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Abstract: Heisenberg’s uncertainty principle states that there is a fundamental limit to the precision with which certain pairs 

of physical properties of a particle (complementary variables) can be measured simultaneously. Heisenberg’s uncertainty 

principle has indubitable support, but the origin behind this principle is unexplained. If complementary variables of particles 

are considered as complex numbers—for example, in calculating particle position, a complex vector coordinate space is 

necessary instead of the Cartesian space—then the origin of lower limit of Heisenberg’s uncertainty principle emerges. 
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1. Introduction 

If A and B are presumed to be a pair of complementary 

variables, such as position and momentum, and if A∆ and 

B∆  are the uncertainties associated with this pair, then 

Heisenberg's uncertainty principle states [1] 

2
A B∆ ∆ ≥ ℏ .                                       (1) 

Although the mathematical origin of Heisenberg’s 

uncertainty principle is known and the principle has been 

experimentally verified, its physical origin is not known. 

Questions such as why there is a lower limit of uncertainty 

for the two complementary variables have not been answered. 

Certain quantities, such as position, energy and time, are 

unknown as per Heisenberg’s uncertainty principle , except 

by probabilities, probabilities gives us most probable value 

for these quantities but physical origin of these probabilities 

are not known. The aim of this paper is to explain the 

physical origin of Heisenberg's uncertainty principle and also 

why there is a lower limit of precision for any 

complementary pair. 

2. Particle in Complex Vector Space 

Let us consider a particle of finite extent in a 1-

dimensional space as illustrated in Fig. 1; the red bar 

represents the particle of width rδ . 

 

Fig. 1. Particle in a 1 dimensional space. 

In Fig. 1, we can easily plot coordinates in terms of a 1-

dimension line. However, we know that matter/particles are 

always in state of vibrations [2], hence Fig. 1 is not 

appropriate because it presupposes a representation in a flat 

1-dimensional space. Consider then the same particle in a 

particular state of vibration as depicted in Fig. 2. 

 

Fig. 2. Particle in curved space. 

As already mentioned, the particle is in a 1-dimensional 

space, but plotting coordinates only in terms of one 

parameter in curved space is not possible. To resolve this 

problem we can consider the curved path is in an complex 

plane. This complex plane gives us information of the 
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coordinate in a curved space with the real line giving the 

coordinate in a normal 1-dimensional space. Hence, the 

position of a particle in vibration can be expressed in the 

form of a 1-dimensional; complex vector space ℂ1 = ℂ (this 

can be viewed as a ℝ2 with the Cartesian unit j generating an 

imaginary line), which can be called an imaginary line [3]. 

3. Derivation Elaborating the Origin of 

Lower Limit in Uncertainty Principle 

For this construction, we shall consider the uncertainty 

principle for the pair of position and momentum observable, 

If x (position) and p (momentum) are supposed to be a pair of 

complementary variables and if x∆ and p∆  are uncertainties 

associated with this pair, then Heisenberg's uncertainty 

principle states [4] 

2
x

x p∆ ∆ ≥ ℏ .                                      (2) 

For a particle at rest, a frequency (f) is associated that 

depends on mass (m):[5] 

2
mc

f
h

= .                                       (3) 

This implies that even at rest the particle is in a state of 

change. If we apply this change in Fig. 2, one can say that the 

particle in 1 dimension would act like a vibrating string. Let 

us denote the length in the real line as r
δ , the length in the 

imaginary line as i
δ , and the total length as x

ℓ . Total length 

xℓ  will always be constant but r
δ  and i

δ  will change with 

time. The total length x
ℓ  can be expressed in terms of r

δ  

and i
δ  given in polar coordinates [6]: 

x r i
iδ δ= +ℓ ,                                   (4) 

with r
δ and i

δ  depending on | x
ℓ | and an angular frequency 

as 

sin( )r x tδ ω= ℓ ,                                   (5) 

cos( )i x tδ ω= ℓ ,                                 (6) 

where 

2 fω π= .                                           (7) 

If we plot r
δ  and i

δ  in the complex plane, we trace a 

circle of radius xℓ  (Fig 3) [7]. The circumference of the 

circle is equal to the wavelength of the particle and the 

wavelength of the particle is given as (if we consider the 

particle is an electron then this wavelength will be equal to 

the Compton wavelength) [8] 

h

mc
λ = .                                          (8) 

The radius of the circle xℓ  will be 2 xlπ λ=  (because 

2π  times the radius is equal to the circumference of the 

circle) 

 

Fig. 3. Plot of rδ  and iδ  in the complex plane. 

