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Abstract: Beginning with studies in the 1980s at the Department of Mathematics of Harvard University, the Italian-American 

scientist R. M. Santilli discovered new realizations of the abstract axioms of numeric fields with characteristic zero, based on an 

axiom-preserving generalization of conventional associative product and consequential positive-definite generalization of the 

multiplicative unit, today known as Santilli isonumbers [1], and the resulting novel numeric fields are known as Santilli isofields. 

By remembering that 20th century mathematics was formulated on numeric fields, their generalization into isofields stimulated a 

corresponding generalization of all of 20th century mathematics and its application to mechanics, today known as Santilli 

isomatheatics and isomechanics, respectively, which is used for the representation of extended-deformable particles moving 

within physical media under Hamiltonian as well as contact non-Hamiltoian interactions. Additionally, Santilli discovered a 

second realization of the abstract axioms of a numeric field, this time with arbitrary (non-singular) negative definite generalized 

unit and related multiplication, today known as Santilli isodual isonumber [1] that have stimulated a second covering of 20th 

century mathematics and mechanics known as Santilli isodual isomathematics and isodual isomechanics. The latter methods are 

used for the classical as well as operator form of antimatter in full democracy with the study of matter. In this paper, we present a 

comprehensive study of Santilli's epoch making discoveries of isonumbers and their isoduals along with their application to 

isomechanics and its isodual for matter and antimatter, respectively. 
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1. Introduction 

As it is well known, modern mathematics has a strong 

foundation on number theory, algebraic structures such as 

groups, rings, algebra, vector spaces and related methods have 

found vast applications in all quantitative sciences. More 

general structures like groupoids, semigroups, monoids, 

quasigroups and loops were also being studied in 20th century, 

although their applications in quantitative sciences are under 

development. The detailed consolidated account of these 

generalized structures is found in Survey of Binary Systems 

by R.H.Bruck [2]. 

While the scientific discoveries and mathematical 

knowledge were moving hand in hand, towards the end of 

20th century there were few mathematically unexplained 

physical phenomena in Quantum Physics and Quantum 

Chemistry. These new physical situations could not be 

faithfully described by the existing mathematical structures 

and called for more generalized mathematical structures. 

It was Enrico Fermi, [3] beginning of chapter VI, p.111 said 

“..... there are some doubts as to whether the usual concepts of 

geometry hold for such small region of space." His inspiring 

doubts on the exact validity of quantum mechanics for the 

nuclear structure led to the genesis of the whole new kind of 

generalized mathematics, called isomathematics and 

generalized mechanics, called as Hadronic mechanics. 

In fact, the prevailing Newtonian and Einsteinian 

‘Dynamical systems’ called as ’Exterior Dynamical systems’ 

which are characterized as ‘local’, ‘linear’ ‘Lagrangian’ and 

‘Hamiltonian’ could not accommodate these obscure 

situations. Thus it was the pressing demand of time to 

formulate new mathematical theory which could deal with the 

obscure phenomena and develop a new physical theory. This 

stupendous task was taken up by the Italian-American 

theoretical physicist Ruggero Maria Santilli, President of 

Institute for Basic Research, Palm Harbor, Florida, USA and 

did the pioneering work by defining axiom-preserving, 

nonlinear, nonlocal and noncanonical isotopies of 

conventional mathematical structures, including units, fields, 
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vector spaces, transformation theory, algebras, groups, 

geometries, Hilbert spaces etc. while at Department of 

Mathematics of Harvard University in the early 80’s. Prof. 

Santilli has rightly said; 

“There can not be really new physical theories without 

really new mathematics, and there can not be really 

new mathematics without new numbers”. 

The founders of analytic mechanics, such as Lagrange, 

Hamilton [4] and others classified dynamical systems in to 

two kinds. First one is the ‘Exterior Dynamical system’ and 

the second one is the more complex but generalized ‘Interior 

Dynamical system’. 

However, over a period of time the the above distinction 

was abandoned preventing the identification of limitations of 

the prevailing mathematical and physical theories. One can 

easily notice that Lie’s Theory is exactly applicable to the 

exterior dynamical systems. It was Prof. Santilli who at the 

Department of Mathematics of Harvard University, for the 

first time, drew the attention of the scientific community 

towards the crucial distinction between exterior and interior 

dynamical systems and presented insufficiencies of prevailing 

mathematical and physical theories by submitting the 

so-called axiom-preserving, nonlinear, nonlocal, and 

noncanonical isotopies of Lie’s theory [5] under the name Lie 

Isotopic theory. Further generalization as Lie-admissible 

theory [6,7] was also achieved by him. 

Exterior Dynamical Systems: In this system Point-like 

particles are moving in a homogeneous and isotropic vacuum 

with local-differential and potential-canonical equations of 

motion. These are linear, local, Newtonian Lagrangian and 

Hamiltonian. Conventional Mathematical structures such as 

Algebras, Geometries, Analytical Mechanics, Lie Theory can 

faithfully represent these systems. 

Interior Dynamical Systems: In this system we consider 

extended non-spherical deformable particles moving within 

non-homogeneous anisotropic physical medium. These are 

non-linear, non-local, non-Newtonian, non-Lagrangian and 

non-Hamiltonian. The mathematical structures needed to 

describe these systems are most general possible which are 

axiom preserving; non-linear and non-local formulations of 

current mathematical structures. 

During a talk at the conference Differential Geometric 

Methods in Mathematical Physics held in Clausthal, Germany, 

in 1980, Ruggero Maria Santilli submitted new numbers based 

on certain axiom preserving generalization of the 

multiplication, today known as isotopic numbers or 

isonumbers[1] in short. This generalization induced the 

so-called isotopies of the conventional multiplication with 

consequential generalization of the multiplicative unit, where 

the Greek word “isotopy" from the Greek word σισo``  

σπτ oo " implied the meaning “same topology" [8,9]. 

Subsequently, Ruggero Maria Santilli submitted a new 

conjugation, under the name isoduality which yields an 

additional class of numbers, today known as isodual 

isonumbers [1]. 

The discovery of isonumbers was made with the specific 

need of quantitative representation of the transition from 

Exterior Dynamical Systems to Interior Dynamical System. 

It should be quite clear that there can not be new numbers 

without new fields. This led Santilli to define ’Isofield’ which 

is the first new algebraic structure defined by him. This 

concept of ‘Isofield’ further led to a plethora of new 

isoalgebraic structures and a whole new ‘Isomathematics’ 

which is a step further in Modern Mathematics. Subsequently, 

‘Isomathematics’ has grown in to a huge tree with various 

branches like ‘Isofunctional Analysis’, ‘Isocalculus’, 

‘Isoalgebra’, isocryptography etc. 

Prof. Santilli attracted great attention from academic 

community at Chinese Academy of Sciences during a 

workshop in China on August 23, 1997. Since then Prof 

Santilli and his associates in various countries around the 

world have produced numerous papers, monographs, 

conference proceedings which cover approximately 10,000 

pages of research work. 

Today Number theory has advanced as an important branch 

of axiomatized mathematics with highly sophisticated 

applications in the Modern world of computer science and 

information technology. After some advances in 19th century 

due to Gauss [10], Abel [11], Hamilton [4], Cayley [12], 

Galois [13] and others, major important advances were made 

during 20th century which included axiomatic formulation, 

the algebraic number theory [14].  

The classification of all normed algebras with identity, over 

reals, in view of the previous studies by Hurwitz[15], Albert 

[16], and N.Jacobson [17] may be expressed in the following 

important Theorem.  

Theorem 1.1. All possible normed algebras with 

multiplicative unit over the field of real numbers are given by 

algebras of dimension 1 (real numbers), 2 (complex numbers), 

4 (quaternions), and 8 (octonians).  

In this comprehensive presentation of the development 

of ’Isonumber theory’ we cover the following important 

aspects of fundamental importance as formulated by Prof. R. 

M. Santilli [18], [1]. 

Starting with the brief background of the origin of ’isounit’ 

and isofield, we present the theory of isonumbers, 

pseudoisonumbers, “hidden numbers" and their isoduals. 

Genonumbers, pseudogenonumbers and their isoduals are also 

of fundamental importance. We will study the isotopies and 

isodualities of the notions of numbers, fields and normed 

algebras with unit ref.[1]. In short, in this paper we are going 

to study the properties of isonumbers and their isoduals [1]. 

In his study Santiili has taken into account the four normed 

algebras over reals as given in the above theorem. The isotopic 

lifting of these algebras give rise to isotopies of normed 

algebras with multiplicative unit of dimension 1,2,4 and 8 

which includes realization of ’isoreal numbers’, ’isocomplex 

numbers’, ‘isoquaternions’ and ’isooctonions’. Isodualities of 

these structures give isodual isonumbers. 

The mathematical non-triviality of these structures is 

evident due to lack of unitary equivalence of isotopic and 

genotopic theories to conventional ones, non-applicability of 
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trigonometry and some other aspects. On the other hand, the 

physical non-triviality of these structures emerges from the 

fact that this theory of isonumbers is at the foundations of 

Li-isotopic theory used successfully to study nonlinear, 

nonlocal, and nonhamiltonian dynamical systems. The more 

general Lie-admissible theory emerges from the more general 

genonumbers.  

In a nutshell, the theory of isonumbers is at the foundation 

of current studies of nonlinear-nonlocal-nonhamiltonian 

systems in nuclear, particle and statistical physics, 

superconductivity and other fields.  

1.1. Origin of Isonumbers 

The concept of ‘Isotopy’ plays a vital role in the 

development of this new age mathematics ref. R. H. Bruck [2] 

and [19]. 

The first and foremost algebraic structure defined by 

Santilli is ‘isofield’. Elements of an isofield are called as 

‘isonumbers’. The conversion of unit  to the isounit  is of 

paramount importance for further development of 

‘Isomathematics’. 

The reader should be aware that there are various 

definitions of “fields" in the mathematical literature [20], [21], 

[22] and [14] with stronger or weaker conditions depending on 

the given situation. Often “fields" are assumed to be 

associative under the multiplication. 

i.e. 

. 

We formally define an isofield [23], [24] as follows. 

Definition 1.1 Given a “field" , here defined as a ring with 

with elements , sum , multiplication , 

which is commutative and associative under the operation of 

conventional addition  and (generally nonassociative but) 

alternative under the operation of conventional multiplication 

 and respective units  and , “Santilli’s isofields" are 

rings of elements  where  are elements of  and 

 is a positive- definite  matrix generally outside 

 equipped with the same sum  of  with related 

additive unit  and a new multiplication , 

under which  is the new left and right unit of  in 

which case  satisfies all axioms of the original field. 

 is called the isoelement. In the above definitions we 

have assumed “fields" to be alternative, i.e. 

