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Abstract: Ordered Ising models as ferromagnetic having nonsingular heat capacities at the critical temperatures are 

considered. A new parameter vector ��  is found to describe the spin correlations and fluctuation characteristics. The 

conservation of scalar q indicates that there is simple harmonic motion of ��, and the motion’s quantum is called block-spin 

phonons, like the phonons in a crystal, resulting in nonsingular heat capacity near the critical point. The harmonic motion 

shows there are hierarchies and symmetries of fluctuations, while the soft mode may lead to the interactions of block-spin 

phonons with different frequencies. We are certain that the critical point for an Ising model only exists in a statistical sense 

although the system at the critical temperature. The fluctuations undergo about the critical point, which the system never 

attains. It is the first time for us that the specific forms of the spins’ correlation functions for Ising models at the critical 

temperatures are obtained. 

Keywords: Ising, Correlation, Phonon, Heat Capacity, Fluctuation 

 

1. Introduction

The critical phenomena are characterized by the free en-

ergy singularity and the long-range correlations of spins. The 

former indicates that an old phase, a disordered state, 

disappears; the latter shows that this is just the property of a 

new phase, an ordered state. As a new state it is considered a 

normal ferromagnetic that should have its normal and non-

singular free energy and heat capacity. It is incredible that a 

ferromagnetic Ising model has no normal thermodynamic 

quantities to which the spins contribute. There has been only 

one theory so far, the spin-wave theory, can explain these 

normal quantities. Freeman J. Dyson drew a physical picture 

for a 3-di-mensional model [1]. On microscopic level, as his 

showing, the spin waves arise from interference effects in the 

lowest partial-wave collisions resulting in a rotation of the 

spins of the scattered atoms. The cumulative effect of many 

such rotating collisions is such that inhomogeneous spin 

states propagate like waves rather than diffusively. Dyson 

presented that his theory was suitable to the low temperature. 

V. G. Vaks and his colleagues tried to apply the theory to a 

Heisenberg model to study the spin waves and correlation 

function [2]. They found that the damping of the spin waves 

and the damping increased with the increasing temperature in 

the range 
cTT < . All of these tell us that the spin-wave 

picture cannot illustrate the critical phenomena, especially 

the critical properties of an Ising model, since there is no 

spin-spin collision caused by the moving atoms with spins. 

The authors of the reference [3] constructed an 

inhomogeneous planar square lattice Ising model with finite 

size, and discussed its abnormal specific heat at the critical 

temperature under a boundary condition. We think that, 

however, there is great deference between such model and 

conventional Ising model. The rest of the model is still 

infinite if a finite part is picked up from an infinite Ising 

model. In addition, we notice that the authors’ work is prior 

to the Wilson’s renormalization group theory, and the 

imposed boundary condition makes the work be considered 

as a particular result rather than general. Some coherent spin 

states similar to linear harmonic oscillators were introduced 

by J. M. Radcliffe [4], and the relevant physical properties 

were discussed for a Heisenberg model. He supposed that 

such discussion might benefit to the understanding of the 

correlation of spins. His idea may inspire us to investigate 

the underlying form of the spin’s correlation function. 

In this paper we try to show by our theory the normal 

properties of the new phase for Ising models at 
cT . In section 



212 You-Gang Feng:  Elementary Excitations of Ising Models at the Critical Temperatures  

 

2 we find a spin parameter vector 
→
q  describing the block 

spin correlations and get a conservation equation of the 

scalar q, revealing the block-spin correlations exist in the 

form of simple harmonic waves. As a result we get the 

quantum of the wave motion, the block-spin phonon. In 

section 3 we obtain nonsingular heat capacities for the new 

phase and discuss the correlation functions with some 

symmetric properties and interpret the hierarchies in the 

fluctuations. We also consider the occurrence of soft modes. 

Section 4 is conclusion. 

This article is a revision of the reference [5], it is not only 

a continuation of the reference [6] but also a base for the 

reference [7]. 

2. Theory 

2.1. Spin Parameter Vector ���� 

The calculating results of the critical points for the 2-

dimansional models and 3-dimensional models show that our 

theory is available for the investigation of the critical 

behaviors of Ising models [6]. Especially, the fractal analysis 

used in this theory reveals the detailed structures in the 

fluctuations, which has never been discussed in other 

theories. The concepts of the block spin and the self-similar 

transformation mentioned in this article all are attributed to 

this theory. According to this theory, a system will never 

arrive at its critical point )/( cBc TkjK =  due to that the self-

similar transformation forbids the fractional side *n . The Eq. 