2
x

l
λ
π

= .                                            (9) 

If we try to measure a particle’s position which is at rest 

and located at the origin (see Fig. 4) we will not obtain 0, as 

xl  is non-zero, but rather it will be equal to one-half of xl . 

 

Fig. 4. Particle at rest situated at the origin. 

Hence we can say that the uncertainty associated with 

measuring the particle position would be 

2 4 4

x h
x

mc

λ
π π

∆ = = =
ℓ

.                        (10) 

The momentum of the particle is given by the de Broglie 

relation [9] 
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h
p

λ
= .                                       

If we compare Eq. (11) with Eq. (8), we find the 

momentum to be 

p mc= .                                        

When a particle is at rest, the momentum of the partic

zero. However, if we imagine the particle is in a state of 

vibration then the momentum associated with the particle, 

even at rest, is non-zero because the particle has some 

internal velocity associated with vibration. 

Hence we can say that the uncertainty in measuring the 

momentum of the particle is mc  

x
p mc∆ = .                                      

If we multiply Eqs. (13) and (10), we obtain the following 

expression 

4
x

h
x p mc

mcπ
∆ ∆ = .                            

2
x

x p∆ ∆ = ℏ .                                   

Fig. 5. Classical physics depiction of the single
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                                        (11) 

If we compare Eq. (11) with Eq. (8), we find the 

                                       (12) 

When a particle is at rest, the momentum of the particle is 

zero. However, if we imagine the particle is in a state of 

vibration then the momentum associated with the particle, 

zero because the particle has some 

 

ainty in measuring the 

                                       (13) 

If we multiply Eqs. (13) and (10), we obtain the following 

                             (14) 

                                   (15) 

From Eq. (15), we can see that the lower limit of precision 

for the complementary pair, position and momentum, arises 

from the particle’s vibration in the 

There is an uncertainty because we measure complementary 

pairs in a real vector space. If we take the complex vector 

space into consideration, this so

gives us a measurement of the internal measurement of t

particle. 

4. Proof that Single-Slit Diffraction Is 

Due to the Complex Vector Space

Diffraction by a single slit is usually explained with the 

help of Heisenberg's Uncertainty Principle [10]. However, 

with the introduction of the complex vector space, it

paramount that an account of diffraction be also given. If 

classical physics is assumed where Heisenberg's Uncertainty 

Principle does not apply, the output from the slit would be a 

single peak in intensity, as depicted in Fig. 5. Nevertheless, 

the real output is an interference pattern illustrated in Fig. 6 

[11] 

Classical physics depiction of the single-slit diffraction output, without Heisenberg's Uncertainty Principle

205 

From Eq. (15), we can see that the lower limit of precision 

for the complementary pair, position and momentum, arises 

from the particle’s vibration in the complex vector space. 

There is an uncertainty because we measure complementary 

pairs in a real vector space. If we take the complex vector 

space into consideration, this so-called uncertainty actually 

gives us a measurement of the internal measurement of the 

Slit Diffraction Is 

Due to the Complex Vector Space 

Diffraction by a single slit is usually explained with the 

help of Heisenberg's Uncertainty Principle [10]. However, 

with the introduction of the complex vector space, it is 

paramount that an account of diffraction be also given. If 

classical physics is assumed where Heisenberg's Uncertainty 

Principle does not apply, the output from the slit would be a 

single peak in intensity, as depicted in Fig. 5. Nevertheless, 

output is an interference pattern illustrated in Fig. 6 

 

slit diffraction output, without Heisenberg's Uncertainty Principle. 
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Fig. 6. Actual output of single slit 

In Fig. 6, we denote the uncertainty in momentum in the y 

direction as i
Px∆ and the shift in position as 

that we are considering these variables in a complex vector 

space. The product of i
x∆  and i

Px∆
experiment is given as [12] 

i i
x Px h∆ ∆ = .                                   