. 

Thus, “isofields" as per above definition are not in general 

isoassociative, i.e. they generally violate the isoassociative 

law of the multiplication, i.e. 

,  

but rather satisfy isoalternative laws. 

The specific need to generalize the definition of “number" 

to ‘real numbers’, complex numbers, ‘quaternions’ and 

‘octonians’ suggested the above definition. The resulting new 

numbers are ‘isoreal numbers’, isocomplex numbers, 

‘isoquaternions’ and ‘isooctonians’ respectively, where 

‘isooctonians’ are alternative but not associative. 

The ‘isofields’  are given by elements 

 characterized by one-to-one and invertible maps 

 of the original element  equipped with two 

operations , the conventional addition  of  and a 

new multiplication  called "isomultiplication" with 

corresponding conventional additive unit  and a 

generalized multiplicative unit , called “multiplicative 

isounit" under which all the axioms of the original field  

are preserved. 

Santilli has shown that the transition from exterior 

dynamical system to interior dynamical system can be 

effectively represented via the isotopy of conventional 

multiplication of numbers  and  from its simple possible 

associative form  in to the isotopic multiplication, or 

isomultiplication for short, as introduced in [8]. 

The lifting of the product  of conventional 

numbers in to the form 

                 (1) 

denoted by , where  is a fixed invertible quantity 

for all possible  called isotopic element. 

This isomultiplication then lifts the conventional unit  

defined by  to the multiplicative isounit  

defined by  

       (2) 

Under the condition that  preserves all the axioms of  

the lifting  is an isotopy, i.e. the conventional unit  

and the iso unit  (as well as the conventional product  

and its isotopic form ) have the same basic axioms and 

coincide at the abstract level by conception. The isounit  is 

so chosen that it follows the axioms of the unit  namely; 

boundedness, smoothness, nowhere degeneracy, hermiticity 

and positive-definiteness. This ensures that the lifting  

is an isotopy and conventional unit  and the isounit  

coincide at the abstract level of conception. 

Thus, the isonumbers are the generalization of the 

conventional numbers characterized by the isounit and the 

isoproduct as defined above. 

The liftings , and  can be used jointly or 

individually. 

It is important to note that unlike isotopy of multiplication 

, the lifting of the addition  implies general 

loss of left and right distributive laws. Hence the study of such 

a lifting is the question of independent mathematical 

investigation. 

1 1̂

( ) = ( ) , ,a b c a b c a b c F× × × × ∀ ∈

F
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The first generalization was introduced by Prof. Santilli 

when he generalized the real, complex and quaternion 

numbers [23], [24] based on the lifting of the unit  into 

isounit  as defined above. Resulting numbers are called 

isorealnumbers, isocomplex numbers and isoquaternion 

numbers. 

In fact, this lifting leads to a variety of algebraic structures 

which are often used in physics. The following flowchart is 

self explanatory. 

Isonumbers  Isofields  Isospaces  

Isotransformations  Isoalgebras  Isogroups  

Isosymmetries  Isorepresentations  Isogeometries 

etc. 

The isounit is generally assumed to be outside the original 

field with all the possible compatible conditions imposed on it. 

For rudiments of isomathematics reader can refer to [1, 6, 7, 

25]. 

The lifting of unit  to isounit  may be represented as,

. where  is time,  

is the position vector,  is the momentum vector,  is the 

wave function and  are the corresponding partial 

differentials. The positive definiteness of the isounit  is 

assured by,  where 

 is called the isotopic element, a positive definite quantity. 

The isonumbers are generated as, , . 

Isofields are of two types, isofield of first kind; wherein the 

isounit does not belong to the original field, and isofield of 

second kind; wherein the isounit belongs to the original field. 

The elements of the isofield are called as isonumbers. This 

leads to number of new terms and parallel developments of 

conventional mathematics. 

2. Isounits and Their Isoduals 

As stated earlier, the isonumbers and their product can first 

be introduced as the generalization of conventional numbers 

by equations (1) and (2) as above. 

Prof. Santilli further, introduced isodual isonumbers [26, 27, 

28] by lifting the isounit into the form  

1̂:=1̂where,=1̂ˆ=ˆ1̂ −×× ddddd aaa      (3) 

called the isodual isounit following lifting of iso 

multiplication defined in (1) into the isodual multiplication 

called isoduality as 

TTbabTabTababa
ddd −×−××−×××→× =whereˆ==:=ˆˆ  (4) 

The isodual isonumbers were first conceived as 

characterized by isodual multiplication (4) with respect to the 

multiplicative isodual isounit 1̂=1̂ −d
. 

The significance of isonumbers and isodual isonumbers lies 

in fulfilling the specific physical needs refs [18, 29, 30, 31] as 

given below; 

• In the exterior dynamical system ordinary particles 

moving in the vacuum are characterized by 

conventional numbers. 

• In the interior dynamical system ordinary particles 

moving in the physical medium are characterized by 

isonumbers. 

• In the exterior dynamical system ordinary antiparticles 

moving in vacuum are characterized by isodual 

numbers. 

In the interior dynamical system the antiparticles moving in 

the physical medium are characterized by isodual isonumbers. 

Interpretation of customary characterization of antiparticles 

via negative-energy solutions of Dirac’s equations behave in 

an un-physical way when interpreted with respect to the same 

numbers and unit 1 of particles, forcing various hypothetical 

assumptions and postulates, where as, reinterpretation of 

antiparticles with same negative energy solutions when 

interpreted as belonging to the field of isodual numbers 

behave in a fully physical way ref [1]. This treatment of 

antiparticles with isodual numbers also leads to intriguing 

geometrical implications which predict another universe, 

called as isodual universe, interconnected to our universe via 

isoduality and identified by the isodualities of Riemannian 

geometry and their isoduals refs.[31, 24, 32]. Thus, the isodual 

theory emerged from the identification of negative units in the 

antiparticle component of the conventional Dirac equation and 

the reconstruction of the theory with respect to this new 

negative unit. Hence isoduality provides a mere 

reinterpretation of Dirac’s original notion of antiparticle 

leaving all numerical predictions electro-weak interactions 

essentially unchanged. 

In view of the definition of an isofield [1], we can say that 

an isofield is an additive abelian group equipped with a new 

unit (called isounit) and isomultiplication defined 

appropriately so that the resulting structure becomes a field. 

If the original field is alternative then the isofield also 

satisfies weaker isoalternative laws as follows. 

bbabba ˆˆ)ˆˆˆ(=)ˆˆˆ(ˆˆ ××××  and .ˆˆ)ˆˆˆ(=)ˆˆˆ(ˆˆ baabaa ××××  

We mention two important propositions by Santilli.  

Proposition 2.1. The necessary and sufficient condition for 

the lifting (where the multiplication is lifted but elements not 

the elements) 
1=1̂,=ˆ),ˆ,,(ˆ),,( −××××+→×+ TTaFaF  

to be an isotopy (that is for F̂  to verify all axioms of the 

original field F) is that T  is a non-null element of the 

original field F . 

Proposition 2.2. The lifting (where both the multiplication 

and the elements are lifted) 
1=1̂,=ˆ,1̂=ˆ),ˆ,,ˆ(ˆ),,( −×××××+→×+ TTaaaFaF  

constitutes an isotopy even when the multiplicative isounit 1̂  

is not an element of the original field. 

The above proposition guarantees the physically 

fundamental capability of generating Plank’s unit ν  of 

quantum mechanics into an integro-differential operator 1̂  

for quantitative treatment of nonlocal interactions [33]. 

As the first application of the isotopies of numbers Santilli 

1

1̂

→ → →
→ → →

→ →

I Î
† †ˆ( , , , , , , , , , )I I t r r p T ψ ψ ψ ψ→ ∂ ∂ɺ … t r

p ψ
†ψ

Î

† † 1ˆ( , , , , , , , , , ) = > 0I t r r p T
T

ψ ψ ψ ψ∂ ∂ɺ …

T

ˆˆ =n n I× = 0,1,2,3,n …
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considers the set >=< inS , the set of all purely imaginary 

numbers. This set is not closed ( Si ∉−1=2
). On the other 

hand, the same set S  represented as )ˆ,,ˆ(ˆ ×+nS  with 

inn =ˆ  constitutes an isofield. i.e. it verifies all the axioms of 

a field including closure under isomultiplication because 

1= −iT  and Sinmiminmn ˆ=ˆ=ˆˆˆ ∈×× . 

This illustrates an important fact that, even when a given set 

does not constitute a field, there may exist an isotopy under 

which it verifies the axioms of a field. 

As stated earlier the lifting of +  to +̂  does not 

necessarily produce an isotopy of a given field. This lifting 

does not preserve the distributivity in the resulting set as stated 

in the following proposition 2.3.  

Proposition 2.3 The lifting )ˆ,ˆ,ˆ(ˆ),,( ×+→×+ aFaF  

where  

 where K  is 

an element of the original field F  and T  is an arbitrary 

invertible quantity, is not an isotopy for all nontrivial values of 

the quantity 0≠K , because it preserves all the axioms of 

proposition 2.1 except the distributive law.  

Based on the failure of distributivity Santilli defines 

“pseudoisofields" as follows.  

Definition 2.1 Let )ˆ,,ˆ(ˆ ×+aF  be an isofield as defined 

above. Then the “pseudoisofields" )ˆ,ˆ,ˆ(ˆ ×+aF  are given by 

the images of )ˆ,,ˆ(ˆ ×+aF  under all possible liftings of the 

addition +++→+ K=ˆ , with additive isounit 

0,1̂=ˆ=0̂ ≠×−− KKK  in which case the elements â  

are called the “pseudoisonumbers". 

For the algebra of isonumbers and isodual numbers readers 

are advised to refer [1, 34]. 

Images of field, isofield and pseudoisofield under the 

change of sign of the isounit 1=1̂1̂ −→ d
 is called the 

Isotopic conjugation or isoduality ref. [28, 29, 30].  

Definition 2.2 Let ),,( ×+aF  be a field as per definition 

1.1. Then the isodual field ),,( ddd aF ×+  is constituted by 

the elements called “isodual numbers"  

aaa dd −× =1:=            (5) 

defined with respect to the “isodual multiplication" and 

related “isodual unit"  

1.=1,=1:= −−×××× ddd
       (6) 

Definition 2.3 Let )ˆ,,ˆ( ×+aF  be an isofield as per 

definition 1.1. Then the isodual isofield )ˆ,,ˆ( ddd aF ×+  is 

constituted by the elements called “isodual isonumbers"  

1=1:=ˆ ×−× cdcd aaa            (7) 

where 
ca  is the conventional conjugation of F  (e.g. 

complex conjugation) defined in terms of the “ isodual 

isomultiplication"  

.=,ˆ=:=ˆ TTT ddd −×−×××        (8) 

Definition 2.4 Let )ˆ,ˆ,ˆ( ×+aF  be a pseudofield 

)ˆ,ˆ,ˆ(ˆ ×+aF  as per definition 2.1. Then the “isodual 

pseudofield" )ˆ,ˆ,ˆ( dddaF ×+  is given by the image of the 

original isofield under isodualities (6) and (7) plus the 

additional isoduality  

0=0̂0̂ −→ d                (9) 

and its elements 
dâ  are called “isodual pseudonumbers. 

