topological charges and the field strength, so the value of the 

force is equal to the product of the amount of topological 

charges and the field strength. Taking account of these two 

factors, a fundamental interaction force with harmonic 

transfer form can be represented uniformly through the 

following formula: 

!�(") = A�$%&'	                (1) 

where A� is the force value at initial state, containing the 

amount of the topological charges and the intensity of the field; 

"  is the phase used to describe the states varying with 

space-time positions, and can be expressed with covariant 

form: 

" = ������� = ����� + �		�	�	 	          (2) 

According to the double patters theory of force [10], any 

force field, as long as can be transmitted with wave form in 

space, and obey the laws of energy conservation, must have 

two patters. The force described by expression (1) coincides 

with this theory, for that the real and imaginary parts of the 

expression just represent the two patters of the force, 

respectively. In Eq. (1), the two patters alternate timely with 

the change of phase ", and the transformation of energy can 

be measured through the work done by the imaginary part. 

Considering the change of force state resulting from 

� → � + ∆�  and �	 → �	 + ∆�	 ,  the phase change is 

" → " + ∆", where ∆" is 

∆" = ����∆� + �		�	∆�	             (3) 

The force !�(") at phase " + ∆" when ∆" → 0 is 

!�(" + ∆") = A�$%&('+∆') = A�$%&'$%&∆' ≅ A�$%&'(1 − i∆")                      (4) 

Therefore the force change is 

∆!� = !�(" + ∆") − !�(") = −i∆"A�$%&' = −i!�∆" (5) 

Eq. (5) indicates that phase change ∆" brings to the force 

change −i!�∆", where −i denotes that there are difference 

of phase state with −i between force !�∆" and !�. So, the 

potential energy produced by phase change is the power done 

by force !�∆" at Δ��: 

0 = ���!�Δ"Δ�� = ���!�Δ�Δ�� 1'12 = �����Δ�� 3
4556∆2+47787∆97

12 :                     (6) 

In Eq. (6), �����Δ�� has the dimension of action. Here, 

limit this focus on single quantum field, and introduce a new 

physical quantity ℏ: 

ℏ ≡ �����Δ��                (7) 

Historically, ℏ  was used to represent Planck’s constant. 

Here using it to denote �����Δ�� of single quantum field. 

Whether �����Δ�� has the meaning of Planck’s constant? In 

the next section, by deducing De Broglie’s relation and 

momentum operator expression, this question is answered, 

and come to a conclusion that Eq. (7) is the analytic 

expression of Planck’s constant for single quantum field. 

3. Derivation of De Broglie's Relation and 

the Momentum Operator Expression 

De Broglie’s relation and momentum operator expression 

are the basis of quantum mechanics [1, 2, 4], which are 

established by conjectures and analogies, and there are no 

theoretical derivation processes at present. Now, the upper 

definition of Planck's constant is adopted to deduce the De 

Broglie’s relation and momentum operator expression, so as to 

verify the correctness of the definition and solve the problem 

about the basic principles of quantum mechanics. 

Firstly, deduce De Broglie’s relation. Taking �	 = ∆�	 ∆�⁄  

and ℏ into Eq. (6), gets: 

0 = ℏ=���� + �		�	�	> = ���ℏ� + �		ℏ�	�	  (8) 

According to the definition of power, power is equal to the 

product of momentum and time, namely: 

0 = ������� = ��� ?@ � + �		�	�	 = ���
 + �		�	�	 (9) 

Physically, the power in formulas (8) and (9) are equal, thus 

can obtain the following relation by comparing these two 

equations: 


 = ℏ�, �	 = ℏ�	               (10) 

It is clear that, Eq. (10) is just the De Broglie’s relation, 

proving that ℏ has the physical meaning of Planck’s constant. 

