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Abstract: A new approach based on algebraic quantum operator, is pursued in order to investigate the Aharonov-Bohm 

effect. Introducing a SU(2) dynamical invariance algebra, the discrete spectrum and the energy level of the quantum Aharonov-

Bohm effect is obtained. This alternative method will help undergraduate students to broader their knowledge about this 

interesting quantum phenomenon. 
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1. A Mathematical Introduction to 

Aharonov-Bohm Effect 

The Aharonov-Bohm effect, demonstrates that it is not 

possible to describe all electromagnetic phenomena in terms 

of the field strength only. This effect is observed for example 

in an electron double slit experiment.  

Let us consider the double slit experiment sketched in 

figure 1. The magnetic field B at the center is confined to a 

narrow tube such that the electrons move in a field-free 

region. 

 

Figure 1. The Aharonov-Bohm effect 

This implies that classically one would not expect to see 

any effect, since fields interact only locally. It turns out 

however that there is a quantum mechanical effect. Due to 

the vector potential A , the electron interference pattern on 

the screen, on the right, shifts over a distance proportional to 

the magnetic flux [1]. Free particles in a magnetic field are 

described by the Schrödinger equation. This method of 

splitting the wave function in two parts is a semi-classical 

approximation since we ignore the effects of diffraction. 

Aharonov and Bohm in their original paper [2] also solved 

the problem without splitting the wave function in two parts. 

Moreover, Lee Page [3] has solved the problem of a free 

charged particle moving in a magnetic field and he found a 

solution which is finite in the origin. In addition to above 

viewpoints, the Aharonov–Bohm effect can be understood 

from the fact that we can only measure absolute values of the 

wave function [3-5]. However, by gauge invariance, it is 

equally valid to declare the zero momentum eigenfunction to 

be 
( )i x

e
φ−

 at the cost of representing the i -momentum 

operator (up to a factor) as ( )i i i
i φ∇ ≡ ∂ + ∂ , i.e. with a pure 

gauge vector potential A dφ=  [6,7]. Therefore, the 

Aharonov–Bohm effect manifests itself as a connection with 

flat space and topologically nontrivial [8-10]. Effects with 

similar mathematical interpretation can be found in other 

fields. For example, in classical statistical physics, 

quantization of a molecular motor motion in a stochastic 

environment can be interpreted as an Aharonov–Bohm effect 

induced by a gauge field acting in the space of control 

parameters [11,12]. 

In this paper however, we deal with a different 

mathematical approach to the generalized Aharonov-Bohm 

effect, namely the algebraic operator method. This method, 

introduced in [13], provides the discrete spectrum and the 

energy level of the quantum Aharonov-Bohm effect, applying 

a SU(2)  dynamical invariance algebra. This method has been 

generalized for coupled Aharonov-Bohm-Coulomb effects 
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[14] and also for oscillating systems [15]. Therefore, it 

appears to be a powerful mathematical method for re-

derivations and generalizations of quantum phenomena. Note 

also that, such approaches have been considered in treating 

Schrödinger equation (for example see [16]). The paper is 

organized as follows: In section 2 we review the traditional 

way of solving three dimensional Schrödinger equation and 

we treat the Aharonov-Bohm effect using the wave functions. 

In section 3, we introduce the so-called operator algebra and 

revise the foundations of the Aharonov-Bohm effect in a 

Coulomb field. We conclude in section 4 and also make an 

outlook. 