2.1. Classes of Isofields 

Kadeisvilli [35] classified isounits into five primary classes 

according to their usefulness. 

• CLASS I: Isounits:- These are the isounits when they are 

sufficiently smooth, bounded, nowhere singular, 

Hermitian and positive-definite. This class is of primary 

use in physics for characterization of ordinary particles 

moving in interior physical conditions. This class 

represents the isotopy of the conventional unit.  

• CLASS II: Isodual Isounits:- They are same as isounits 

except that they are negative-definite. Isodual isounits 

are used in physics to characterize antiparticles via 

reinterpretation of the negative energy solutions of 

Dirac’s equation [31, 36]. They represent isodual isotopy 

according to isodual conjugation.  

• CLASS III: Singular Isounits:- These occur when 

isounits are considered as a divergent limit, ±∞⇒1̂ . 

These are used to represent gravitational collapse into a 

singularity and other limit conditions ref.[37, 23].  

• CLASS IV: Indefinite Isounits :- This class represents 

isounits which are sufficiently smooth, bounded, 

nowhere singular, Hermitian and can smoothly 

interconnect positive definite with negative definite 

values. These are particularly used in mathematics.  

• CLASS V: General Isounits, when they are solely 

Hermitian:- This is the most general class which includes 

preceding ones and permits a large variety of additional 

realizations including those in terms of discrete 

structures, discontinous functions, distributions etc.  

Isofields can be classified according to the isounits as 

defined above. They are;  

1. Isofields.  

2. Isodual isofields.  

3. Singular isofields.  

4. Indefinite isofields.  

5. General isofields.  

The following four fundamental numbers are generated 

depending upon the isofield we consider;  

1. (a) Ordinary numbers: real numbers ),,( ×+nR , 

1

ˆ ˆˆ ˆ ˆˆˆ = 1, = , 0 = = 1,

ˆˆ = , 1 =

a a K K K

T T −

× + + + − − ×

× × ×
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complex numbers ),,( ×+cC , quaternions 

),,( ×+qQ  and octonians ),,( ×+oO  which are used 

in the characterization of particles in vacuum. 

(b) Isonumbers: isoreal numbers )ˆ,,ˆ(ˆ ×+nR , isocomplex 

numbers )ˆ,,ˆ(ˆ ×+cC , isoquaternions )ˆ,,ˆ(ˆ ×+qQ  and 

isooctonians )ˆ,,ˆ(ˆ ×+oO  which are used for the 

characterization of particles within the physical media.  

(c) Isodual numbers: isodual real numbers ),,( ddd nR ×+ , 

isodual complex numbers ),,( ddd cC ×+ , isodual 

quaternions ),,( ddd qQ ×+  and isodual octonians 

),,( ddd oO ×+  which are used in the characterization of 

antiparticles in vacuum.  

(d) Isodual isonumbers: isodual isoreal numbers

)ˆ,,ˆ(ˆ ddd nR ×+ ,isodual isocomplex numbers 

)ˆ,,ˆ(ˆ ddd cC ×+ ,isodual isoquaternions )ˆ,,ˆ(ˆ ddd qQ ×+  and 

isodual isooctonians )ˆ,,ˆ(ˆ ddd oO ×+  which are used for the 

characterization of particles within the physical media.  

2. Genofield is the generalization of isofield with the 

selection of an ordering of the multiplication to the left 

or to the right and applied for the more general 

Lie-admissible branch of hadronic mechanics.  

3. Pseudofields, and  

4. Pseudogenofields are the further generalization based 

on lifting of addition which relaxes at least one axiom 

of conventional fields, and which do have applications 

in other fields.  

5. Hyper numbers can be constructed from 

hyperstructures ref.[35].  

2.2. Isospaces 

Let )),,(,,( ×+nRgxS  be a metric (or pseudo metric) 

n-dimensional space with local coordinates x  and 

(Hermitean) metric 
†= gg  over the field of reals 

),,( ×+nR . Then the isospace ))ˆ,,(ˆ,ˆ,(ˆ ×+nRgxS  first 

introduced in [38] is characterized by;  

     (10) 

Also the isodual isospace [28] is given by;  

,==ˆ:))ˆ,,(ˆ,ˆ,(ˆ gTgTgnRgxS ddddddd ×−××+
 

.1̂=1̂,==ˆ −××−××× ddd TT      (11) 

Note that isospaces ))ˆ,,(ˆ,ˆ,(ˆ ×+nRgxS  coincide with 

spaces )),,(,,( ×+nRgxS  at the abstract level of 

conception. Spaces have the most general known curvature 

and integral character owing to the arbitrariness in the isotopic 

element T . The isometries gTg ×=ˆ  have the most 

general possible, nonlinear, nonlocal, noncanonical 

dependence in all variables, 

(12) 

The isospaces which are most important for physical and 

mathematical applications are isoeuclidean spaces 

)ˆ,ˆ,(ˆ RxE δ , isominkowski spaces )ˆ,ˆ,(ˆ RxM η  and 

isoriemanian spaces )ˆ,ˆ,(ˆ RgxR . These are the foundations 

of the representation of nonlinear, nonlocal, and noncanonical 

interior systems in nonrelativistic and gravitational interior 

problems [31, 23]. 

Also, pseudoisospaces can be defined as the images 

))ˆ,ˆ,(ˆ,ˆ,(ˆ ×+nRgxS  of the original space characterized by 

further lifting KK −→+++→+ =0̂0,=ˆ . 

Subsequently, isodual pseudoisospaces are also defined. 

2.4. Isoalgebras 

The concept of isoalgebra was fundamental in the correct 

description of interior dynamical systems. As conventional 

numbers constitute normed algebras with unit, isoalgebras 

were defined to represent isonumbers ref. [21, 8, 39]. An 

isovector space Û  with elements …CBA ,,  and 

isomultiplication ê  over an isofield )ˆ,,(ˆ ×+aF  with 

elements cba ,,  and isomultiplication ba ×̂  with 

multiplicative isounit 
1=1̂ −T  is called (associative or 

nonassociative) isoalgebra when it satisfies right and left 

scaler and distributive laws;  

     (15) 

      (16) 

         (17) 

for all the elements 
UCBA ˆ,, ∈

 and 
.ˆ,, Fcba ∈
 

Note that the isoalgebra Û  may contain the matrices 

where as the iso field F̂  can contain ordinary numbers. 

The isoalgebra Û  is an isodivision algebra if the equation 

BxA =×̂  always admits a solution in Û , for nonzero A . 

Isonorm can be defined in the following manner; 

Let kê  be an “isobasis" of Û  over the isofield 

)ˆ,,(ˆ ×+aF . Then the generic element UA ˆ∈  can be written 

as kkmk
enA ˆˆ=

,1=
×∑ …

, with Fnk
ˆ∈  and 

. The isonorm of Û  in the isobasis 

considered, is then given by;  

1

ˆ ˆ ˆˆ ˆ( , , ( , , )) : = ,

ˆˆ = , 1 = .

S x g R n g T g

T T −

+ × ×

× ×

ˆ ˆ= ( ) = ( , , , , ) ( ) = ( , , , , ).g g x g T t x x x g x g t x x x→ ×ɺ ɺɺ ɺ ɺɺ… …

ˆ ˆ ˆˆ ˆ ˆ( ) = ( ) = ( ).a A B A a B a A B× × ×⊙ ⊙ ⊙

ˆ ˆ ˆˆ ˆ ˆ( ) = ( ) = ( )A a B A B a A B a× × ×⊙ ⊙ ⊙

ˆ ˆ ˆ( ) = ,

ˆ ˆ ˆ( ) =

A B C A B A C

B C A B A C A

+ +

+ +

⊙ ⊙ ⊙

⊙ ⊙ ⊙

2̂ ˆˆ ˆ ˆ= = 1k kk
e e e∑ ⊙
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FnnnA kk

mk

k

mk

ˆ1̂)ˆ(=1̂)(= 2

1

,1=

2

1

2̂

,1=

∈××× ∑∑
……

¸¸    (18) 

The isoalgebra Û  is said to be isoassociative if;  

    (19) 

and 

    (20) 

The isoalgebra Û  is said to be Lie-isotopic when the 

isoproduct ê  satisfies Lie-algebra axioms 

(anticommutativity and Jacobi laws) in the following form;  

ˆ = , , , , =etc. assoc.A B ATB BTA A T B−⊙   (21) 

It is said to be lie-admissible when the antisymmetric 

bracket product is;  

          (22) 

and is Lie-isotopic as in the realization;  

ˆ = .A B ARB BSA−⊙           (23) 

We shall be mainly interested in the isoassociative 

isonormed algebras with isounit 1̂  which can be extended to 

isoalternative algebras in order to include isooctonians. 

Extension of U  and Û  under the pseudofield 

)ˆ,ˆ,(ˆ ×+aF  implies loss of distributive laws and hence do not 

remain algebras in the real sense, however, we call them 

pseudoisoalgebras ref.[39]. 

2.5. Isoreal Numbers and Their Isoduals 

2.5.1. Real Numbers 

Real numbers constitute a one-dimensional normed 

associative and commutative algebra (1)U ref.[1]. 

Real numbers are realized ref.[8] as a one-dimensional real 

Euclidean space )),,(,,(1 ×+nRxE  which represents a 

straight line with origin at 0 , local coordinates x , metric 

1=δ , additive unit 0  and multiplicative unit 1. Another 

characterization of real numbers is defined by the 

isomorphism of the reals ),,( ×+nR  into the commutative 

one-dimensional multiplicative group of dilations (1)G  

defined by;  

).,,(,),,,(,= 1 RxExxnRnxnx δ∈′×+∈×′  (24) 

The basis is given by  

1=e                         (25) 

with the norm defined by  

0>)(=|| 2

1

nnn ×                  (26) 

and  

.||||=|| nnnn ′×′×                (27) 

2.5.2. Isodual Real Numbers 

Isodual Real numbers constitute a one-dimensional isodual 

associative and commutative normed algebra (1)dU  which 

is anti-isomorphic to (1)U  ref.[1]. 