Further, this relation can be extended to 4-dimensional De 
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Broglie’s relation with more general covariant form: 

�� = ℏ�� 	                 (11) 

Then, deduce the momentum operator expression. Force 

!�(") is the function of phase ", and phase " is the function 

of space-time position �, so the force !�(") is the function 

of �, and can be expressed as follows: 

!� = !�("(�)) = A�(�)           (12) 

Note that, in the following derivations of this section, 

Einstein’s summation rule does not be used for the coordinate 

index �  in Eq. (13)-(17). When the space-time position 

moves Δ��  slightly, force A�(�)  will change to AB� =
A�(� + Δ��). The Taylor expansion of the force is 

AB� = A�(� + Δ��) = A�(�) + (Δ��)C�A�(�) +
(Δ��)D
2! C�DA�(�) + ⋯	 

= G1 + (Δ��)C� + (1HI)J
D! C�D +⋯KA�(�) = $∆HILIA�(�)                           (13) 

The change of phase " caused by the position change Δ�� 

is " → " + ∆" , and thus the force !�  will become to 

!B� = !�(" + Δ"): 
	!B� = !�(" + Δ") = $%&1'!�(")       (14) 

According to Eq. (12), !�(" + Δ") = A�(� + Δ��), and 

!�(") = A�(�) , using these results to Eq. (13) and (14), 

comes to: 

$∆HILIA�(�) = $%&1'A�(�)          (15) 

Obviously, Eq. (15) presents that, operator $∆HILI act on 

wave function A�(�)  in the left term, whereas physical 

quantity $%&1' is multiplied by wave function A�(�) in the 

right term. According to the operator theory, $∆HILI  is the 

operator of $%&1' when they act on the same function with the 

same result, so: 

∆��C� ↔ −iΔ" = −i�����Δ��      (16) 

Using the principle of operator correspondence to solve 

relation (16), the operator �N�  of wave vector ��  can be 

derived as: 

�N� = %∆HILI
&4II1HI = i

LI
4II	             (17) 

Popularizing the above expression to general metric of 

space-time, operator �N� is 

�N� ≡ i��� L
L9I               (18) 

Considering the conclusion of Eq. (11), the expression of 

momentum operator is 

�O� ≡ ℏ�N� = iℏ��� L
L9I            (19) 

As an example of verification, using this expression to flat 

space-time with ��� = 1	 and �		 = −1,	 can obtain �O� =
iℏc%Q ∂ ∂�⁄ , and the energy and momentum operators in flat 

space-time are: 

	SN = ��O� = 	iℏ T
T2	 , �O	 = iℏ

L7
477 = −iℏ

L
L97	    (20) 

By now, based on the expression of ℏ with Eq. (7), De 

Broglie’s relation and momentum operator expression are 

deduced, and the conclusion are consistent with the existing 

theories. It not only prove the correctness of ℏ expression, but 

also solve the suspense of De Broglie’s relation and the 

momentum operator expression. 

4. Quantization Principle Based on the 

Shielding Effect 

According to the definition of Eq. (7) and De Broglie’s 

relation of Eq. (10), the effect of ℏ is equivalent to Planck’s 

constant in quantum mechanics. Exploring a method to 

calculate ℏ based on Eq. (7) and to prove it to be a constant, 

helps to provide a reasonable physical explanation on Planck’s 

constant, and to deepen understanding of the quantization 

principle. To resolve this problem, the theoretical derivation 

should begin with the discussions of the fundamental 

interaction force properties. 

In the orthonormal system of time axis, Eq. (7) can be 

simplified as: 

ℏ = �����Δ�� = ���
Δ� + �		�	∆�		      (21) 

which can be used as the general expression to calculate ℏ. 

When ℏ is regarded as Planck’s constant, the expression of 

Eq. (1) should be limited as single quantum field, and the 

calculation area should be selected sensibly to guarantee that 

the result is constant. Tracing back to the expression of Eq. (6) 

and (7), ��  is the momentum of quantum field, Δ�� is the 

space-time size of a single quantum within which the force 

field do works. So the basic criterion for quantizing force field 

is that: under what conditions can the minimum action value 

calculated from Eq. (21) be constant?  