2. Generalized Aharonov-Bohm (AB) 

Effect 

In this section, we deal with the Schrödinger equations for 

a charged particle e′  which is subjected to another Coulomb 

potential, exerted by another charge e , and the following AB 

potential (our approach is based on what has been developed 

in [13]): 

0

2 sin

r
A A

A
r

θ

φ π θ






=



=


=



 

                            (1) 

where   is the flux. The magnetic field in the cylindrical 

coordinates reads as 

( )
2

B k δ ρ
πρ

=
��  

                                 (2) 

with ( )δ ρ  as the Dirac delta function, for which the flux is 

given by 

. .B ds =∫
� �

                                       (3) 

Moreover, the Schrödinger equation in the presence of an 

electric charge e′  and the AB potential is 

( )2

2
,Ai e E

α ψ ψ − −  
∇ − ′ =

��
                      (4) 

Or in spherical coordinates 

2 2
sin

. .
2

A
r

ψψ
φπ θ

∂∇ =
∂

 
                           (5) 

According to axial symmetry, the energy spectrum is 

independent of the azimuth quantum number m  , therefore 

one can write the m  -dependent part as 

( ) ( ) ( ), ,
.

r

im

r
eR y φ

θ φ θψ =                               (6) 

So 

2 2
.

2 s
.

in

im

r
A ψ ψ

π θ
∇ =
��  

                             (7) 

Accordingly, the Schrödinger Hamiltonian becomes: 

( )2
, .

2
ˆ

AV rH
αθ+ −= −∇                           (8) 

Finally, the radial part of Schrödinger equations in 

spherical coordinates and in the presence of AB potential will 

be 

( )2

2 2

00 12
0,

2

l ld dR
R E R

r drdr

R

r

α+  + − + + = 
 

             (9) 

Which turns out that could be rearranged to 

( )2
0 0

2 2

1
0,

l ld
E u

r

u

dr r

α− 
+ + + = 
 

+
                (10) 

where ( ) ( ).u r rR r=  According to this, the effective potential 

would be 

( )0 0

2
.

1
eff

l l
V

r r

α 
= − − + 

 

+
                        (11) 

Note that
r

α−  is a Coulomb potential, while
( )0 0

2

1l l

r

+
 is a 

repulsive one. Moreover, one can redefine the radial solution 

in the following form: 

( ) ( )0 ,
l H

R r e
ρρ ρ−=                       (12) 

where 

( )
0

n

n

n
H aρ ρ

∞

=

=∑                       (13) 

and 

( )( )
1 0

0

22 2
.

1 2 2

n

n

a n l

a n n l

λ+

+ +
+ −+

=
+

            (14) 

Therefore the leading term could be found at the extent 

points which near eρ  and at infinity behaves like 0lρ . In 

other points, the leading term is named ( )H ρ . So our 

equation changes to 

( )
2

0 0

2

2
2 0,

2 2 2ld dH

d

H

d

l
H

λ ρ
ρ ρ ρρ

   + − + =   
   

+ − −
   (15) 

which has to be solved. Using the recursion relation 

( ) ( )
1 0

0

2 2 2

1 2 2

n

n

a n l

a n n l

λ+ +
+ +

−+
=

+
, one can find 

( )2 0
2 1n lλ = + +                            (16) 
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and 

0 2 0
1nn l= + +                              (17) 

for which
2

0,1, 2,...n =  and 
0 0

0,1,2,..., 1l n= − . Therefore 

0 0
1n l≥ +  or 

0 0
1l n≥ − . This may lead us to conclude 

( )
n0 mi

1n = . Also the energy eigenstates are derived as 

2

02

0

,       1, 2,... 
4

  .E n
n

α= − =              (18) 

Now let us turn to the angular part of Schrödinger equation. 

In spherical coordinates we have 

( )
( ) ( ) ( )

2

0 02
sin 1

sin sin

1 1
,

m
y

y
l l

y

β
θ θ

θ θ θ θ θ

 −  + = −
+

 
    

∂ ∂ +
∂ ∂

 (19) 

which can be rewritten as 

( ) ( ) ( )
2 2

2

0 02 2
1 2 0,

1
1

d dy
x x l l y x

dxdx x

γ 
− − + − = − 

+   (20) 

where ( )2 2
mγ β= +  and cosx θ= . The above equation is 

the associated Legendre differential equation which can be 

transformed to the Hypergeometric differential equation, 

using the change in variables. Here we just point out the 

important results of both methods. 