Isodual real numbers are the conventional numbers n  

defined with respect to the isodual unit 1=1 −d
. The isodual 

conjugation of real numbers is then written as  

.=1=1= nnnnn dd −×→×          (28) 

Note that, such a sign inversion occurs when the isodual 

real numbers are projected in the field of conventional real 

numbers. As a result, all the numerical values change sign 

under isoduality. 

The one-dimensional real isodual Euclidean space 

)),,(,,( ddddd nRxE ×+δ  is a straight line, with 

conventional additive unit 0 , and isodual multiplicative unit 

1=1 −d
. The ),,( ddd nR ×+  represents the Euclidean 

space )),,(,,( ddddd nRxE ×+δ . Also, the isodual 

dilations are defined by  

xnxnx dd ××′ ==              (29) 

This establishes an isomorphism between ),,( ddd nR ×+  

and the isodual group of dilations (1)dG  (the conventional 

group reformulated according to the multiplicative unit 
d1 ). 

Santilli points out that ),,(1 RxE δ  and ),,(1

ddd RxE δ  

are antiisomorphic and the same property holds for (1)G  

and (1)dG . Also, the isodual dilations coincide with 

dilations as defined above. Santilli further says that "this could 

be the a reason for the lack of detection of isodual numbers 

until then." ref.s [38, 27, 28]. 

In the isodual case, the isodual basis is given by 

dde 1=                      (30) 

with isodual norm 

0<||=1||=1)(=|| 2

1

nnnnn dd −×××       (31) 

satisfying the axioms 

ˆˆ ˆ ˆ ˆ( ) = ( ) , , ,

                                 (isoassociative law)

A B C A B C A B C U∀ ∈⊙ ⊙ ⊙ ⊙

ˆ ˆ2 2ˆ ˆ ˆ ˆ ˆ ˆ= ( ), = ( )

                                      (isoalternative laws)

A B A A B A B A B B⊙ ⊙ ⊙ ⊙ ⊙ ⊙

ˆ ˆ[ , ] :=ˆA B A B B A−⊙ ⊙
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.||||=|| dddddddd nnnn ′×′×         (32) 

2.5.3. Isoreal Numbers 

Isoreal numbers constitute a one-dimensional, isonormed 

isoassociative and isocommutative isoalgebra 

(1)(1)ˆ UU ≈  ref.[1]. 

Isoreal numbers are the numbers 1̂=ˆ ×nn  of an isofield 

of Class I, with isomultiplication defined by ××× T=ˆ  and 

isounit 0>=1̂ 1−T , generally outside the original field 

),,( ×+nR . These can be represented as the isoeuclidean 

spaces ))ˆ,,ˆ(ˆ,ˆ,(ˆ
1,1 ×+nRxE δ  with δδ T=ˆ , over 

)ˆ,,ˆ(ˆ ×+nR  the isotopes of conventional one-dimensional 

Euclidean spaces ),,(1 RxE δ . 

Some of the important remarks are as follows. 

• The conventional Euclidean space ),,(1 RxE δ  and 

its isotopic covering )ˆ,ˆ,(ˆ
1,1 RxE δ  are locally 

isomorphic due to the joint liftings δδδ ×→ T=ˆ  

and 
1=1̂1 −→ T .  

• )ˆ,ˆ,(ˆ
1,1 RxE δ  is not a Riemannian space because of 

the intrinsic dependence of the isometric δ̂  on the 

derivatives …ɺɺɺ ,, xx  as well as the fact that the basic 

unit is not the conventional quantity 1.  

• However, )ˆ,ˆ,(ˆ
1,1 RxE δ  is a simple, yet bona-fide 

isoriemannian space [24], because 

),,,,,(ˆ==ˆ …ɺɺɺ xxxtT δδδ ×  where the local 

dependence is generally nonlinear, nonlocal and 

noncanonical in all variables.  

In fact, the one-dimensional isospace )ˆ,ˆ,(ˆ
1,1 RxE δ  

represents a one-dimensional generalization of conventional 

straight line, called as isoline. This is because of its 

intrinsically nonlinear, nonlocal and noncanonical metric 

),,,,(ˆ …ɺɺɺ xxxtδ  with multiplicative isounit 

),,,,(1̂=1̂ …ɺɺɺ xxxt . Then )ˆ,ˆ,ˆ(ˆ
1 ×+nR  can be realized via 

isodilations on )ˆ,ˆ,(ˆ
1 RxE δ  as;  

,=ˆˆ= xnxnx ××′                (33) 

which is isodual dilation and represents one-dimensional 

isogroup of isodilations (1)Ĝ  same as the group (1)G  

realized with respect to isounit 1̂ . 

Again, the isobasis is given by  

1̂=ê                     (34) 

with isonorm defined as;  

          (35) 

which is the conventional norm only rescaled to the new unit 

1̂ . We then also have  

               (36) 

2.5.4. Isodual Isoreal Numbers 

The isodual isoreal numbers are the realization of the 

one-dimensional isodual, isonormed, isoassociative and 

isocommutative isoalgebra (1)(1)ˆ dd UU ≈  ref.[1]. 

These are the isodual numbers  

1̂=1̂,1̂=ˆ −× ddd nn              (37) 

in the isodual isofield ),,ˆ(ˆ
11

ddd nR ×+ .These correspond to 

)ˆ,ˆ,(ˆ
11

ddd RxE δ  the isoeuclidean space of Class II 

)ˆ,ˆ,(ˆ
11

ddd RxE δ  of dimension one with isodual isodilations  

xnx dd ×′ ˆˆ=                   (38) 

coinciding with dilations (24). This also characterizes an 

isomorphism isodual isoreal numbers with the 

one-dimensional isodual isogroup (1)ˆ dG . The underlying 

isomorphism 

1

11,1

( , , ( , , ))

ˆ ˆ ˆˆ( , , ( , , ))                          

d d d d d

d d d d d

E x R n

E x R n

δ

δ

+ × ≈

+ ×
 

implies the (1)(1)ˆ dd GG ≈ . 

The isodual isobasis is defined by  

dde 1̂=ˆ                     (39) 

The isodual isonorm  

           
(40) 

verifies the axioms 

          
 
(41) 

2.6. Isocomplex Numbers and Their Isoduals 

2.6.1. Complex Numbers 

Complex numbers constitute a two-dimensional, normed 

associative and commutative algebra (2)U  ref.[1]. 

Complex numbers innc 10= +  where 0n  and 1n  are 

real numbers and i  is an imaginary unit, are represented in a 

Gauss plane which is a realization of two-dimensional 

Euclidean space )),,(,,(2 ×+nRxE δ  satisfying  

1

2 ˆ ˆˆ := ( ) 1 =| | 1n n n n× × ×

ˆ ˆˆ ˆ ˆ ˆ= .n n n n′ ′× ×

1

2 ˆˆ ˆ:= ( ) 1 =
d

d dn n n n× × −

ˆ ˆˆ ˆ ˆ ˆ=
d d dd d d dn n n n′ ′× ×
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),,(== 2

2

2

1

2 ×+∈+ nRxxxxx jij

tδ         (42) 

whose group of isometries is one dimensional Lie Group 

(2)O , the invariance of the circle. Hence, complex numbers 

can be represented via fundamental representation of (2)O  

as follows. 

A one-to-one correspondence between complex numbers 

and points in the Gauss plane can be obtained by following 

dilative rotations  

)()(==)(= 2110

'

21 ixxinnzcixxz +++′ ��
  (43) 

and multiplication  

),(=),(),(= 112021102110 xnxnxnxnxxnnzc +−�� (44) 

which preserve all the properties of a field. 

Representation of a complex number via matrices has the 

following form  

0 1

0 0 1 1

1 0

:= =
n n i

c n I n I
n i n

× 
× + ×  × 

      (45) 

where  

d d
c = c,i = i−                (46) 

which are well known as the identity and fundamental 

representation of 
(2)O

. 

Norm can also be defined as  

2

1

2

1

2

0
2

1

10 )(=)Det(:=||=|| nncinnc +×+   (47) 

Also, the identification of basis in terms of matrices is 

01 = Ie  and 12 = Ie .  

2.6.2. Isodual Complex Numbers 

Isodual complex numbers constitute a two-dimensional 

isodual, normed, associative and commutative algebra 

(2)dU  anti-isomorphic to (2)U  ref.[1]. 

Isodual complex numbers are given by  

={( , , )| = ; = ; = = , }d d d d d d dC c i i c c i c c C+× × −× − × − ∈   (48) 

where c  is the complex conjugation. Thus, given a complex 

number innc ×+ 10= , its isodual is given by  

.==== 10101

ddd

o

d Cinninninncc ∈×+−×−−×+−  (49) 

Considering the group of isometries, the one-dimensional 

isodual Lie group (2)dO  i.e. the image of 2O  under the 

lifting 1)1,.(=.(1,1)= −−→ diagIdiagI d
 of the 

two-dimensional isodual Euclidean space 

)),,(,,(2

ddddd
nRxE ×+δ  with basic invariant  

2 2 2

1 2

2 2

1 1 2 2 1 2

= = = =

= ( , , )

d t d d d d

i ij j

d d d d d

x x x x x x x

x x x x x x R n

δ δ +

× + × − − ∈ + ×
  (50) 

isodual complex numbers can be characterized by the 

isorepresentation of (2)dO . 

Now, the image of the conventional plane under isoduality 

is the isodual Gauss plane. Also, a one-to-one correspondence 

between the points ),(= 21 xxP  and complex numbers can 

be defined by isodual dilative rotations as  

)()(==)(= 211021 ixxinnzcixxz ddd ×+×+−′×+′ ��   (51) 

following the multiplication rules  

0 1 1 2

0 1 1 2 0 2 1 1

= ( , ) ( , ) =

( , )

d d dc z n n x x

n x n x n x n x

−
− × × × − × + ×
� �

   (52) 

which preserve all the properties of a field. 

Isodual transformations form an isodual group (2)dG  

antiisomorphic to (2)G . Even the one-to-one 

correspondence between complex numbers and Gauss plane 

continues under isoduality. 

Matrix representation of isodual complex numbers can be 

defined as  

0 1

0 0 1 1

1 0

:= = ,d d d d d
n n i

c n i n i
n i n

− × 
× + ×  × − 

    

 

(53) 

0 1

1 0 0
= , =

0 1 0

d
i

i i
i

− −   
   − −              

 (54) 

with the isodual unit and isodual representations of 

(2)dO  respectively. 