In this experiment only the imaginary component of the 

complex vector is considered, which is why from Eq. (6) we 

can say that the uncertainty in position along the imaginary 

line is given by 

cos( )i xx tω∆ = ℓ .                               

In Eq. (11) the whole circumference was taken into 

account; here we need only consider the imaginary line, so 
i

Px∆
 can be expressed as 

cos( )
i

x

h
Px

tω
∆ =

ℓ
.                              

Multiplying Eqs. (17) and (18), we obtain

i i
x Px h∆ ∆ =                                            

As Eqs (19) and (16) are equal, this opens the possibility 

that the diffraction produced by a single slit is due to the 

vibration of the particle in a complex vector space.

5. Derivation of the Intensity 

Slit Diffraction with the Help of a 

Complex Vector Space 

Suppose electrons are fired at a slit of finite width a, as 

depicted in Fig. 7. 

Bhushan Bhoja Poojary:  Origin of Heisenberg's Uncertainty Principle 

 

Actual output of single slit experiment produces interference. 

In Fig. 6, we denote the uncertainty in momentum in the y 

and the shift in position as i
x∆ , but note 

ariables in a complex vector 

i
Px for a single slit 

                                    (16) 

imaginary component of the 

complex vector is considered, which is why from Eq. (6) we 

can say that the uncertainty in position along the imaginary 

                                (17) 

ference was taken into 

account; here we need only consider the imaginary line, so 

                               (18) 

Multiplying Eqs. (17) and (18), we obtain 

                                          (19) 

As Eqs (19) and (16) are equal, this opens the possibility 

that the diffraction produced by a single slit is due to the 

vibration of the particle in a complex vector space. 

Intensity of a Single-

Slit Diffraction with the Help of a 

Suppose electrons are fired at a slit of finite width a, as 

Fig. 7. Diffraction of an electron by slit of width a

Let us divide the slit into N equal parts of lengt

Any two adjacent zones have a relative path length

sin( )
i

xδ θ= ∆ . The relative phase shift 

ratio 

sin( )

2

i
xβ δ

π λ λ
∆∆ = =

  

 

 

Diffraction of an electron by slit of width a. 

Let us divide the slit into N equal parts of length i

a
x

N
∆ = . 

Any two adjacent zones have a relative path length

. The relative phase shift β∆  is given by the 

sin( )
i

x θ
π λ λ

,                               (20) 
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2
sin( )

i
x

πβ θ
λ

∆ = ∆

Suppose a matter wave originating from point 1 in the slit

Fig. 8. Diffraction of an electron by a single slit of width a from two adjacent points

A wave from point 2 in the slit (Fig. 8) will have a phase 

shift of β∆  at point P with respect to point 1, and hence has 

the wave form 

2( ) sin( )r xx tω β= + ∆ℓ .                            

1 2( ) ( ) ....... ( ) (sin( ) sin( ) ...... sin( ( 1) ))r r r N xx x x t t t N+ + + = + + ∆ + + + − ∆

The phase shift between the 1st point and the Nth point is

2 2
sin( ) sin( )

i
N N x a

π πβ β θ θ
λ λ

= ∆ = ∆ =

From Appendix A, we know that 

2

2 2
2

2

sin( )
2

8

2

r

N
X

β
λ

βπ

 
 

=  
 
 

,                       

Substituting the value of β  in Eq. (26) into Eq. (27

get 

2

2 2
2

2

sin( sin( ))

8
sin( )

r

a
N

X

a

π θλ λ
ππ θ
λ

 
 

=  
 
 

