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Abstract: The new extension formalism, developed by Khakshournia and Mansouri, is used to analyze the dynamics of a 

general shell of matter with an arbitrary finite thickness immersed in a curved space time. Within this new formulation the 

equations of motion of a spherically symmetric thick shell immersed in Reissner–Nordström (RN) space time is obtained.  
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1. Introduction 

One of the persisting problems in the context of spherically 

symmetric gravitational collapse within the framework of 

general relativity is the occurrence of singularities. These 

singularities come in two varieties referred to shell crossing 

and shell focusing singularities. On the other hand, the shell 

crossing singularities arise from the piling up of concentric 

matter shells at radii outside the center thus forming a caustic 

surface. This phenomenon is best known in the case of dust 

that is described by the Tolman-Bondi metric. Frauendiener 

and Klein [1] study the simplest conceivable case of shell 

crossing namely the crossing of (a finite number) so 

called ”dust shells” in an otherwise empty universe following 

[2,3], and proved that dust shells cannot be obtained as 

limiting cases of extended dust regions. 

The matching of two arbitrary spacetimes along a given 

hypersurface plays an important role in general relativity, with 

a rich plethora of applications, such as the dynamics of thin 

matter shells [2], construction of cosmological models, [4], 

collapse of bounded bodies [5], and wormholes [6].  The 

junction conditions for arbitrary surfaces and the equation for 

a shell have been well understood since the work of [7-13]. 

The gravitational collapse of a massive matter cloud within 

the framework of general relativity was investigated for the 

first time by the classical works of [14]. Also, Einstein and 

Straus [15] determined the metric of space time near a star 

embedded in an expanding universe without a cosmological 

constant within general relativity. 

In the Sen-Lanczos-Darmois-Israel formalism [16], thin 

shells are regarded as idealized zero thickness objects, with a 

δ-function singularity in their energy-momentum and 

Einstein tensors.  Eid and Langer [17] found that, the 

spherical dust N-shell model with an appropriate initial 

condition imitates the FRW universe very well. Therefore, 

shell models are available to study the Einstein-Straus 

vacuole and the Oppenheimer-Snyder model (ball of dust). 

Eid and Langer [18] found that, the motion of thick shell can 

be represented by an appropriate thin shells. Also, Comer and 

Katz [19] studied the thick Einstein shells and their 

mechanical stability.  Widrow [20] used the Einstein-scalar 

equations for a static thick domain wall with planar 

symmetry. He then took the zero-thickness limit of his 

solution and showed that the orthogonal components of the 

energy-momentum tensor would vanish in that limit. 

Garfinkle and Gregory [21] presented a modification of the 

Israel thin shell equations to treat the evolution of thick 

domain walls in vacuum.  

There are a large number of papers in last year’s dealing 

with different properties of thick walls and branes. Most of 

these papers use a solution of  Einstein-scalar field equation 

in n-dimensional space time [22]. A completely different 

method based on the gluing of a thick wall, considered as a 

regular manifold, to two different manifolds on both sides of 

it, was suggested in [23]. The idea behind this suggestion is 

to understand the dynamics of a localized matter distribution 

of any kind confined within two principally different space 

times or matter phases. Such a matching of three different 

manifolds appears to have many applications in astrophysics, 

early universe, and string cosmology.  

Our approach is similar to that used by MK [24]. A similar 

approach has been used in [19] to the special case of a 
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spherically symmetric thick shell along with an application to 

a more restricted junction condition in a two-fluid model of 

oscillations of a neutron star [25]. The aim of this paper is to 

generalize their formalism and give the basic dynamical 

equations governing a thick shell immersed in RN.  

The paper is organized as follows. In section 2 I give a 

brief introduction to MK junction condition formalism 

yielding a generic equation to study the evolution of thick 

shells in curved space time. In section 3, apply this formalism 

to obtain the equations of motion of a spherical thick shell in 

RN. A general conclusion is given in Section 4.  

2. The Junction Formalism 

The two boundary limits of the thick shell are called jΣ  

with j =1,2. The core of the thick shell is denoted by Σ
� . For 

any quantity F let F0 denote F
Σ � . Square bracket [F] indicates 

the jump of any quantity F across jΣ . Greek indices refer to 

4-dimensional indices, Latin letters refer to 3-dimensional 

indices on Σ . The geometrical units, G = c = 1 are used 

throughout the paper. Consider a thick shell with two 

boundaries (hypersurfaces) 1Σ  and 2Σ  dividing the 

space-time manifold M  into three regions: two of them 

outside the shell, M − and M + , while sM  within the thick 

shell itself such that 1sM M−∂ ∂ = Σ∩  and 2s
M M +∂ ∂ = Σ∩ . The 

suffix ’+’ denotes a quantity evaluated just outside the shell 

and ’-’ just inside the shell. 