The isodual norm can be defined as 

0 1

1 1

2 2
0 0

| | = | | :=

[ ( )] = ( )D et

d d d

d d d d d d d

R

c n n i

c T i c c i−

− + ×

× × × ×
which may be written as  

dddd inniccc 0

2

1

2

00 )(=)(=|| ×+××  (55) 

and verifies the axioms  

.,,||||=|| dddddddddddd CccRcccc ∈′∈′×′� (56) 

The isodual basis in terms of matrices is given by  

.=,= 120

dddd

i ieie             (57) 
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2.6.3. Isocomplex Numbers 

Isocomplex numbers constitute a two-dimensional, 

isonormed, isoassociative and isocommutative isoalgebras 

over the isoreals (2)(2)ˆ UU ≈ ref.[1]. 

In this case we consider the isofield of isocomplex numbers  

      (58) 

withe generic element innc ×+ 10
ˆˆ=ˆ . Here we need the 

two-dimensional isoeuclidean space of class I, 

)ˆ,,ˆ(ˆ,ˆ,(ˆ
1,2 ×+nRxE δ . The most important realization used in 

the physical literature has the diagonalized and 

positive-definite isotopic element and isounit  

1,2.=0,>),,.(=1̂),,.(=
2

2

1

1

2

2

2

1 kbbbdiagbbdiagT k

−−
(59) 

with basic isoseparation  

1 0 k 1

k

ˆˆ ˆe = I , e

ˆ= i , k = 1, 2,3.

+
            (60) 

The group of isometries of this space is the Lie group 

(2)(2)ˆ OO ≈  , the group constructed with respect to the 

multiplicative isounit ),.(=1̂ 2

2

2

1

−− bbdiag  which provides 

the invariance of all possible ellipses with semiaxes 
2

2

2

1 =,= −− bbba  as the infinitely possible deformation of 

the circle ),,(= 2

2

2

1

2 ×+∈+ nRxxx . Thus, isocomplex 

numbers are characterizable via fundamental representation of 

(2)Ô . 

Isocomplex numbers )ˆ,ˆ(=ˆ
10 nnc  can also be 

characterized to be the set of points )ˆ,ˆ(= 21 xxP  on the 

isogauss plane on ))ˆ,,ˆ(ˆ,ˆ,(ˆ
1,2 ×+nRxE δ . 

In fact, a one-to one correspondence between isocomplex 

numbers )ˆ,,ˆ(ˆ ×+cC  and the points on the isogauss plane can 

be defined via following isodilative isorotations 

zcixxz �̂ˆ=)(= '

21 ×+′        (61) 

characterized by the isomultiplication defined as 

=),(ˆ)ˆ,ˆ(=ˆˆ
2110 xxnnzc ��

 

]),1̂)(1̂)[(],1̂)(1̂)([(= 112021
2

1

00 ××+×××××∆−×× xnxnnnxn
 

with  

2

2

2

1== bbDetT ×∆
         

 (62) 

Isocomplex numbers also admit following two-by-two 

matrix representation. 

      (63) 

where  

   (64) 

and 

2 2

1 2= =DetT b b∆                (65) 

which characterize the isounit and the fundamental 

(adjoint)representation of (2)Ô  respectively. 

The set of matrices (63) is closed under addition and 

isomultiplication. Also, each element possesses the isoinverse  

1̂ˆ=ˆ 11̂ ×−− cc                (66) 

where 
1̂ˆ−c  is the ordinary inverse. As a result, )ˆ,,ˆ(ˆ ×+cS  is 

an isofield with the local isomorphism 

)ˆ,,ˆ(ˆ)ˆ,,ˆ(ˆ ×+≈×+ cCcS . We note that the one-to-one 

correspondence between complex numbers and Gauss plane is 

preserved under isotopy. It is important know that the 

realization of complex numbers as matrices is not unique. 

The isonorm is defined as 

     (67) 

which readily verifies the axiom 

      (68) 

The isobasis is given by 

.1̂=ˆˆ=ˆ
201 eIe                (69) 

2.6.4. Isodual Isocomplex Numbers 

The isodual isocomplex numbers constitute a 

two-dimensional, isodual, isonormed, isoassociative and 

isocommutative isoalgebras over the isodual isoreals 

(2)(2)ˆ dd UU ≈ ref.[1]. 

Now the isodual isocomplex numbers are defined as  

       (70) 

1ˆ ˆ ˆˆ ˆˆ ˆ= {( , , ) | = ,1 = , = 1,

( , , )}

C c T T c c

c C c

−+ × × × × ×
∈ + ×

0 0 1 1

1

2 2 2
0 1 1 1

1

2 22
1 2 0 1

ˆ ˆˆˆ ˆ= =c n i n i

n b i n b

i n b n b

−−

− −

× +

 
 × × × × ∆
 
  × × × ∆ × 

12 2
1 12

0 12 2
2 2

0 0ˆ ˆ ˆ1 = = , =
0 0

b i b
I I

b i b

− −

−

   ×
   ∆
   ×   

1 1

2 22 2
0 0 1 0
ˆ ˆˆ ˆ= [ ( )] = ( )Rc Det c T I n n I× × + ∆ ×

ˆˆˆˆ ˆ ˆ ˆ ˆ ˆˆ = , , .c c c c R c c C′ ′ ′× ∈ ∈�

1

ˆ ˆ ˆˆ ˆ= {( , , ) | = 1 , = ,

ˆ= ,1 = , ( , , )}

d d d d d d d

d d

C c c c T T

T T c C c−

+ × − × × ×

− ∈ + ×
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with generic element .ˆˆ=ˆˆ=ˆ
101 inninnc dddd ×+−×+  

Here we need a two-dimensional isodual isoeuclidean space 

))ˆ,,(ˆ,,(,2

ddddd

II nRxE ×+δ  with the realization 

2 2

1 2

2 2

1 2

ˆ= .( , ),1 =

.( , ), > 0, = 1, 2,

d d

k

T diag b b

diag b b b k− −

− −

− −
     

 
(71) 

with basic isoseparation 

=1̂)(=1̂)(=2 d

j

d

iji

ddtd xxxxx ×× δδ  

),,,ˆˆ1̂)( (

2

2

221

2

11

ddd nRxbxxbx ×+∈×−−
     

(72)
 

whose group of isosymmetries is the isodual isoorthogonal 

group (2).(2)ˆ dd OO ≈
 

The isodual isogauss plane is defined as the set of points 

),ˆ(= 21 xxP  on ))ˆ,,ˆ(ˆ,,(ˆ
1,2

dddd nRxE ×+δ  which 

characterize the isocomplex numbers )ˆ,ˆ(=ˆ
10 nnc − . 

The correspondence between the isodual isocomplex 

numbers ),,ˆ(ˆ ddd cC ×+  and the isodual gauss plane can be 

made one-to-one by the isodual isodilative isorotations  

zcixxz dd
�ˆ=)(= 21

′×+′           (73) 

having rule for multiplication as 

=),(ˆ)ˆ,ˆ(=ˆˆ
2110 xxnnzc dd

��             (74) 

 

Isodual isoguass planes characterizes isodual isofield. Also 

the isodual isotransformations forms an isodual isogroup 

(2)(2)ˆ dd GG ≈ . 

Isodual isocomplex numbers also admit the following 

two-by-two matrix representation.  

      (75) 

where  

2

1

0 2

2

1

2 2
1

1

2 2
2

0ˆ ˆ1 = = ,
0

0
ˆ = .

0

d d

d

b
I

b

i b
I

i b

−

−

−

−

 −
 − 

 
− × × ∆ 

 
 − × × ∆ 

        (76) 

This satisfies isomultiplication rule (74) characterizing the 

isodual isounit and fundamental representation of (2).ˆ dO  

The set of matrices representing isodual complex numbers 

),,ˆ(ˆ ddd cS ×+ , is closed under addition and isomultiplication. 

Each element possesses the isodual isoinverse 

.ˆ)ˆ(=)ˆ( 11 ddd Icc ×−−        (77) 

As a result we get a local isomorphism 

),,ˆ(ˆ),,ˆ(ˆ dddddd cCcS ×+≈×+ . 

Now, the isodual isonorm can be defined as 

 (78) 

which verifies 

 (79) 

The isodual isobasis is given by 

.1̂=ˆˆ=ˆ
201

dddd
eIe            (80) 

2.7. Isoquaternions and Their Isoduals 

2.7.1. Quaternions 

Quaternions constitute a normed, associative, 

non-commutative algebra of dimension 4 over reals (4)U
ref.[1]. 

Quaternions ),,( ×+∈ qQq  admit a realization in the 

complex Hermitean plane ),,(2 CzE δ  with separation 

1 1 2 2

2
( , , ) : ? = ,

?

i j

ij
E z C z z z z z z z zδ δ
δ δ

− − −+

≡
 (81) 

with basic (unimodular) invariant (2)SU . Hence 

quaternions have a fundamental representation (2)SU  by 

Pauli’s matrices. 

Quaternions Q  can be realized as the pairs of complex 

numbers, ),(= 21 ccq , Qq ∈  and Ccc ∈21,  with 

multiplication � . Hermitean dilative rotation on 

),,(2 CzE δ  which leaves zz†  invariant is given by 

,=,= 2

1

1

2

22

2

1

1

1 zczczzczcz ���� +−′+′  (82) 

where the dilation is represented by 1.2211 ≠+ cccc ��  

These transformations form a group (4)G . This group is 

associative but noncommutative resulting into a one-to-one 

correspondence with quaternions. 

Quaternions can be represented via matrices over the field 

of complex numbers ),,( ×+cC  as 

1

2
0 0 1 2

0 2 1 1

ˆ ˆ= [( ) 1 ( ) 1],

ˆ ˆ[( ) 1 ( ) 1].

n x n x

n x n x

− × × + ∆ × × ×

− × × + × ×

0 0 1

1

2 2 2
0 1 1 1

1

2 22
1 2 0 2

ˆ ˆˆ ˆ= =
d d d d d d d

c n I n I

n b i n b

i n b n b

−−

− −

× + ×

 
 − × × × × ∆
 
  × × × ∆ − × 

1 1

2 22 2
0 0 1

ˆ ˆˆ ˆ= [ ( )] = ( ) ,
d d d d d

Rc Det c T I n n I× × + ∆ ×

ˆˆˆˆ ˆ ˆ ˆ ˆ ˆˆ = , , .
d d d

d d d d d d d d d dc c c c R c c C′ ′ ′× ∈ ∈�
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1 2

2 1

=
c c

q
c c

 
 − 

                  (83) 

with 

inncinnc ×+×+ 212301 =,=
        (84) 

The matrix q  admits the representation 

33221100= inininInq ×+×+×+×       (85) 

where 3210 ,,, iiiI  are the Pauli’s matrices 

0 1

2 3

1 0 0
= , = ,

0 1 0

0 1 0
= , =

1 0 0

i
I i

i

i
i i

i

   
   
   

   
   − −   

    (86) 

with fundamental relations 

1,2,3.=,,,= mnmniii knmkmn ≠×−× ε   (87) 

where nmkε  is the tensor of rank three. The norm of the 

quaternion can be defined as 

,)(=)†(=|| 2

1

2

1,2,3=

2

1

k

k

nqqq ∑′             (88) 

satisfying 

QqqRqqqq ∈′∈′×′ ,,||||=|| �       (89) 

The basis is defined by 

1,2,3.=,=,= 101 kieIe kk+         (90) 

2.7.2. Isodual Quaternions 

Isodual quaternions constitute an isodual four-dimensional, 

normed associative and noncommutative algebra over the 

isodual reals (4)dU  which is anti-isomorphic to (4)U  

ref.[1]. 