. 
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sin( )β θ                    (21) 

originating from point 1 in the slit 

arrives at a point P on a screen as depicted in Fig 8. The wave 

can be expressed as 

1( ) sin( )r xx t= ℓ

Diffraction of an electron by a single slit of width a from two adjacent points

A wave from point 2 in the slit (Fig. 8) will have a phase 

at point P with respect to point 1, and hence has 

                           (23) 

A wave from point N can be expressed as

( ) sin( ( 1) )r N xx t Nω β= + − ∆ℓ

At point P on the screen, all these 

giving 

( ) ( ) ....... ( ) (sin( ) sin( ) ...... sin( ( 1) ))r r r N xx x x t t t Nω ω β ω β+ + + = + + ∆ + + + − ∆ℓ

The phase shift between the 1st point and the Nth point is 

2 2
sin( ) sin( )N N x a

π πβ β θ θ
λ λ

.     (26) 

2

sin( )

                        (27) 

in Eq. (26) into Eq. (27), we 

2

sin( sin( ))

                        (28) 

The probability distribution function 

strike a point on the screen is given by following expression 

[14] 

sin

( )
a

x
L

ρ
λ π

λ

 
 
 =

 
 
 

If we compare Eqs. (28) and (29

related with ( )xρ ; this proves that the intensity difference on 

the screen arising in single-slit diffraction is due to the 

vibration of the particle in complex vector space.

6. Energy and Time Uncertainty 

Relationship to Complex Plane

The uncertainty relationship between energy and time is 

207 

arrives at a point P on a screen as depicted in Fig 8. The wave 

( ) sin( )r xx tωℓ .                           (22) 

 

Diffraction of an electron by a single slit of width a from two adjacent points. 

A wave from point N can be expressed as 

( ) sin( ( 1) )x t Nω β= + − ∆ .                       (24) 

At point P on the screen, all these waves are superimposed 

( ) ( ) ....... ( ) (sin( ) sin( ) ...... sin( ( 1) ))x x x t t t Nω ω β ω β+ + + = + + ∆ + + + − ∆ .                  (25) 

The probability distribution function ( )xρ  for particles to 

strike a point on the screen is given by following expression 

2

2

sin
ax

L

ax

L

π
λ

π
λ

 
 
 

 
 
 

.                            (29) 

If we compare Eqs. (28) and (29), we see that 
2

r
X  is 

; this proves that the intensity difference on 

slit diffraction is due to the 

vibration of the particle in complex vector space. 

Time Uncertainty 

Relationship to Complex Plane 

The uncertainty relationship between energy and time is 
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given by Heisenberg's uncertainty principle [15] 

2
E t∆ ∆ = ℏ .                                       (30) 

The energy is correlated with the momentum, and the 

momentum is expressed in terms of the coordinates of the 

complex vector space, which is why energy is supposed to be 

expressed in terms of a complex number (energy is not a 

vector quantity and being scalar in real plane , energy has to 

be a complex number when we consider complex vector 

space). Similarly, time also needs to be expressed in terms of 

a complex number; the imaginary part of this time is the 

inverse of the frequency associated with the vibration of the 

particle or photon whereas the real part of this time is the 

normal time we measure in terms of the frequency associated 

with the movement of the particle or photon. 

It is important to find the energy relation in this complex 

space because 2E mc=  only accounts for the real component 

of the energy. We begin by imagining a stationary box in a 

space; a photon is emitted from one side of the box and 

absorbed on the other. If the photon’s energy is denoted by E 

and the speed of light by c, then from the Maxwell 

expression we can write [16] 

photon

E
p

c
= .                                     (31) 

Again this term only accounts for the real component of 

photon’s momentum and we know that momentum must be 

expressed as a complex number. If we perform single-slit 

diffraction with photons, we obtain a similar pattern as for 

electrons, or indeed any particle. As photon has no mass and 

always moves at the speed of light, we can say that both real 

and imaginary components of photon must be equal. This is 

why the modified expression of Eq. (46) should be 

(1 )
photon photon

E
P p i

c
= + =                             (32) 