(11) of the reference [6] indicates that the free energy of the 

system dependents on the magnitude of the logarithm on the 

right side of the equation, the smaller the value of the 

logarithm the lower the free energy because the natural 

logarithm is a monotone function. In order to minimize the 

free energy the system always try to attain the critical point 

such that the two terms in the logarithm should be close to 

each other, which leads to that the system adjust the block’s 

side from time to time. Such adjustment will never stop, 

which is just the cause of the endless fluctuation. Let’s 

consider two limit cases. At first, for a finite number r, on the 

r-th hierarchy the vector summation of block spins is always 

zero although the spins are correlative with each other. In the 

meantime a system appears order only on the infinite 

hierarchy, namely, +∞→r , where the system is just an 

isolated block spin after infinite iteration of the 

transformations. Denote the system magnetization by 
→

1M . In 

the second case, on a finite hierarchy all block spins are 

parallel to each other, consequently the system is order. 

Denote the relevant magnetization by 
→

2M . Clearly, the 

magnitude of M
1

 is smaller than the magnitude of M
2

. So 

the 
→

1M  is connected with cT , and the
→

2M  with the 

temperature T lower than cT . The fluctuations are not only 

the deviation in the block sides, but also the deviation in the 

block-spin states. An obvious disadvantage of the 

conventional spin parameter 
→
S  is that it is always one-

dimension such that it cannot be a match for the spin 

correlations that have the same dimensions as the ones of the 

lattice system. In order to research for the fluctuation nature 

further we should find a new spin parameter of d-dimensions, 

besides 
→
S , to describe the correlations. Solving the Gaussian 

model in the reference [6] we introduce a parameter vector 
→
q  

in the Fourier transform, a new lattice spin is 
→→

⋅Ω= ∑ iq qi rqSS exp)/1( . The vector 
→
q  is originally a 

reciprocal lattice vector for the new lattice but the one for a 

block spin system. The so-called new lattice spin is actually 

the lattice spin on the i -th hierarchy, which is just the block 

spin on the )1( −i -th hierarchy. The magnitude of 
→
q

determines the new lattice spin magnitude being consistent 

with the magnitude of a certain block spin, its changes in 

both direction and magnitude relate to the changes of the new 

lattice spins in both direction and magnitude. Because there 

is a mapping relationship between a new lattice spin and a 

block spin, if the vector 
→
q  can serve as an appropriate 

parameter to demonstrate the block spin state for a certain 

block-spin system instead of the new lattice spin system, it 

should have specific features that there is an one-to-one 

correspondence between the value of 
→
q  and the magnitude S 

of a block spin, each block spin has its own 
→
q , and all of 

block spins with 
→
q  are correlated. The vector change in 

direction is connected with the block spin change in direction. 

The traversal time of the component of 
→
q , xq , or yq , or 

zq , 

in either its own positive-direction state or negative-direction 

state is identical, since every block spin has the same 

probability in both the spin-up state and the spin-down state 

in the thermodynamic equilibrium on any finite hierarchy to 

keep the spin vector summation zero. In a word, the
→
q will be 

a d-dimensional periodically varying parameter rather than 

random. 

2.2. Conservation Equation of Scalar ���� 

On the one hand the free energy will be singularity at the 

critical point )/( cBc TkjK = ; on the other hand the fluctu-

ations undergo around the critical point, such that the mag-

nitude of the block spin is not the minimum related to the 

critical point, and q doesn’t vanish at cT , since only the 

0=q  links to cK . Therefore, the algebraic expression the 

equation (10) of [6] changes into 2
/1)( trSqK =

→
, and 

2

min,

2

trtr SS > , for the triangle lattice spin system, where 

∑
→→→

⋅−=
ij

ijqiKqK
δ

δexp)( , 
→

ijδ is a vector from the i -th lattice 

to the j -th lattice, and )/( TkjK B= . Generally, for a 2-

dimensional system when the integer side n  varies about the 

fractional side *n the value of q  changes certainly around 

0=q . Since the magnitude of q  is very small we can 
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expand the function )(
→
qK  about 0=q  as 

keep its quadratic term of q . We then get (see

]1[
)1(

4 min

2

22

D

D

n
qq yx −

+
=+   

where the fractal dimension minD  is determined

ctional side *n , the fractal dimension D  is 

integer side n . Equation (1) signifies that 

radius q and a rotating vector 
→
q  (see Figure

point and the terminal point of the vector

center and on the circumference, respectively.