Isodual quaternions ),,( dddd qQq ×+∈  can be 

represented via the isodual Hermitean Euclidean space 

2

1 1 2 2

( , , ( , , )) : ( )

= ( ) .

d d d d d d id d jd d

ij

d d

E z C c z z I

z z z z I R

δ δ−

− −

+ × ×

− − × ∈
   (91) 

Isodual complex numbers can also be realized via pairs of 

isodual complex numbers as 
dddddddd CccQqccq ∈∈ 21 ,,),2,(= . 

Also, the isodual Hermitean dilative rotation on 

)),,(,,(2

dddddd cCzE ×+δ  leaving invariant 
ddd zz δ†  

is given by 

1 1 2

1 2

2 1 2

2 1

= ,

=

d d d d d d d

d d d d d d d

z c z c z

z c z c z

′ −
′ +

� �

� �
     (92) 

where the dilation is represented by the value 

12211 −≠+ dddddd
cccc �� . 

These transformations form an associative but 

noncommutative isodual group (4)dG  which is in 

one-to-one correspondence with isodual quaternions 

),,( ddd qQ ×+ . 

As a result there is a matrix representation of isodual 

complex numbers over the field of isodual complex numbers 

),,( ddd cC ×+  as 

1 2

2 1

=
d d

d

d d

c c
q

c c

 −
 
 

             

(93) 

under the condition 

inncinnc dd ×+−×+− 212301 =,=       (94) 

where 
iicc dd =,=−

. 

We can represent 
dq

 as 

== 33221100

ddddddddddddd inininInq ×+×+×+×
 

33221100= inininIn ×+×+×+×−
       (95) 

where i’s are the Pauli’s matrices. Note that Pauli’s matrices 

change sign under isoduality although their product with 

isodual numbers is isoselfdual. 

Isodual norm is then defined as 

1

2 2

=0,1,2,3

| |= [ ( )] = ( )d d d d d

C k

k

q Det q T I n I× × − ×∑   (96) 

satisfying 

| | =| | | | ,

, .

d d d d d d d d d d

d d d

q q q q R

q q Q

′ ′× ∈
′ ∈
�

    (97) 

The isodual basis is defined as 

1,2,3.=,=,= 101 kieIe k

d

k

dd

+           (98) 

 

2.7.3. Isoquaternions 

Isoquaternions constitute a four-dimensional, isonormed, 

isoassociative, non-isocommutative isoalgebra over the 
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isoreals (4)(4)ˆ UU ≈ , ref.[1]. 

Isoquatrnions )ˆ,,ˆ(ˆˆ ×+∈ qQq  can be represented using 

two-dimensional, complex Hermitean isoeuclidean space of 

class I, ij

i

kik

kk

I TzzzzCzE δδδδδ ˆ=ˆˆ=ˆ,ˆˆ=ˆ,=ˆ),ˆ,ˆ,ˆ(ˆ
,2  

on the isofield )ˆ,,ˆ(ˆ ×+cC  with real separation given by 

0,>†ˆ,=ˆ†ˆ 22

2

212

1

1 δδδ ≡+ zbzzbzzz    (99) 

with basic isotopic element and isounit 

2 2 2 2

1 2 1 2
ˆ= .( , ), 1 = .( , ), > 0,kT Diag b b Diag b b b− −

(100) 

The (unimodular) invariance group of this space is the 

Lie-isotopic group (2)ÛS . Isoquaternions can also be 

characterized by fundamental representation of (2)ÛS  

algebra. A Hermitean isodilative isorotation on 

))ˆ,,ˆ(ˆ,ˆ,ˆ(ˆ
,2 ×+cCzEI δ  is given by 

,ˆˆˆˆˆˆ=ˆ,ˆˆˆˆˆˆ='ˆ 2

1

1

2

22

2

1

1

1 zczczzczcz ���� +−′+   (101) 

where the dilation is represented by the value 

1̂ˆˆˆˆˆˆ
2211 ≠+ cccc �� . Representation of isoquaternions into 

two-by-two matrices on )ˆ,,ˆ(ˆ ×+cC  is characterized by the 

isorepresentations of the Lie-isotopic algebra (2)ÛS  ref. 

[40, 41, 42]. These can be expressed in terms of the basic 

isounit 

2

1

0 2

2

0ˆˆ = 1 =
0

b
I

b

−

−

 
 
 

              (102) 

and fundamental representation of (2)ÛS  as 

 (103) 

Note that the matrices above satisfy the properties of 

isotopic image 

       (104) 

and hence are closed under commutators, which is a necessary 

condition for the existence of an isotopy. This results into a 

Lie-isotopic (2)ÛS  algebra 

.ˆ2=ˆˆˆˆˆˆ:=]
ˆ̂

,ˆ[ 2

1

knmknmmnmn iiiiiii ε
−

∆−− ��    (105) 

Isoquaternions can be represented in the form 

=ˆˆˆ=ˆ
33221100 inininInq +++

 

1 1

2 2 22 2
0 1 3 2 2 1 1

1 1

2 2 22 2
2 1 2 0 2 3 1

( ) ( )
.

( ) ( )

n b in b n in b

n in b n b in b

− −−

− −−

 
+ ∆ ∆ − + 

 
 ∆ + − ∆ 

  (106) 

Note that the set ×+ ˆ,,ˆ(ˆ qS  is a four dimensional vector 

space over the isoreals )ˆ,,ˆ(ˆ ×+nR  which is closed under the 

operation of conventional addition and isomultiplication and 

hence, is an isofield. Thus, )ˆ,,ˆ(ˆ)ˆ,,ˆ(ˆ ×+≈×+ qQqS . 

The isonorm of the isoquaternions is defined as follows 

            (107) 

and may be written as 

2 2 2 2

0 1 2 3 0
ˆˆ = [ ( )] ,q n n n n I+ ∆ + +     (108) 

and then 

    (109) 

The isobasis is defined as 

1,2,3.=,ˆ=ˆ,ˆ=ˆ
101 kieIe kk+      (110) 

2.7.4. Isodual Isoquaternions 

The isodual isoquaternions constitute a four-dimensional, 

isodual, isonormed, isoassociative, non-isocommutative 

isoalgebra over the isodual isoreals (4)(4)ˆ dUU ≈  ref. 

[1]. 

The isodual isoquaternions )ˆ,ˆ(ˆˆ dddd qQq �+∈  by a 

two-dimensional isodual complex Hermitean isoeuclidean 

space of class II over the isodual isocomplex field as 

  (111) 

having basic isodual isotopic element and isodual isounit 

),.(=1̂),,.(= 2

2

2

1

2

2

2

1

−− −−−− bbDiagbbDiagT dd  (112) 

having invariance as the isodual Lie-isotopic group 
dUS ˆ . An 

isodual Hermitean isodilative isorotation on 

))ˆ,,(ˆ,,ˆ(,2

dddddd

II cCzE ×+δ  is given by 

       (113) 

where dilation is represented by 

1 12 2
1 12 2

1 22 2
2 2

1 2
22

3 2
1

0 0
ˆ ˆ= , = ,

0 0

0
ˆ =

0

ib b
i i

ib b

ib
i

ib

− −

−

   
   ∆ ∆
   −   

 
 ∆
 − 

1

2

2 2
1 2

ˆˆ ˆˆ = 1 , ,

, = 1, 2,3, = ,

n m nmk ki i n m

n m b b

ε
−

∆ ≠

∆

�

1

2
0

ˆˆ ˆ= [ ( )] ,Rq Det qT I

ˆˆˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ' = ' , , ',q q q q R q q Q× ∈ ∈� �

,2

1 1 2 2 1 2 1 2 2 2
1 2

ˆ ˆˆˆ ˆ( , , ( , , )) : ?

ˆ ˆ = .

d d d d d d d d d
II

d d d d d d

E z C c z z

z z z z z b z z b z

δ δ
− − − −

+ ×

× + × − −

1 1 2
1 2

2 1 2
2 1

ˆˆ ˆˆ ˆ= ,

ˆˆ ˆ ˆˆ ˆ= ,

d d d d d d d

d d d d d d d

z c z c z

z c z c z

′ −

′ +

� �

� �
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ddddddd cccc 1̂ˆˆˆˆˆ
2211 ≠+ �� . 

Isodual Isoquaternions can also be realized as the isodual 

isorepresentation of (2)ˆ dUS  and can be written as 

=ˆˆˆˆˆˆˆˆˆˆ=ˆ
3322110

ddddddddddd inininnq ×+×+×+  

=ˆˆˆˆˆˆˆ
3322110 inininn +++−  

1 1

2 2 22 2
0 1 3 2 2 1 1

1 1

2 2 22 2
2 1 2 0 2 3 1

( ) ( )
=

( ) ( )

n b in b n in b

n in b n b in b

− −−

− −−

 
− + ∆ ∆ − + 

 
 ∆ + − − ∆ 

 (114) 

Note that the set of all the matrices ),,ˆ( ddd q ×+  is an 

isofield and hence )ˆ,,ˆ(ˆ),,ˆ( dddddd qQq ×+≈×+ . 

The isodual isonorm is defined as 

=ˆ)]ˆ([=ˆ
0

2

1
ddd

R

dd ITqDetq ¸¸
 

,ˆ)]([= 0

2

3

2

2

2

1

2

0

d
Innnn ++∆−−      (115) 

    (116) 

The isodual isobasis is defined as 

1,2,3.=,ˆ=ˆˆ=ˆ
101 kieIe d

k

d

k

dd

+    (117) 

2.8. Isooctonians and Their Isoduals 

2.8.1. Octonians 

Octonians constitute and eight-dimensional normed, 

non-associative and non-commutative , alternative algebra 

(8)U  over the field of reals ),,( ×+nR .ref.[20, 21]. 