When the photon initially leaves the box from one side, the 

box will recoil with speed v and from conversation of 

momentum, the box should gain the same amount of 

momentum as the photon. The momentum gained by the box 

(of mass M) in complex vector space will be 

box
p Mv iMv= + .                                (33) 

A photon will take a finite time t∆ to reach the other side 

of the box; by that time the box would have moved a distance 

x∆ , hence the velocity of the box can be written as 

x
v

t

∆=
∆

.                                            (34) 

By conservation of momentum, photonP and box
p  are equal 

and hence we can say that 

E
Mv iMv

c
+ = .                                      (35) 

Substituting the velocity of Eq. (34) into Eq. (35) yields 

(1 )
x E

M i
t c

∆ + =
∆

.                                        (36) 

If the box is of length L, then the time taken by the photon 

to reach the other side is 

L
t

c
∆ = .                                             (37) 

Substituting value of Eq. (37) into Eq. (36) gives 

2
(1 )

EL
M x i

c
∆ + = .                               (38) 

Let us assume that photon has mass m and is located at a 

distance 2
x and the box has position 1

x . Then the centre of 

mass is given by the following expression [17] 

1 2Mx mx
x

M m

+=
+

.                              (39) 

Similarly, the centre of mass when the photon reaches the 

other side of the box can be expressed as 

1( )
right

M x x mL
x

M m

+ ∆ +=
+

.                        (40) 

We require that the centre of mass of the system does not 

change; this is why the centre of mass at the start of the 

experiment ( x ) should be equal to the centre of mass at the 

end of the experiment ( rightx ). 

1 2 1( )Mx mx M x x mL

M m M m

+ + ∆ +=
+ +

.                      (41) 

At the start of the experiment, the photon is at position 2
x

=0. Eq. (41) then gives 

mL M x= ∆ ,                                     (42) 

which substituted into Eq. (38) yields 

2
(1 )

E
m i

c
+ = .                                  (43) 

That is, 

2 2E mc imc= + .                                 (44) 

The imaginary component in Eq. (44) is due to the 

vibration motion in the complex plane. This is why we 

should associate the imaginary component with the wave. 

From de Broglie’s relation, we know that 2mc ω= ℏ [18]. 

Putting this expression in Eq. (44), we get 
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2E mc i ω= + ℏ                                   (45) 

We can write the expression for the photon’s energy by 

rewriting Eq. (32) as 

E pc ipc= + .                                    (46) 

Knowing that pc ω= ℏ , we can substitute this expression 

into the imaginary term of Eq. (46) to obtain 

E pc i ω= + ℏ                                        (47) 

The above Eqs. (45) and (47) infers that matter/photon is 

both a wave and a particle simultaneously, which was 

recently proved experimentally [19]. 

7. Probabilistic Interpretation of Wave 

Mechanics 

Ψ is always connected to factor exp(iα), which disappears 

when one construct the real probability quantities and 

consequently is of no importance, which is used to normalize 

and expressed in terms of probability [20]. Wave functions 

like electromagnetic wave depends on function of E and H, 

but Ψ units keeps on changing as per dimensions of space 

one chose [21]. Ψ is function of one of the complimentary 

pair being measured, as of now we consider these physical 

quantities in real terms and hence it leads to uncertainty 

which in terns relates Ψ with probability. Complementary 

variable too have complex factors (like momentum, position, 

energy and time) and hence Ψ too is complex unlike other 

wave equations like electromagnetic waves and vibrating 

string. As Ψ depends on physical quantity it units keeps on 

changing. Probabilistic interpretation of wave function 

actually gives us information of underlying physical quantity 

in complex plane. 

8. Conclusion 

Heisenberg uncertainty principle is boundary condition 

where complementary variables like (position and time, 

energy and time) sets limitation on accuracy to find both the 

variable simultaneously, but as you accurately measure one 

of the variable you get imaginary plane information of 

another variable with real plane information, this is not 

uncertainty but information about another variable in both 

real plane and complex plane. Thus to define state of any 

particle or photon position, momentum ,energy , time and 

other complementary pair should be considered as complex 

variable rather than real variable to define sate of any particle 

or photon. 