To answer this question, here I introduce the shielding 

effect of the fundamental interactions [11, 12]. From the field 

theory, the four fundamental interactions are all originated 

from the field sources. These field sources can also be called 

topological charges, and some have shielding effects. The 

shielding effect is a basic physical phenomenon associated 

with the fundamental interactions, namely when the 

topological charge is placed in the fundamental interaction 

fields, the field force lines in the area occupied by the 

topological charge will be interrupted, resulting in that the 

internal force field of the shielded region becomes to zero. 

Currently, there is no scientific explanation for the physical 

principle of the shielding effect, and not all fundamental 

interactions have this effect, but this phenomenon is verified 
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by experiments and is accepted by the physics world. Here, the 

shielding effect is introduced as the basic principle to discuss 

the quantization problem, and to solve the analytical 

calculation of Planck’s constant. 

For gravitational interaction force, there is no shielding 

effect in the fields, and thus the action scope overlay all the 

space, as shown by Figure 1(a). In the regions occupied by 

mass elements which are regarded as the topological charges 

of gravitational fields, the total gravitational fields are 

composed by the fields from other external mass and test mass 

element itself. Especially in the region with small size of 

Δ�� → 0 , the magnitude of gravitational field varies 

drastically according to Newton’s law of universal gravitation 

and Einstein’s theory of general relativity [13, 14]. So, for 

gravitational interaction force, its energy E and momentum �	 
have great changes in regions occupied by topological mass 

charges, and thus ; expressed by Eq. (21) is not constant at 

small space-time with size of Δ�� → 0 . It comes to a 

conclusion that the gravitational field can’t be quantized. 

 

Figure 1. The shielding model of physical field in the region occupied by 

source charge: (a) no shielding effect for the gravitational interaction force, 

(b) there are shielding effects for the non-gravitational interaction forces. 

The second kinds of fundamental interaction forces are 

non-gravitational interaction forces, such as electromagnetic 

interaction force, strong interaction force and weak interaction 

force. Different from the gravitational field, these three force 

fields all have shielding effects, and can be unified by the 

gauge field theory [7]. As shown by Figure 1(b), in the internal 

region occupied by topological charges, the interaction force 

is zero, namely U	 � 0  and �	 � 0 . In the shielded area, 

using the result of �	 � 0 to Eq. (21), the value of ; for 

these non-gravitational interaction forces is 

; � ���
∆�                  (22) 

Physically, Planck’s constant represents the minimum 

action of elementary particles. For the non-gravitational fields 

with shielding effects, the action of their elementary 

topological charges can be calculated by Eq. (22), indicating 

that the value is determined by energy and time. So, to 

calculate ;, the action area should be limited in the shielded 

area, and Δ�� are regarded as the size of the shielded area. 

According to the energy conservation principle, the energy E 

in the shielded area keeps constant for that the force in it is 

zero. According to the relativistic effect in the shielded area 

with size of Δ�� → 0, the field velocity is light speed, and the 

region is immobile, so the space-time interval is �∆V
D �
����Δ��
D � 0, which limits that the time change ∆� is 

Δ� � Q
@W

%477�197
J
455 	             (23) 

For the non-gravitational interaction forces, the size of their 

source charges is constant, resulting in that the size Δ�	 of the 

shielded area is constant. Using this conclusion to Eq. (23), 

comes to a result that the time change ∆� is also constant. 

Obviously, in the shielded region, the energy and the time 

change are all constant, so the Planck’s constant determined 

by Eq. (22) is a constant, indicating that the non-gravitational 

fundamental interaction force fields can be quantized. 

From the definition of Planck’s constant and the above 

discussions about the shielding effect, a conclusion comes to 

that, the fundamental interaction fields with shielding effects 

can be quantized, and Planck’s constant can be analytically 

expressed and calculated. The conclusion can also be 

extended to the general quantization principle, that is, the 

systems with shielding effects can be quantized. 