vector rotates its direction changes, the rotation

Figure 1. A circle of radius q, where the symbol x refers to 

motion way for it. Clearly, if the side

magnitude of q is certain too; and 

conservation of scalar q  corresponds to the

spin value. The following trigonometric 

solutions of Eq. (1): 

cos[ ( / ) ]

sin[ ( / ) ]

x

y

q q t r v

q q t r v

ω α
ω α

= +
= +

∓

∓

Where the sign “-” or “+” represents the

the backward wave, the system can be in either

or another state; v  is the wave velocity

uniform medium), 2/122 )( yxr += , x and

coordinates of the symmetric center of a

relative to the x and y in the above figure

frequency, α  the initial phase angle of the

0=r . In order to illustrate explicitly the

between q and the block spin state, consider

tuation: Let the spin direction be parallel 

0>yq  refers to the spin-up state, 0<yq

state. A block spin travels in each state for

half period. The traversal time of a spin at the

omitted. Let the component yq  be independent,

follow after it by equation (2). Clearly, without

no harmonic motion of 
→
q  although 

independence. Let us investigate the correlation

spins, they may be either adjacent or far 

their parameters by 
→

1q  and 
→

2q , the
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 a power series to 

(see the appendix) 

                          (1) 

determined by the fra-

 determined by the 

 there is a circle of 

igure 1), and the initial 

vector are at the circle 

respectively. When the 

rotation is a unique 

 

the symbol x refers to xq , and y to yq . 

side is constant the 

 vice versa. The 

the constant block 

 functions are the 

cos[ ( / ) ]

sin[ ( / ) ]

q q t r v

q q t r v

ω α
ω α

= +
= +                    (2) 

the forward wave or 

either the one state 

 (the system is a 

and y the position 

a block being no 

in the above figure, ω  is angle 

the block at the site 

the correspondence 

consider a particular si-

 to the y-axis, and 

 to the spin-down 

for the same time, 

the state 0yq =  is 

independent, and xq  

without xq  there is 

 xq  is not of 

correlation of two block 

 apart; and denote 

the vectors rotate 

anticlockwise. At the moment 

axis are positive, 01 >yq , 2 yq

at )( 122 ttt > , 01 <yq  and

)( 233 ttt > , 01 <yq  and q

)( 344 ttt > , 01 >yq  and 2 yq

orientations are just opposite 

)( 455 ttt > , 01 >yq  and 2 >yq

are not the same as those at 
1t

return to the states at 
1t , indicating

back their states at 
1t . The time

just a vibration period. It is easy

in a 3-dimensional block spin system

We can in particular think of the

spin-down state as 0<zq . A 

will depict the behaviors of rotating

can set up a correspondence bet

state of a block spin by the 

dimensional system, a line passing

coordinate system divides the

identical parts (see Figure 2)

circumference and the relevant

spin-up state; the points on another

the relevant xq  and yq  to the

dimensional system, a plane

divides the sphere into two equal

hemisphere and the relevant q

the spin-up state, the rest points

of 
→
q  to the spin-down state. In Figure 3, the points 

are respectively on different parts 

the spin-up state and to the spin

divided by the horizontal plane. Another plane also divides 

the sphere into two hemispheres, while the two points are not 

associated with the spin-up stat

they are just on the plane, ther

physical meaning. The transition

case should vanish because the occurrence of such state is 

impossible.  

Figure 2. Any one line passing through the origin such as t

can divide a circumference into two identical
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1t , their components in the y-

0> , the spins are parallel up; 

and 02 >yq , anti-parallel; at 

02 <yq , parallel down; at 

0< , anti-parallel, the spin 

 to the orientations at 
2t ; at 

0 , parallel up, but 
→

1q  and 
→

2q  

1t ; at 6t )( 56 tt > , both vectors 

indicating the two block spins come 

time difference 16 ttt −=∆  is 

easy to prove that the locus of 
→
q  

system is a sphere of radius q. 