Appendix A: Derivation of the Intensity 

for Single-Slit Diffraction for Electrons 

From basic trigonometry, we know that [13] 

cos( ) cos( ) 2sin sinα β α β α β− − + = .                     (48) 

We can cast Eq. (48) in terms of waves from the 

successive points on the slit: 

cos( ) cos( ) 2sin( )sin( )
2 2 2

t t t
β β βω ω ω∆ ∆ ∆− − + = ,       (49) 

3
cos( ) cos( ) 2sin( ) sin( )

2 2 2
t t t

β β βω ω ω β∆ ∆ ∆+ − + = + ∆ , (50) 

For point N, we have 

3 1
cos( ( ) ) cos( ( ) ) 2sin( ( 1) ) sin( )

2 2 2
t N t N t N

βω β ω β ω β ∆+ − ∆ − + − ∆ = + − ∆ .                                   (51) 

Adding all N terms gives the following result 

1
cos( ) cos( ( ) ) 2sin( )(sin( ) sin( ) ..... sin( ( 1) ))

2 2 2
t t N t t t N

β βω ω β ω ω β ω β∆ ∆+ − + − ∆ = + + ∆ + + + − ∆         (52) 

The terms on the left hand side combine to yield 

1
cos( ) cos( ( ) ) 2sin( ( 1) ) sin( )

2 2 2 2
t t N t N N

β β βω ω β ω∆ ∆ ∆+ − + − ∆ = + −                                    (53) 

Substituting Eq. (53) into Eq. (52) gives 

sin( ( 1) )sin( )
2 2sin( ) sin( ) ..... sin( ( 1) )

sin( )
2

t N N

t t t N

β βω
ω ω β ω β β

∆ ∆+ −
+ + ∆ + + + − ∆ =

∆                                        (54) 

Substituting Eq. (54) in Eq. (25) yields an expression for the total wave i
X , 
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1 2

sin( ( 1) )sin( )
2 2( ) ( ) ....... ( )

sin( )
2

x

r r r r N

t N N

X x x x

β βω

β

∆ ∆+ −
= + + + =

∆

ℓ

.                                     (55) 

Squaring both the sides, 

2 2

2 2

2

sin( )
2 sin( ( 1) )

2
sin( )

2

x

i

N

X t N

β
βωβ

∆
∆= + −

∆

ℓ

,      (56) 

and then taking the time average for both sides 

2 2

2 2

2

sin( )
2 sin( ( 1) )

2
sin( )

2

x

r

N

X t N

β
βωβ

∆
∆= + −

∆

ℓ

      (57) 

gives 

2

22

sin( )
1 2

2
sin( )

2

r x

N

X

β

β

∆ 
 

=  ∆ 
 

ℓ ,                           (58) 

where the time average of 
2

sin( ( 1) )
2

t N
βω ∆+ − .is

1

2
. 

Substituting first Eq. (9) in Eq. (58), 

2

2
2

2

sin( )
2

8
sin( )

2

r

N

X

β
λ

βπ

∆ 
 

=  ∆ 
 

,                         (59) 

and subsequently Eq. (26) in Eq. (59), we obtain 

2

2
2

2

sin( )
2

8
sin( )

2

rX

β
λ

βπ

 
 

=  ∆ 
 

.                                   (60) 

In taking the limit 0β∆ → , we replace sin( )
2

β∆
 by 

approximation 
2

β∆
, to obtain 

2

2

2

sin( )
2

8

2

rX

β
λ

βπ

 
 

=  ∆ 
 

.                               (61) 

Multiplying and dividing the denominator by 2N , we get 

2

2 2
2

2

sin( )
2

8

2

r

N
X

N

β
λ

βπ

 
 

=  ∆ 
 

,                               (62) 

and then substituting Eq. (26) in Eq. (62) yields 

2

2 2
2

2

sin( )
2

8

2

r

N
X

β
λ

βπ

 
 

=  
 
 

,                                 (63) 
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