Octonians ),,( ×+∈ oOo  can be realized as 

two-dimensional quaternions ),(= 21 qqo  with 

multiplication rules 

1 2 1 2

1 1 1 2 1 2 1 2

= ( , ) ( , ) =

( , ).

o o q q q q

q q q q q q q q

′ ′ ′
′ ′ ′+ − +

� �

� � � �
     (118) 

The antiautomorphic conjugation of an octonian is defined 

as 

).,(= 21 qqo −               (119) 

The norm of an octonian is defined as 

,||||=)(:=|| 21
2

1

qqooo +�
     (120) 

with the basic axioms 

.,,||||=| OooRoooo ∈′∈′×′�    (121) 

It is important to note that Octonions do not constitute a 

realization of the abstract axioms of a numeric field and, 

therefore, they do not constitute numbers as conventionally 

known in mathematics due to the non-associative character of 

their multiplication (see ref. [1]). 

2.8.2. Isodual Octonians 

The isodual octonians constitute an eight-dimensional 

isodual, normed, non-associative, and non-commutative 

algebra (8)dU  over the isodual real numbers 

),,( ddd nR ×+  ref. [1]. 

Isodual octonians are defined as 

),(= 21

ddd qqo                (122) 

over the isodual reals ),,( ddd nR ×+ . The isodual 

multiplication of isodual octonians is defined by 

1 2 1 2

1 1 1 2 1 2 1 2

= ( , ) ( , ) =

( , ).

d d d d d d d d

d d d d d d d d d d d d

o o q q q q

q q q q q q q q

′ ′ ′

′ ′ ′− +

� �

� � � �
 (123) 

The isodual antiautomorphic conjugation of an octonian is 

defined as 

).,(= 21

ddd qqo −                 (124) 

The isodual norm of an octonian is defined as 

,||||=)(:=|| 21
2

1

qqooo +�
       (125) 

with the basic axioms 

.,,||||=| OooRoooo ddddddddddd ∈′∈′×′� (126) 

2.8.4. Isodual Isooctonians 

Isodual isooctonians form an eight-dimensional isodual, 

isonormed, non-isoassociative, non-isocommutative, but 

isoalternative isoalgebra (8)(8)ˆ dd UU ≈  over the 

isodual isofield ),,ˆ(ˆ ddd nR ×+ , ref. [43]. 

Isodual isooctonians )ˆ,,ˆ(ˆˆ dddd oOo ×+∈  can be defined 

as the pair of isoquaternions )ˆ,ˆ(=ˆ
21

ddd qqo  over the 

isodual isoreals )ˆ,ˆ(ˆ ddd nR ×  with the multiplication rule 

   (131) 

The isodual isoantiautomorphism is defined as 

)ˆ,~(=~
2

ddd qqo −
               (132) 

ˆˆˆ ˆ ˆ ˆˆ = ,

ˆˆ ˆ ˆ, ,

d d d
d d d d d d d

d d d d

q q q q R

q q Q

′ ′× ∈

′ ∈

�

�

1 2 1 2

1 1 1 2 1 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ' = ( , ) ( , ) =

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ' , )

d d d d d d d d

d d d d d d d d d d d

o o q q q q

q q q q q q q q

′ ′

′ ′− +

� �

ɶ� � � �
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The isodual isonorm is defined as 

   (133) 

which readily verifies 

 (134) 

Again it is important to note that Isodual isooctonians do 

not constitute a realization of the abstract axioms of a numeric 

field and, therefore, they do not constitute numbers as 

conventionally known in mathematics due to the 

non-associative character of their multiplication (see Ref. [1]). 

3. Grand Unification of Numeric Fields 

Isotopic generalization has brought about a grand 

unification of the conventional numbers into one single, 

abstract notion of isonumber. It is important to note that the 

unification of all numbers was conjectured by Prof. Santilli in 

numerous publications through out his research for many 

years. Finally it was proved by Kadeisville, Kamiya and 

Santilli ref.[40]. The following theorem is the main result in 

this regard. 

Theorem 3.1. Let F(a, , )+ ×  be the fields of real numbers, 

complex numbers and quaternions, respectively, 
d d d

F (a , , )+ ×  the isodual fields, 
d d

a := a 1 = a× −  the 

isofields, and d d d:= 1 = , 1 = 1.× × × −× −  the isodual 

isofields as defined in the preceding section. Then all these 

fields can be constructed with the same methods for the 

construction of ˆ ˆF(a, , )+ ×  from d d dˆ ˆF (a , , )+ × , under the 

relaxation of the condition of positive-definiteness of the 

isounit, thus achieving a unification of all the fields, isofields 

and their isoduals into the single, abstract isofield of Class III, 

denoted by R. 

3.1. Hidden Numbers of Dimension 3, 5, 6, 7 

Based on the historical problem ‘The four and eight square 

problem and division algebras’ ref.[21], Prof. Santilli 

conjectured the possibility of ‘Hidden numbers’ of dimension 

3, 5, 6 and 7’. The numbers studied by Santilli, namely, reals, 

complex, quaternions and octonians are the solution of the 

following problem. 

2 2 2 2 2 2

1 2 1 2

2 2 2

1 2

( ) ( ) =n n

n

a a a b b b

A A A

+ + + × + + +

+ + +

… …

…

 

with 

srkrs

sr

k bacA ××∑
,

=               (135) 

where all the a’s, b’s and c’s are elements of a field 

),,( ×+aF  with conventional operations +  and × . It is 

well known that the only possible solutions of the problem are 

of dimension 1, 2, 4 and 8. These facts are in corporated in the 

theorem 1.1, restated here 

Theorem 3.2 All possible normed algebras with 

multiplicative unit over the field of real numbers are given by 

algebras of dimension 1 (real numbers), 2 (complex numbers), 

4 (quaternions), and 8 (octonians). 

The question posed by Santilli: Is ‘Does the classification 

according to above theorem persist under isotopies, 

pseudoisotopies and their isodualities ?’ or ‘Is it incomplete ?’ 

First, we investigate this problem for isotopies of the 

multiplication. The above problem, equation (135) is 

reformulated under the isotopies of the multiplication as 

follows. 

The isotopic lifting of the multiplication 

1=1̂,1=ˆ −→×××→× TT
         (136) 

transforms the problem (135) in to 

    (137) 

with 

srkrs

sr

k bacA ××∑ ˆˆ=
,

          (138) 

where all the a’s, b’s and c’s are elements of an isofield 

)ˆ,,(ˆ ×+aF  in which 1̂  is an element of the original field, 

can be simplified to the conventional operations as 

2 2 2 2 2 2

1 2 1 2

2 2 2 2

1 2

( ) ( ) =

( )

n n

n

a a a b b b

T A A A−

+ + + × + + +

× + + +

… …

…
    (139) 

with 

.=
,

2

srkrs

sr

k bacTA ×××∑      (140) 

Comparing the original problem and its isotopic conversion 

as formulated above, we observe that the reformulation of the 

problem is same as the original problem and hence the isotopic 

lifting and isoduality of the field )ˆ,,ˆ(ˆ),,( ×+→×+ aFaF  

does not change the solution of the problem. As the result we 

get the following theorem. 

Theorem 3.3. All possible isonormed isoalgebras with 

multiplicative isounit over the field of the isoreals are the 

isoalgebras of dimension 1 (isoreals), 2 (isocomplex), 4 

(isoquaternions), and 8 (isooctonians) and the classification 

persists under isoduality. 

Further, lifting of addition gives the third formulation which 

is pseudoisotopic type 

1̂=ˆ,ˆ=0̂0,ˆ=ˆ ×−→++→+ KKKK    (141) 

1

2
1 2

ˆˆ ˆ ˆ ˆ:= ( ) 1 =
d d d

d d d d d d do o o q q× +ɶ �

ˆˆˆˆ ˆ ˆ ˆ ˆ ˆˆ = , , .
d d

d d d d d d d d d do o o o R o o O′ ′ ′× ∈ ∈�

ˆ ˆ ˆ ˆ ˆ ˆ2 2 2 2 2 2
1 2 1 2

ˆ ˆ ˆ2 2 2
1 2

ˆ( ) ( ) =n n

n

a a a b b b

A A A

+ + + × + + +

+ + +

… …

…
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under which (137), (138) can be written over the 

pseudoisofield )ˆ,ˆ,ˆ(ˆ ×+aF  as 

   (142) 

with 

1̂=1̂)(=ˆˆˆˆˆ=ˆ

,,

××× ∑∑ ksrkrs

sr

srkrs

sr

k AbacbacA    (143) 

This can be written in the conventional operations as 

 

1̂=ˆ,1̂1)(1̂)(= 22

2

2

1 kkn AAKnAAA −++++ …
 
(144) 

The solution to (144) of dimension other than 1,2,4,8 under 

the pseudoisofield )ˆ,ˆ,ˆ(ˆ ×+aF  was envisaged by prof.Santilli 

as a conjecture under the loss of the needed axioms of a field, 

such as distributive laws. 

It was found that the solution do exist, but under the loss of 

number of axioms of the original field, in addition to the loss 

of distributivity. We consider a representative example of 

“Hidden numbers" of dimension 3 as follows 

2̂2̂2̂2̂2̂2̂2̂2̂2̂ 03̂42̂21̂=)7̂6̂5̂()3̂2̂1̂( ++++∗++  (145) 

Note that also the condition on kÂ  is true, that the 

elements in the r.h.s can be written as the combinations of the 

elements on the l.h.s as 

7.333=307,252=246,2=12 ×+××+×× (146) 

Hence we can rewrite the problem as 

  (147) 

which on simplification gives a quadratic equation in K  as 

0=802464 2 −+ KK           (148) 

with solution 

…0.325=K                (149) 

Thus the solution exists, but is not an integer. This implies 

the loss of closure under isoaddition for the case of integers. 

However, the closure can be regained if the original field is 

enlarged to include all real numbers. The issue whether such 

solutions do indeed form a pseudoisofield is open for the 

mathematicians. 

As algebras of dimensions higher than 8 are not alternative 

[21], also, as this property persists under isotopies and 

pseudoisotopies, leads to the fact that formulations (137 )and 

(142) are restricted to dimensions 8≤n . 

Prof. Santilli ref.[1] identified following open problems 

with regards to the notion of isofields. 

• Investigative study of “number with singular unit", i.e. 

isofields of class IV which are at the foundations of the 

isotopic studies of gravitational collapse. 

• The study of isofields of characteristic 0≠p , to see 

whether new fields and therefore new Lie-algebras are 

permitted by isotopies. 

Author of this article has defined ‘Iso-Galois fields’ ref.[44] 

which are basically finite isofields essentially of nonzero 

characteristic. As predicted by Santilli these isofields have 

important applications in Cryptography, Genetics, Fractal 

geometry etc. 

• The study of the integro-differential topology 

characterized by isofields with local differential 

structure and integral isounits. 

3.2. Genonumbers and Their Isoduals 

We have seen that the two degrees of freedom due to 

isotopic lifting of addition and multiplication give rise to 

isofields and pseudoisofields respectively. These fields are at 

the foundation of the Lie-isotopic theory [8, 9, 45]. 