the spin-up state as 0>zq , the 

 set of trigonometric functions 

rotating vector 
→
q . Generally, we 

between the state of 
→
q  and the 

 following method: For a 2-

passing through the origin of the 

the circumference into two 

(see Figure 2), the points on one semi-

relevant xq  and yq  correspond to the 

another semi-circumference and 

the spin-down state. For a 3-

 passing through the origin 

equal parts, the points on one 

xq , yq , and 
zq  are related to 

points and the relevant components 

In Figure 3, the points Q and P 

different parts of the sphere, relating to 

to the spin-down state, if the sphere is 

divided by the horizontal plane. Another plane also divides 

the sphere into two hemispheres, while the two points are not 

up state or the spin-down state since 

herefore these points have no 

e transition time of the system in this 

case should vanish because the occurrence of such state is 

 

Any one line passing through the origin such as the line of y=x 

identical parts. 
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Figure 3. The points Q and P on the sphere belong to the different 

hemispheres resulted in the dividing by the horizontal plane passing through 

the origin. They reside together in another plane passing through the  origin. 

Each plane divides the sphere into two identical parts. 

In the light of this arrange we will not deliberately review 

the corresponding relation between their states in the next 

discussion. 

Equation (2) indicates that the statistical average values of 

the components of 
→
q  keep zero while the vector in the simple 

harmonic oscillation, which are the inevitable results for their 

symmetric motions. 

2.3. Block-Spin Phonon 

Note that there is no parameter describing a wave state in 

between two nearest neighbors in equation (2), which means 

we regard in fact the system as continuum. It is well known 

that a simple harmonic wave is an elastic wave. The elastic 

wave in the continuum has the specific properties of acous-

tic wave satisfying the long-wavelength limit [8]. In crystal 

the same harmonic motion of lattices can be respectively de-

scribed by several waveforms for different purposes. Simi-

larly, let us consider the harmonic motion of 
→
q  from another 

angle of view. For the cube ordered reducible block spin 

system denote the position coordinates of the symmetric 

center of a reducible block by ),,( zyx , every such block 

has its own center. All of these centers make up a 3-

dimensional lattice system with lattice constant 1+= na , 

where n is the block side length. For the elastic vibration of 

the 
→
q  at the site ),,( ppp zyx  of the p-th block, there is an 

effective elastic force
→

pf , a restoring force that may be dri- 

ven by the fluctuation-dissipation mechanism. Because the 

Hook’s law the force )( pxf , the component of 
→

pf  in the x-

axis, caused by the displacements of the adjacent ),( 1 txq px +  

and ),( 1 txq px −  relative to the ),( txq px , respectively, is 

given by 

)],(),(),(),([)( 11 txqtxqtxqtxqCxf pxpxpxpxp −+−= −+
 

2

2 ),(

dt

txqd
M

px=                                    (3) 

Where C is a proportional constant, M effective mass, all 

displacements have the time-dependence factor tiω−exp . 

Since the harmonic motion leads to a dynamic equation  

),(
),(

2

2

2

txq
dt

txqd
px

px ω−=  

and Eq. (3) then becomes a difference equation in the disp-

lacements of xq , and has traveling wave solution: 

)exp()exp()exp(),( 1 tiikaipkaqtxq px ω−±=±             (4) 

Where k is the magnitude of wavevector 
→
k , pax p = . 

Combining equation (3) with (4), and using the above dyna-

mic equation, we get )cos1)(/2(2 kaMC −=ω . If the long-

wavelength limit 1<<ka  holds, we can expand the function 

2/)(1cos 2kaka −≅ , and get a dispersion relation linking up 

the frequency ω  and k 

222 )/( akMC=ω                                  (5) 

Where kv /ω= , v is the wave velocity. So does the mo-

tion in either the y-axis or the z-axis. The previous proce-

dure is completely analogous to the dealing with lattice wa-

ve in a crystal [8], so that it is easy to make quantization for 

the wave motion of 
→
q , and the quantum of the motion is 

called the block-spin phonon like the phonon in the lattice 

wave. For the brevity, we don’t write here the process. 

 For the cube lattice system, the interaction between nea-

rest neighbor sub-blocks is along the directions normal to the 

sub-block side (long side), see figure 3 of [6]. Infinite sub-

blocks construct a 2-dimensional system because the 

symmetric centers of these sub-blocks are on the same plane. 