5. Planck's Constant in the Gravitational 

Field 

The gravitational field itself can’t be quantized, so there is 

no corresponding Planck’s constant. The other three kinds of 

fundamental interaction forces can be quantized, and the 

corresponding Planck’s constant can be calculated by Eq. (22). 

According to the theory of gravitational geometry, the 

gravitational field will bring to the space curvature, so 

Planck’s constant expressed by Eq. (22) will reflect the 

curvature effect in the gravitational field. 

Firstly, considering the flat space with ��� � 1 , and 

supposing that 
 � 
�, ∆� � ∆X, the value of ; from Eq. (22) 

is 

; � ���
∆�	 � 
�∆X ≡ ;�	          (24) 

here ;�  is used to denote the Planck’s constant in the flat 

space, and in fact, can be understood as the traditional 

Planck’s constant. 

Next consider the non-flat space caused by the gravitational 

field. According to the general relativity theory, the energy 
� 

and time ∆X in the flat space will change to E and ∆� in the 

non-flat space, and the values can be calculated using 

space-time metric [9, 14]: 


 � 
�Y���, ∆� � ∆ X Y���⁄ 	        (25) 

Taking Eq. (25) into Eq. (22), and adopting the result of Eq. 

(24), Planck’s constant in the gravitational field can be 

obtained: 

; � ���
∆� � ���=
�Y���> ∆Z
Y455 � ���
�∆X � ���;�	 (26) 

The upper formula indicates that Planck’s constant is 

related to the space curvature. The traditional Planck’s 

constant is obtained through measurements, whether it is the 

function of space curvature has not been revealed. In the 

universe, our space is almost flat compared with black holes, 
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so the influence of space curvature on Planck’s constant can be 

ignored in our space, but it should be taken full consideration 

in black hole physics. Eq. (26) offers theoretical predictions of 

how the space curvature influence on quantum phenomena, 

and verifies the correctness of the gravitational geometric 

effect, providing a theoretical way to explore the quantum 

effects in black holes [15, 16]. 

6. Conclusion 

To reveal the physical nature of Planck’s constant, an 

analytic expression of Planck's constant is presented, and 

based on this expression, the De Broglie’s relation and the 

expression of momentum operator are derived. The theoretical 

results are in good agreement with the existing theories and 

experiments, which proves the correctness of the analytical 

expression and provides a theoretical basis for the 

establishment of De Broglie’s relation and momentum 

operator expression. To calculate Planck’s constant, the 

shielding effect of the fundamental interaction is introduced, 

found that Planck’s constant can be calculated for the 

fundamental interaction field with shielding effects, and thus 

the fields can be quantized. Conversely, Planck’s constant 

can’t be calculated for the fundamental interaction field 

without shielding effects, so the field can’t be quantized. This 

conclusion is reflected in the four fundamental interaction 

fields, and also reveal why the gravitational field can’t be 

quantized, clarifying the basic principle of quantization. As a 

result, the representation of Planck's constant in the 

gravitational field is derived, showing that Planck’s constant is 

a function of space-time curvature, so the variation of 

curvature caused by gravitational fields will affect quantum 

phenomena. 

Among the ideas proposed in this paper, only the analytic 

expression of Planck’s constant and the shielding effect have 

some conjecture, but the conclusions are consistent with the 

existing theories and experiments, proving that these ideas are 

reasonable. In order to further verify the rationality of this 

work, some theoretical improvements and extensions need to 

make. For instance, the force field model with shielding 

effects should be extended to a system with shielding effects, 

and thus propose the general quantizing principle that systems 

with shielding effects can be quantized. The expression of 

Planck’s constant in the gravitational field should be applied 

to the black hole physics, using which to predict the quantum 

phenomena in celestial bodies. The work in this paper is of 

significance for deepening the understanding of quantum 

mechanics, and needs further improvements. 
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