Also, there exists a third degree of freedom caused by the 

ordering of the above operations which leads to further 

generalization of a field which is at the foundation of 

Lie-admissible algebras [8, 9, 18]. 

Given a field ),,( ×+aF  of ordinary numbers with generic 

elements …cba ,, , with addition abba ++ =  and 

multiplication ba× , we can define the following. 

Genoaddition: Addition of a  to b  from the left, 

denoted by ba >+  and addition of b  to a  from the right 

denoted by ba +<  are called genoadditions. 

Genomultiplication: Multiplication of a  times b  from 

the left denoted by ba >× , and multiplication b  times a  

from the right denoted by ba ×<  are called 

genomultiplications. 

It is worthwhile to note that ordering of multiplication is 

fully compatible with its basic axioms, such as commutativity 

for real and complex numbers, associativity for quaternions, 

and alternativity for the octonions. In the case of real and 

complex numbers we will have 

abbaabba ×≡××≡× <<>> ,  (150) 

The identity of multiplication from left and right can be 

different and hence two genomultiplications can very well be 

different i.e. 

baba ×≠× <>

           (151) 

with realization, 

ˆ ˆ ˆ ˆ ˆ ˆ2 2 2 2 2 2
1 2 1 2

ˆ ˆ ˆ2 2 2
1 2

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆ ˆ( ) ( ) =

ˆ ˆ ˆˆ ˆ ˆ

n n

n

a a a b b b

A A A

+ + + × + + +

+ + +

… …

…

2 2 2
1 2

2 2 2
1 2

ˆ ˆ[( )1 ( 1) 1]

ˆ ˆ[( )1 ( 1) 1] =

n

n

a a a n K T

b b b n K

+ + + + −

+ + + + −

…

…
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K
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,,:=,:= <> SRaSbbaaRbba ≠××
   (152) 

where R and S are fixed isotopic elements, called the 

genotopic elements. These are sufficiently smooth, bounded 

and nowhere singular (not necessarily Hermitean) outside the 

original field. 

The left and right generalized genounits can be defined in 

the following manner 

ˆa b×                    (153) 

11̂ = T−
                 (154) 

Note that all the axioms and properties of the original field 

are preserved under the mentioned left or right multiplication 

and multiplicative units under the appropriate ordering for all 

the dimensions 1,2,4,8. This procedure leads to new fields 

called as genofield denoted by )ˆ,,ˆ(ˆ >>> ×+aF  (right 

genofield) or )ˆ,,ˆ(ˆ <<< ×+aF  (left genofield) or 

)ˆ,,ˆ(ˆ ><><>< ×+aF . Also, isodual genofields are defined by 

the antiautomorphic conjugations 

SSSRRR dd −→−→ =,=      (155) 

denoted by )ˆ,,ˆ(ˆ ><><>< ddd
aF ×+ . 

Note that isofields are the particular case of genofields 

where the genotopic elements coincide. i.e. 

).ˆ,,ˆ(=)ˆ,,ˆ(ˆ
==|

><><>< ×+×+ aFaF TSR

ddd
     (156) 

R-S mutation of the Lie product: is defined as 

BSAARBBA −=),(            (157) 

which is Lie-admissible via the attached antisymmetric 

product 

ˆ[ , ] = ( , ) ( , ) = , =A B A B B A ATB BTA T R S− − − (158) 

which is Lie-isotopic. 

The lifting ]ˆ,[],[ BABA →  is called an isotopy. The 

lifting ),(],[ BABA →  is called a genotopy, ref. [8, 1]. 

The Lie-isotopic algebras are defined by one single isotopy 

of the enveloping associative algebra and related unit 

.=1̂1,=ˆ= 1−→×→× TATBBABAAB   (159) 

For the consistent formulation of Lie-isotopic algebras they 

must be defined over an isofield )ˆ,,ˆ(ˆ ×+aF  with isounit 

1=1̂ −T . 

Note that for the conventional multiplication ×  there is no 

ordering as 1=1=1 <>
. The above ordering can be defined 

for isomultiplication ×̂  wherein we can have different 

isounits. 

The Lie-admissible algebras can be generated by two 

different isotopies of the original associative algebra using left 

and right isounits with corresponding isotopies as 

,=1̂1,:= 1>> −→×→ RBAARBAB    (160) 

.=1̂1,:= 1<< −→×→ SABBSABA     (161) 

which must be defined over the genofields 

)ˆ,,ˆ(ˆ ><><>< ×+aF  with isounits 
><1̂ . Here, the isounits 

related with the left and right isomultiplication are disjoint and 

can indeed be Hermitean and real-valued, which admit 

Kadeisville classification into classes I. II, III, IV and V. 

However, in physics the isounits (left and right) used have a 

real physical significance when they are inter-related by a 

Hermitean conjugation as 

†<> )1̂(=1̂                     (162) 

This representation of the genounits (and hence genofields) 

provides approximation of irreversibility ref.[18]. 

It is important to note that conventional addition admits no 

meaningful ordering as 00=0 <> ≡ . However, the ordering 

exists for the isoaddition +++ K=ˆ  as +≠+ ˆˆ <>
 with 

KK <> ≠ . But there is loss of distributive law for the 

resulting genofield under genoadditions 
>< +̂ . 

All the above discussion leads to a broadest generalization 

of the existing theory of numbers through 

1. pseudogenofields )ˆ,ˆ,ˆ(ˆ ><><><>< ×+aF  defined via 

genotopies of all aspects of conventional fields 

),,( ×+aF  and 

2. isodual pseudogenofields 

)ˆ,ˆ,ˆ(ˆ ><><><>< dddd
aF ×+  defined via isoduality of 

pseudogenofields. 

This new generalization of the conventional numbers leads 

to the following categorization of numbers: 

• Conventional numbers of dimension 1,2,4,8 and their 

isoduals; 

• Isonumbers of the same dimension and their isoduals; 

• Genonumbers of the same dimensions and their 

isoduals; 

• Pseudoisonumbers of the same dimension and their 

isoduals; 

• Pseudogenonumbers of the same dimension and their 

isoduals; 

• “Hidden pseudoisonumbers" of dimension 3,4, 5,7 and 

their osoduals; 

• “Hidden pseudogenonumbers" of dimension 3,4,5,7 

and their isoduals. 

Note that each of these can be defined for the fields of 

characteristic 0 or for 0≠p . 

In addition to above generalization, we can have an ordered 

set of values for the multiplicative unit such as 
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},6,
3

4
{2,=1>

…  defined as applicable or to the right or left. 

This possibility leads to the new numbers called as 

hyper-Santillian numbers. These include hyper-real, hyper 

complex, hyper-quaternion numbers which have vast 

applications in biological sciences. 

In the further generalization, the multiplicative unit can 

very well have non-zero negative values. This leads to a new 

class of numbers called iso-dual Santillian numbers. This 

further leads to a new kinds of conventional iso-dual numbers 

called as iso-topic isodual numbers, geno-topic iso-dual 

numbers and hyper-structural isodual. These numbers have 

applications for antimatter. 

The above generalization of the conventional numbers 

gives us, in all, eleven classes of new numbers namely, the 

iso-topic numbers, genotopic to the right and left, right and 

left hyper-structural numbers, iso-dual conventional numbers, 

iso-dual iso-topic numbers, iso-dual geno-topic to the right 

and left numbers and hyper-structural iso-dual to the right 

and left numbers. Each class is applicable to the real, complex 

and quaternion numbers where each of the applications have 

infinite number of possible units. 

4. Applications and Advances 

Quantum mechanics was sufficient to deal with ’Exterior 

Dynamical systems’ which are liner, local, lagrangian and 

hamiltonian. The main purpose of formulating the new 

generalized mathematics was to deal with the insufficiencies in 

the modern mathematics to describe ’Interior Dynamical 

systems’ which are intrinsically non-linear, non-local, 

non-hamiltonian and non-lagrangian. The axiom-preserving 

generalization of quantum mechanics which can also deal with 

non-linear, non-local non-hamiltonian and non-lagrangian 

systems is called the Hadronic mechanics. The mechanics; built 

specifically to deal with ’hadrons’ (strongly interacting particles) 

ref. [18]. Prof. Santilli, in 1978 when at Harvard University, 

proposed ’Hadronic mechanics’ under the support from U. S. 

Department of Energy, which was subsequently studied by 

number of mathematicians, theoreticians and experimentalists. 

Hadronic mechanics is directly universal; that is, capable of 

representing all possible nonlinear, nonlocal, nonhamiltonian, 

continuous or discrete, inhomogeneous and anisotropic systems 

(universality), directly in the frame of the experimenter (direct 

universality). In particular the hadronic mechanics has shown 

that quantum mechanics is completely inapplicable to the 

synthesis of neutron [46], as mass of the neutron is greater than 

the sum of the masses of proton and electron (called "mass 

defect") of which it is made. In this case quantum equations are 

completely inconsistent. Hadronic mechanics has achieved 

numerically exact results in the cases in which quantum 

mechanics results are not valid. For further details of isonumber 

theory we recommend refs. [47, 1, 48, 46, 49]. 

As far as mathematics is concerned, one of the major 

applications of isonumber theory is in Cryptography, ref. [50]. 

Cryptograms can be lifted to iso-cryptograms which render 

highest security for a given crypto-system. Isonumbers, 

hypernumbers and their pseudo-formulations can be used 

effectively for the tightest security via new disciplines, 

isocryptology, genocryptology, hypercryptology, 

pseudocryptology etc. More complex cryptograms can be 

achieved using pseudocryptograms in which we have the 

additional hidden selection of addition and multiplication to the 

left and those to the right whose results are generally different 

among themselves. Yet more complex pseudocryptograms can 

be achieved in which the result of each individual operations of 

addition and multiplication is given by a set of numbers [50]. 

Santillian iso-crypto systems have maximum security due to a 

large variety of isounits which can be changed automatically 

and continuously, achieving maximum possible security needed 

for the modern age banking and other systems related with 

information technology. 

Reformulations of conventional numbers to the most 

generalized isonumbers and subsequently to genonumbers and 

hypernumbers led to a vast variety of parallel developments in 

the conventional mathematics including hyperstructures [51] 

and its various branches such as ’iso-functional analysis’ ref 

[35], iso-calculus ref [52], iso-cryptography [50] etc. 

Iso-Galois fields [53], Iso-permutation groups [54, 53] have 

been defined by this author, which can play an important role 

in cryptography and other branches of mathematics where 

finite fields are used. Investigations are underway. 

Isomathematics can also explain complex biological 

structures and hence has applications in Fractal geometry. 

Further applications in Neuroscience and Genetics can 

provide new insight in these disciplines. 
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