There are many such planes parallel to one another, on each 

of them there is a sub-block spin system, and there is no any 

interaction between the systems since the directions of sub-

block interactions are parallel to the planes. It is easy to pro-

ve that in every such system there are also the simple har-

monic waves of 
→
q  similar to as shown by equations (2) and 

(3), and there are also sub-block spin phonons in each sys-

tem like the block-spin phonons in the ordered reducible 

block-spin system. For brevity, we also call the sub-block 

spin phonon the block-spin phonon. 

3. Discussion 

3.1. Nonsingular Heat Capacities 

Consider a sub-block spin system of the cube lattice: the 

symmetric centers of the sub-blocks form a 2-dimensional 

lattice system of area G. The vibration number of 
→
q  per di-

mensionality from k to dkk +  is given by kdkG π2⋅ . It can 

equivalently be, using the identity kv /ω= , expressed by 

ωωπ dvG )/(2 2  for ωωω d+→ . The phonons obey the 

Plank distribution [8]. We get the total average phonon 

energy 〉〈E  for every such 2-dimensional system 

∫ −
=〉〈

Dx

x

B
B dx

e

xTk
Tk

v

G
E

0

2
2

2 1
)()

4
(

ℏ

π
                (6) 
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ℏ  is Plank constant, )/( Tkx Bωℏ= , )/( Tkx BDD ωℏ= , 

Dω  is Debye frequency. Suppose that the total number of 

such 2-dimensional systems equals GN , the heat capacity of 

the sub-block systems is expressed as 

G

GV
T

E
NC 





∂
〉∂〈⋅=

 

∫ −
= Dx

x

x

BBG dx
e

exTk

v

GkN

0 2

3
2

2 )1(
))(

4
(

ℏ

π
                  (7) 

If the condition BDc kT /ωℏ<<  holds, the integral in the 

above equation will have a finite value, therefore Eq. (7) 

states that VC  obey the 2T  law, which can be shared by all of 

2-dimensional systems including the triangle lattice system. 

With the same reason, for the ordered reducible block (four 

sub-blocks form an ordered reducible block, see [6]) spin 

system of cube lattice the heat capacity behaves as the 3
T  

law: 

∫ −
= Dx

x

x

BBs
V dx

e

exTk

v

kV
C

0 2

4
3

3 )1(
))(

12
(

ℏ

π
             (8) 

where the integral value is finite if BDc kT /ωℏ<< . The law of 

Eq. (8) is suitable to all of 3-dimensional systems. The cube 

lattice system includes two types of interactions in that the 

sub-block spins and the ordered reducible block spins. In the 

reference [7], the heat capacities to which contribute the spin 

phonons coming from the lattice spins in the sub-blocks and 

the blocks are also considered, and the heat capacity 

represented finally by the Eq. (6) of the reference can 

describe more correctly the huge heat capacity of ferro-

magnetic at the critical temperature. 

3.2. Symmetries and Hierarchies of Fluctuations 

There are a few of papers to study the correlation functi-

ons at cT  for Ising models. G. Delfino and G. Mussardo 

studied the spin-spin correlation function in a 2-dimensional 

Ising model in a magnetic field at cT , they used the scatte-

ring method applied usually in the spin-wave theory and 

considered the electron charge action, which is more or less 

apart from the original phase transition topic [9]. Crag A. 

Tracy and Barry M. McCoy presented the spin-spin corre-

lation by considering the neutron scattering effect and ma-

king use of phenomenological formula, yet the fluctuation 

fine structure was a riddle to us [10]. The heart of the prob-

lem is that if we have not a good spin parameter to describe 

the fluctuation nature, we will not be able to find the functi-

on with specific form to portray the critical behavior, and the 

function is very the correlation one. In terms of the Pri-

gogine’s theory of self-organization [11], the new phase at cT  

in essence is the self-organization in the thermodynamic 

equilibrium as a sequence of the space-time order of spins. It 

is well known that there is conservation there are some 

symmetries. The conservation of q reveals the space-time 

symmetric properties of the fluctuations at cT . For example, 

in the triangle lattice the trigonometric functions in Eq. (2) 

may be regarded as a kind of spin correlation functions at cT . 