In the change in variables method, we put 

( ) ( ) ( )2 21 ,y x x z x
γ

−=                       (21) 

and 

1
.

2

x
t

+=                                    (22) 

Then we get 

( ) ( ) ( ) ( )( )
2

0 02
1 22 11 0,

d dz
t t t z

dtdt

z
l lγ γ γ γ− + − − =  − + ++ +  (23) 

which is the Hypergeometric differential equation. According 

to this, we will have the following spectrum: 

( )
1

2

2

2

0 1 2

2

1 2
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2

,
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2
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1
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−
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e
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e
n m
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π
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Finally, the solution of our differential equation will be 

( ) ( ) ( )
( ) ( ) ( )

1 0

0

0 0 22
1

1
! 1

1 .
2

n l
nn n

n
n

y x x x
l l

n

γ γγ γ
γ

−= − + +
−= −
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As it is seen, the effect of the AB Coulomb potential in the 

Schrödinger equation, is to change the quantum orbital 

number, .l  This term is added to a 
2

e

π
′  and this would be the 

shift in the orbital number. Now if we set 0β → , the flux   

vanishes and therefore
0 1

| |l l n m+→ = , which is the angular 

momentum of Hydrogen electron in usual situation, whereas 

in the presence of a superconductor in the region of 0B = , 

we have
0 1 .

2
n

e
l m

π
− ′= +   In this problem we solved the 

Schrödinger equation with the Hamiltonian 

( )2ˆ ,
2

AH V r
αθ−∇ + +=  where ( )

2 2s
, .

in
A

V r
r

βθ
θ

=  On the other 

hand all these results could be obtained for 2ˆ
2

H
α= −∇ −  (or 

2

2
effH p

α−= ), but upon this condition that instead of the 

quantum orbital number l , we use
0

l . In other words, instead 

of the centrifugal term ( )
2

1l l

r

+ , we use 
( )0 0

2

1
.

l l

r

+
 Indeed, the 

above results show that the effect of the coulomb potential
r

α
 

in the Schrödinger equation is that to shift the quantum 

magnetic number m  by a value of 
2

e

π
′ 

, i.e. changes | |m  to 

.
2

e
m

π
− ′  Moreover, the number of degeneracies are derived 

to be 

0
2 1,

2

e
w l

π
 = + 
 

′+  
                    (26) 

or 

0
2 1.

2

e
w n

π
 = − 
 

′+  
                 (27) 

3. Solving Schrödinger Equation in AB 

Potential, Using Operator Algebra 

The Schrödinger equation for a linear oscillator could be 

written as 

2 2
2 2

2

1

2 2
.m

m
x E

x

ψ ω ψ ψ∂− =
∂

+ℏ
               (28) 

Defining the following operators: 

†

 = +

 = − +


ℏ

ℏ

d m
a x

dx

d m
a x

dx

ω

ω
                  (29) 

we get 
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†

2

22
†

2
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ω ω
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Accordingly, one can rewrite the Schrödinger equations for 

two energy levels in neighborhood, in terms of the above 

operators. We have 

( )
2

2 2
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2

1

2 2

1

1
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2 2

1

2 2
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These could be simplified to 

†
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†

2

2 1
,

2
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.

2
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One can show that the wave functions
n

ψ  and
1n

ψ +  satisfy 

the following recursion relations, according to the operator 

equations (32): 

2
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1
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1
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2
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2
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+
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




=
  − +






  
  

=
  − +  

  

ℏ

ℏ

ℏ

ℏ
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n n

a

m E n

a

m E n

ψ ψ
ω

ψ ψ
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Also according to (32), the energy levels of the system 

would be 

2
.