According to Darmois conditions, the two surface 

boundaries 1Σ  and 2Σ , which separate the manifold s
M to 

two distinct manifolds M − and M +  respectively, is a 

nonsingular timelike hypersurfaces, which is equivalent to the 

continuity of the intrinsic metric abh  and the extrinsic 

curvature tensor abK of jΣ  across the corresponding  

hypersurfaces. Therefore, 

   
[ ] 0,

j

abh
Σ

=
    ( 1, 2)j =  

   
[ ] 0

j

abK
Σ

=
    ( 1, 2)j =  

 

Both conditions should be satisfied if Σ  is a boundary 

surface. But in case of a thin shell, both conditions are not 

satisfied. In fact, the matter content of the shell should lead to 

a jump in the extrinsic curvature[ ] 0abK ≠ . Now, the jump of 

the extrinsic curvature tensor 
abK on 

1Σ and 
2Σ , is 

2 1 1 2
0s s

ab ab ab abK K K K+ −
Σ Σ Σ Σ− + − =            (1) 

where the superscripts  - (+) and s  mean that the extrinsic 

curvature tensor ab
K of 1Σ ( 2Σ ) is evaluated in the regions 

M − (M+) and sM , respectively. Introduce a Gaussian normal 

coordinate system ( n , 0

aξ ) in the neighborhood of the core of 

the thick shell denoted by Σ
� , corresponding to n = 0,

0

aξ  

are the intrinsic coordinates of Σ
� , and n  is the proper 

length along the geodesics orthogonal to Σ� . Let us now 

expand the extrinsic curvature tensors in a Taylor series 

around Σ�  situated at n =0: 

2( )
j

ab
ab ab j

K
K K O

n
ε δ δΣ Σ Σ

∂= + +
∂� �

        (2) 

where 2δ  denotes the proper thickness of the shell, and 

1 1ε = − , 1 1ε = + . The above expansion is justified if the proper 

thickness of the shell is small relative to the radius of 

curvature. The derivative of the extrinsic curvature is now 

given by  

cab
ac b a b

K
K K R e e n n

n

µ ν σ λ
µσνλ

∂ = −
∂

           (3) 

where n µ  is the normal vector field, and 0

a

ae xµ µ ξ= ∂ ∂  

are the three basis vectors tangent to Σ
� . Substituting (2, 3) 

into (1) to get:  

(
)

( ) (

) 2( ) 0

c c
K K K K R e e n n K Kac a acab ab b b b

c s
R e e n n K K R e e n na ac ab b b

µ ν σ λδ µσνλ

µ µν σ λ ν σ λ
µσνλ µσνλ

+ − −− + − +Σ Σ Σ

+− − − =Σ Σ

� � �

� �

    (4) 

This is the basic equation for the dynamics of a thick shell 

in a curved space time, written up to the first order in δ . 

Equation (4), or the corresponding exact one (1), is to be 

considered as the generalization of the Israel’s thin shell 

condition [7] to the thick case. 

Then, apply this formalism to particular example of a 

spherically symmetric thick shell in RN, in which, δ  is 

independent of angular coordinates. In general δ  may be a 

function of time, but for simplicity here, take it to be constant 

in time. 

3. Motion of a Spherical Thick Shell in 

RN 

Now, derive the basic exact equations underlying the 

dynamics and expand it in powers of the thickness, and then 

calculate the peculiar velocity and its limit on the collapse of 

the shell following by a comparison to the thin shell limit 

already known. 

3.1. The Thick Shell Solution 

Consider a spherically symmetric thick shell immersed in 

Reissner–Nordström (RN). The space time exterior to the 

shell is RN, and the interior is taken to be the Minkowski flat 

spacetime: 

2 2 1 2 2 2 ,Ods fdt f dr r d−
+ + += − + + Ω             (5) 

2 2 2 2 2 ,ids dt dr r d− − −= − + + Ω             (6) 
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where 
2

2

2
1

m e
f

r r+ +

= − + , m  being the mass of the thick shell, 

e is the charge and  2 2 2 2
sin ,d d dθ θ φΩ = +  is the standard 

metric on the unit sphere. In the synchronous comoving 

coordinates ( , , ,t r θ ϕ ), the Lemaitre- Tolman-Bondi (LTB) 

metric, within the shell takes the following form: 

2
2 2 2 2 2

( , ) ,
1 2 ( )