Although every block spin changes its state constantly, all of 

the changes show a certain harmonization. The terminal point 

of 
→
q  circles about the center 0=q  obeying the symmetric 

properties of a rotating group and leading directly to the 

space-time order of spin states: The time translation 

invariance: a definite spin state will periodically appear at the 

same position. The space translation invariance: the same 

state will simultaneously turn up at some sites regularly 

arranged. Though different side length correspond to 

different circles radii, these centric circles have the same 

symmetries but chaos. Since Eqs. (2) and (3) hold on any 

finite hierarchy, thus the fluctuations are of hierarchies. In 

this sense the fluctuations itself are the very new phase cha-

racteristics. 

3.3. Soft Modes 

Soft modes exist in vibration systems, originating from 

anharmonic forces, therefore the fluctuations of Ising mo-

dels at cT  will be comprised in that. When we make Fourier 

transform of )(
→
qK  about 0=q , we neglected the term of 

4q  

that is next to the term of 
2q  as the function cosine is even. 

Counting the term of 
4q , an effective potential energy is 

included 

42)( iii fqCqqU −=                                 (9) 

Where zyxi ,,= , C and f are positive constants, the term 

of 
2

iq  leads to harmonic force linked to harmonic vibration, 

and the term of 
4

iq  to the softening of the vibration at large 

amplitudes. Like in the lattice wave where the anharmonic 

term is concerned in thermal expansion [8], the term of 
4

iq  

may result in nonzero average value of the components of 
→
q , 

0≠〉〈 xq  or 0≠〉〈 yq , or 0≠〉〈 xq  and 0≠〉〈 yq  at the same 

time on a finite hierarchy, which means that the vector 
→
q  has 

a preferential direction such that the lattice spin system can 

become order on a finite hierarchy rather than on the infinite 

hierarchy. In addition, when the system adjusts the block side 

in order to approach to the critical point further new blocks 

will come out and old blocks will be decomposed, as well as 

appropriate for the modulation of the lattice constant spacing 

adjacent block symmetric centers. Deductively, there exist 

interactions of block-spin phonons with different frequencies, 

like the phonon interactions in a crystal. We note that in the 

lattice wave model because the soft mode effect is too weak 

to affect the existence of the phonon model and the Debey 

heat capacity that has been in agreement with experiment. 

The reason may be suitable to the block-spin phonons. In a 

word, soft modes may be of the fluctuation characteristic. 
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4. Conclusion Remark 

The vector 
→
q  is a good spin parameter, its feature shows 

that the spin correlations at cT  behave as simple harmonic 

motion, and the motion quantum results in nonsingular heat 

capacity. The fluctuations are of symmetries and hierarchies, 

which are just the characteristics of the order phase. There 

are soft modes in the fluctuations, leading to the interactions 

between block-spin phonons of different frequencies. 

Appendix 

We take the 2-dimensional lattice system as an example to 

prove the conservation equation of the scalar q , i.e. Eq. (1). 

From [6] the function is 
→→→

⋅−= ∑ ijqiKqK
ij

δ
δ

exp)( . If we put 

the i -th lattice at the origin of the coordinate system, it can 

be rewritten as 

∑
=

→→→
⋅−=

Z

j

jrqiKqK
1

exp)(

 

∑
=

+−+=
Z

j

jyjxjyjx yqxqiyqxqK
1

)]sin()[cos(              (A1) 

where 
→

jr  is the position vector of the j -th nearest lattice of 

the i -th lattice. The value of )(
→
qK  is very small due to the 

xq  and yq  are near 0== yx qq . We make the trigonometric 

functions expansion about 0=q , and keep the quadratic 

terms of xq  and yq : 

])(
2

1
[)(

1

2∑
=

+−=
Z

j

jyjx yqxqZKqK                 (A2) 

In the following, firstly we derive some identical equations, 

by which we will prove Eq. (1) of this article. In a 2-dimen-

sional system, let a lattice serve as a symmetric center and its 

coordinate is denoted as ),( cc yx , its nearest neighbors 

satisfy the relations due to the symmetry: 

∑
=

=
Z

j

jc xx
1

 , ∑
=

=
Z

j

jc yy
1

                     (A3) 

where the number Z  is the coordination number. If we take 

the symmetric center as the origin of the coordinate system, 

i.e., 0== cc yx , Eq. (A3) becomes 

∑
=

=
Z

j

jx
1

0  ,∑
=

=
Z

j

jy
1

0                          (A4) 

The relative vector representation is 

∑
=

→
=

Z

j

jr
1

0                                   (A5) 