1
E n ω = + 

 
ℏ                            (34) 

To obtain the ground state itself, we must have 0
n

aψ =  

and hence † 0.
n

a aψ =  This may lead us to 

21
exp ,

2
n

m xωψ α  
= − 
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                     (35) 

where 

.
m

πα
ω

= ℏ
                                (36) 

3.1. Solving Schrödinger Equation for Three Dimensional 

Oscillator in Spherical Coordinates 

In spherical coordinates, the Schrödinger equation can be  

written in the following way: 

( )2 2
2 2

2

( ),

11
.

2 2 2

=
+− ′′ + + =ℏ ℏ

rR r

l l
m r E

m m r

ψ

ψ ω ψ ψ ψ
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We define two appropriate operators as 

†

( ) ,

.( )

= + −

+= − −

ℏ

ℏ

d m l
a l r

dr r

d m l
a r

dr r
l

ω

ω
                         (38) 

Accordingly, one can calculate †a a  and †aa . Like usual 

one-dimensional harmonic oscillator, we shift the potential 

by ( )1n ω+ ℏ  and write the corresponding Schrödinger 

equation for the shifted potential. We have 

2
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According to (41) and (42) one can infer 
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For the rhs of the second relation in (40) to be vanished, 

we must lower the states in 
, 1n l

ψ − to reach 
0,l

ψ , since the zero 

state and its corresponding momentum l , are constructing the 

ground state of a harmonic oscillator in a potential, shifted by 

a n ωℏ . We do this for a sequence of potentials until we reach 

the state 0n = and l l= . In such state we will have 
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Equation (44) may result in 
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Therefore, one must put 1l l n→ + +  in the second of (40) to get 
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2
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m
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hence 

1
2 .

2
E l nω  + += 

 
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3.2. The Parabolic Counterpart 

In parabolic coordinates, the Schrödinger equation can be 

written as 

( )2

2

1
1 4

4 2
.

e
m

u i E u cu
πζ

ζ
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In this case, the appropriate operators can be defined as 

†
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2
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2
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−

−

d l
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A l i E

d
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The one dimensional harmonic oscillator has to be solved 

in a potential, shifted by a 4 ( 1)i E n + .  The same process as 

it is in subsection 3.1, will result in 

2

1

2

21 ,
4 2

n
e

E n m
α

π

−
 = − + + − 
 

′+  
              (47) 

which is the same result as it is expected from (45). Here 

instead of solving the differential equation, the operator 

method has been used.  

4. Conclusion 

Our aim in this paper was the investigation of the captured 

magnetic flux, when it is applied on the energy spectrum of a 

bounded charged particle, in the presence of external 

oscillator or coulomb potentials. As it was shown, the energy 

spectrum and their corresponding quantum numbers are 

shifted by a 
2

e

π
′ 

, and also the degeneracies are decreased. 

Indeed, applying the operator method, we could anticipate 

this phenomenon, which is in agreement with the usual 

mathematical methods. 

The method applied in this paper, has been also of interest 

in generalized Aharonov-Bohm effect in Coulomb and 

oscillating systems [14, 15], scattering states [17], bound 

states of Schrödinger equation [18, 19], and in a graphene 

ring [20]. Therefore, Aharonov–Bohm–Coulomb problem, 

which was the main subject of investigation of this paper, can 

be regarded in two different ways. One by use of the 

traditional method of solving Shrodinger eqaution for the 

scalar coupling and the other by applying the operator 

algebra, introduced in section 3, for most important 

coordinate systems. It has been found that, the energy 

spectrum of the system demonstrates that the degeneracies 

are diminished and it is clear from the spectrum of the AB 

potential. 

It is therefore of interest for further works, to generalize 

this algebraic operator method, for some other quantum 

effects like the ones in which the zero state energy (or the 

vacuum energy) is the cause of physical phenomena like the 

Casimir effect. In this case, the operators should be 

generalized to Dirac particles and their creation-annihilation 

process should be included as well. However, the mentioned 

graphene ring in reference [20] is a good example of such 

generalization. Therefore it seems that the doors are open for 

further insights into this methodical approach. 
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