R
ds dt dr R r t ds

E r

′
= − + + Ω

+
             (7) 

where the prime denotes the differentiation with respect to 

r and ( )E r is an arbitrary real function such that 

( ) (1 2)E r −≻  and 0R ′ ≻ (because of the no shell 

crossing condition). The corresponding Einstein field 

equations, turn out to be,  

2 ( )2
( , ) 2 ( ),

M r
R t r E rt

R
= + , 

( )
( , )

2

M r
t r

R R
ρ

′
=

′
 

where ( , )t rρ is the energy density of the dust fluid in 

( )M r , and sM is another arbitrary real smooth function 

interpreted as the mass. The angular component of (4) is given 

by: 

(

) 2( ) 0

O i iK K K K K K

O sR n n K K R n n

θ θδθθ θθ θθ θ θθ θ

σ λ θ σ λ
θσθλ θθ θ θσθλ

− + + −Σ Σ Σ

− − =Σ Σ 

� � �

� �

  (8) 

The corresponding time component of (4) is 

(
)

(

) 2( ) 0

O i i
K K K K K K R u u n

O s
n K K R u u n n

µτ τ ν σδττ ττ ττ τ ττ τ µσνλ

µλ τ ν σ λ
ττ τ µσνλ

− + + −Σ Σ Σ

− − =Σ Σ

� � �

� �

      (9) 

where u µ  is the four velocity tangent to Σ
� . The four 

velocity  u µ  and the normal vector n µ  on the spherical 

thick shell’s core Σ
� for the RN and LTB space times, 

respectively, are 

1

( , ,0,0) ,

( , ,0,0) ,

O

O

u t R

n f R ft

µ

µ

Σ + Σ

−
Σ + Σ

=

=
� �

� �

ɺɺ

ɺ ɺ
                (10) 

( , , 0,0) ,

1 2
( , , 0,0) ,

s

s

u t r

E
n v t t

R

µ

µ

Σ Σ

Σ Σ

=

+=
′

� �

� ��

ɺ ɺ

ɺ ɺ
             (11) 

where the dot denotes the derivative with respect to the 

proper time τ
� on Σ

� , and v
�  is the peculiar velocity of 

Σ
�  relative to the LTB geometry defined as 

1 2 ( )

R dr
v

dtE r
Σ

′
=

+ �� ,                (12) 

and is related to the Lorentz factor in the LTB geometry as 

2

1

1
t

v
Σ =

−�

�

ɺ
.                     (13) 

Note that, the peculiar velocity is valid for a thin shell, in 

which 0dr dt = . Relevant components of the Riemannian 

curvature tensor for the RN space time are 

2

2

1
( )rr

m e
R

f r r
θ θ

+ +

= − , 
2

3 4

2 3
trrt

m e
R

r r+ +

= − , 
2

2
( )tt

m e
R f

r r
θ θ

+ +

= − +    (14) 

and for the LTB spacetime are 

   ( ), ,
(1 2 )

R R
R R R Et trr

E
θ θ

′−
′ ′= −

+
, 

,
( 1 2 )

R
R Rt r r t t t

E

′
′=

+
, ,R R R ttttθ θ =      (15) 

The components of the extrinsic curvature tensor on Σ
�  

evaluated with respect to the relevant regions are given by 

1 2
1 ,

i
K R

R

θ
θ = +Σ

ɺ
��

�

 

21 2
1 ,

Ms
K R

R R

θ
θ = + −Σ

�ɺ
��

� �

 

1 2
,

O
K f R

R

θ
θ = +Σ

ɺ
��

�

               (16) 

and  

,
2

1

Ri
K

R

τ
τ =Σ

+

ɺɺ
�

� ɺ
�

 

2

2 2
1

,
22

1

M v
R R

R vs
K

M
R

R

ρ

τ
τ

+ +
−

=Σ
+ −

� � �ɺɺ
� �

� �
�

�ɺ
�

�

 

1
2 .

2

R fO
K

f R

τ
τ

′+
=Σ

+

ɺɺ
�

� ɺ
�

               (17) 

Substituting into (8) and (9), after some manipulations, 

two independent equations written up to the first order of 

Rδ
� are: 

2
8 2

( ),
2 2 3

1

R m M e

v R R

πδρ
α β δ

−
− = − +

−
� � �

� � �

      (18) 

and 
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]

2
2

( )
2 2 32

( )
2 3 2 2

1

2
2

2( 4 )
2 2 2

1 2( 2 ) 3
8 ,

3 422
1

m e
R

R R Rm e
R

R R R f R

M v
R R

R v m M e

M R RR
R

α β α αβδ

ρ
π

πρ

+ −

− = − − − +
+ +

+ +
− −

− − + −
+ −

  
   