The polar coordinate of the j -th lattice is ),( ja θ , arj = , 

a  is the lattice constant, and 
2222 aryx jjj ==+ . The neig-

hbors are on the circumference of radius a  with the origin as 

its center, we have 

ax jj /cos =θ  , ay jj /sin =θ                  (A6) 

where the parameter jθ  is a rotation angle. Let Z/2πθ = , 

and θθ ⋅= jj , Zj ,...,2,1= , so πθ 2=z . The angle jθ  

corresponds to a rotational symmetric operation denoted by 
j

ZC , which is an element of a rotation group. There is an 

equivalent relation: j

Z

j

Z CC )( 1= , which means that j -times 

operations (rotations) of 1

ZC  are identical to a single 

operation of j

ZC . Inserting Eq. (A6) into Eq. (A4), we get 

∑
=

=
Z

j

j

1

0cosθ  , ∑
=

=
Z

j

j

1

0sin θ                          (A7) 

Since the group is closed among itself, we therefore have 

∑
=

=
Z

j

j

1

02cos θ  , ∑
=

=
Z

j

j

1

02sin θ               (A8) 

By the identical formulas: 1cossin 22 =+ jj θθ , 

jjj θθθ 2cossincos 22 =− , and 

jjj θθθ 2sinsincos2 = , Eq. (A8) leads to 

∑ ∑
= =

==
Z

j

Z

j

jj

Z

1 1

22

2
2sin2cos θθ                  (A9) 

Inserting Eqs. (A6), (A7), (A8), and (A9) into Eq.(A2), 

respectively, which becomes 

)](
4

1[)( 22
2

yx qq
a

ZKqK +−=
→

                (A10) 

where 1+= na . The function )0()( KqK =  relates to the 

fractional side *n  while 0=q , and 2

min/1)0( SK = . When )(
→
qK  

is expanded about 0=q , the value of q  is very small but 

zero, )(
→
qK  should corresponds to a block spin determined by 

an integer side n  near *n , namely, 2
/1)( SqK =

→
. From the 

Eq. (6.1) of [6], the relation between the block side and the 

fractal dimension is written as DZS 22 = , and 
min

2

min 2DZS = . 

The fractional side *n  refers to the fractal dimension minD , 

which determines the critical point cK , and 

)2/(1)/( minDTkjK cBc == . The values of the integer sides 

vibrate about the fractional side to keep the statistical average 

of the side length being *n , which results in the fractal 



 American Journal of Modern Physics 2014; 3(6): 211-217 217 

 

dimension minD  and the block spin 2

minS . Therefore, in a 

statistical sense the critical point cK  exists at the critical 

temperature, leading to the term in K  on the right side of Eq. 

(A10) still as cKK = . Because of these relations between the 

fractal dimensions and the block spins, Eq. (A10) then turns 

into Eq. (1): 

]1[
)1(

4 min

2

22

D

D

n
qq yx −

+
=+                      (1) 

If the left side of the above equation equals zero, i.e. 

0=q , the fractal dimension D  becomes into the minimal 

dimension minD  on the right side, just corresponding to the 

critical point; and vice versa. This states that Eq. (1) is 

correct. In order to demonstrate the physical meaning of this 

equation, as an example, we make numerical calculation for 

the triangle lattice spin system. By the Eq. (2) of the 

reference [6], the fractal dimension of a block is defined as  

)(

]2/)2)(1[(

nLn

nnLn
Dtr

++=  

where the symbol Ln  is natural logarithm. The number of 

lattices in a block of side n  is P , and  

2/)2)(1( ++= nnP  

The fractional side linking to the cK  is 4955.14
* =n , to 

the fractal dimension 814055.1min, =trD . The integer side 

being nearest to and smaller than *n is 14=n , its relative 

fractal dimension is 814091.114 ==nD . The integer side 

nearest to and greater than *n  is 15=n , the relevant di-

mension is 814093.115 ==nD . Inserting these data into Eq. (1) 

and comparing their relative calculating results, we then 

know that the values of q  in the vicinity of 0=q  are ext-

remely small. In contrast, the change of the number of the 

lattices in a block is very great. The number of the lattices in 

the block with side 14=n  is 120=P ; the number in the 

block for side 15=n  is 136=P . It can be imagined that in 

an infinite system huge fluctuation will dramatically rise 

when all of blocks change together their sides from 14=n  to 

15=n . Moreover, there are possibly more than two types of 

the side lengths involved! 
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