  

ɺɺ
�

ɺɺ
� � �ɺɺ

�
ɺ ɺ

� � � �

� � �ɺɺ
� �

� � �
�

�ɺ � ��
�

 (19) 

where,  

2
1 ,

0
Rα = + ɺ  2

0
f Rβ = + ɺ .              (20) 

The angular component of the extrinsic curvature of Σ
�  

in the Gaussian normal coordinate, using (11), is 

1
( ) ( 1 2 ) ,,

R t R r t
K vR Et

R t n r n R

θ
θ

∂ ∂ ∂ ∂
= + = + +Σ Σ∂ ∂ ∂ ∂

ɺ

� �
 (21) 

On the other hand one can write 

,( 1 2 ) .tR t R v E Σ= + +
�

ɺ ɺ          (22) 

Eliminating tɺfrom (21) and (22) and using (16), to get: 

2
2 1 2

0
,

2
2 1 2

0

M
E R E

R
v

M
R E E

R

β

β

+ − +

=

+ − +

� ɺ
� � �

�
�ɺ

� � �

           (23) 

which is valid only for the shells of finite thickness. 

Equations (18) and (19) together with (23) are the thick shell 

equations of motion written up to the first order in terms of 

the shell’s proper thickness. Given the initial data: 

(0)R
� , (0)R

�
ɺ , E � , M

�  and δ , one can in principle solve this set 

of differential equations to determine the time evolutions of 

the proper radius ( )R τ� �  and the mass density ρ� of the thick 

shell’s core. 

3.2. Thin Shell Limit of a Thick Shell 

The limit of the proper thickness as well as the peculiar 

velocity on the dynamics of the shell can be investigated 

from (18). The relation between the surface energy density of 

the thin shell and the energy density of the thick shell can be 

evaluated on Σ
�  up to the first order inδ : 

( ) 2
, 2 ( ).r dn O

δ
σ ρ τ δρ δ

δ

+
= ≅ +∫

− �         (24) 

Now, assuming 1v ≺� , then equation (18) can be written 

as: 

4
0

G Rα β π σ− = ɶ               (25) 

whereσɶ  is called the effective surface density, defined by 

2
22

1 ( ) .
3 4

4 4

m M e
v

R R
σ σ δ

πσ πσ

−
= + − +

 
  
 

�ɶ �
� �

(26) 

Therefore, equation (25) has the well-known form of the 

dynamics of a spherical thin shell with the effective surface 

energy density σɶ  (Israel 1966a). The zero thickness limit 

of the shell is therefore defined by 0δ →  and 0v →
� . 

Taking this limit, (25) reduces to the familiar equation of 

motion for the thin shell in RN [7]. Solving (25, 18) for 2
Rɺ , 

to get 

2
2 2 2 2

1 4
2 2 4

16

2 2

( 1 )
2 2 2 3 2 2 4

2 8 32

m m
R R

R R

e m e

R R R

π σ
π σ

π σ π σ

= − + + + +

− − +

ɺ ɶ� �
ɶ� �

ɶ ɶ� � �

  (27) 

Therefore, 
2R
�
ɺ depend on σɶ  for a given shell radius R

� . 

In the limit that the charge goes to zero, one recovers the 

Schwarzschild metric. In the limit that 2m/r and e go to zero, 

the metric becomes the Minkowski metric. Taking into 

account 2R m≻� , which means roughly that the radius of 

the shell’s core is greater than its Schwarzschild radius, for 

the zeros of 2
Rɺ� : 

2 2
1 22

(1 1 )
2 2 2 2

8 2

m e m e

R RR R R
σ

π
= − + ± − +±ɶ

� �� � �

     (28)  

For a comoving Σ� ( 0v =� ), having σ σɶ ≺ (where 

2m M≻ � ), the thickness in the first order leads to a faster 

collapse of the thick shell relative to a thin shell in RN. 

While for a Σ
� with a small peculiar velocity with respect to 

the LTB background, the effective energy densityσɶ  tends to 

increase leading to a slowdown of the  collapse velocity of 

the shell relative to a comoving one. 

4. Conclusion 

The dynamics of a thick shell embedded in curved space 

times has been studied by imposing the Darmois junction 

conditions. The equation of motion for the shell, up to the first 

order of the proper thickness is obtained. In fact the equations 

of motion could be written in a form similar to the thin shell 

cases with an effective surface density. In the case of a shell 

immersed in RN, it turns out that the effect of the proper 

thickness δ  is to speed up the collapse of the comoving 

spherical thick shell, while the first order peculiar velocity 

correction tends to decrease the collapse velocity. 
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