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Abstract: Lttice-spin phonons are considered, which make the heat capacity at the critical temperature satisfy 

experimental observations better. There is a BEC phase transition in an Ising model attributable to the lattice-spin phonons. 

We proved that the spin-wave theory only is available after BEC transition, and the magnons have the same characteristics 

as the lattice-spin phonons’, resulting from quantum effect. Energy-level overlap effect at ultra-low temperature is found. A 

prediction of BEC phase transition in a crystal is put forward as our theory generalization. 
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1. Introduction 

We have been succeeded in initially revealing the nature 

of ordered Ising model at the critical temperature 
cT  in that 

there exist elementary excitations, which may cause 

nonsingular heat capacities [1]. The system is recognized as 

a new normal one, the block-spin phonons and the sub-

block spin phonons do show the system characteristics. The 

simultaneous occurrence of the sub-block spin phonons and 

the block spin phonons shows the hierachical structures of 

the Ising models, which indicates that an Ising model is a 

complex system. The complexity is far beyond our 

conventional imaginary picture. Fractal dimensions, 

hierachical structures and the followed hierachical 

classification will help us deeply understand the intrinsic 

attributes of Ising models. The more detailed the structure 

of the system are investigated, the more close to its reality 

the theoretical prediction will be. In this paper we will 

explore further for the properties of an ordered Ising model. 

Experimental observations have found that in the region of 

temperature 
cTT <  near 

cT  the heat capacity approaches 

in very high power-exponent law to its maximum at 
cT  but 

singularity. The heat capacities, however, attributed to 

block-spin phonons and sub-block spin phonons cannot 

enough achieve the expected phenomenon. We should 

consider this case with a more suitable theory and study on 

fine structures of elementary excitations. The formation of 

blocks is a result of the locally strong correlation of lattice 

spins. The correlation has wave-motion property to cause 

elementary excitation in blocks, which quanta are called 

lattice-spin phonons. The heat capacity stemming from the 

lattice-spin phonons should be considered. In section 2 of 

this paper, we will see that sub-block spin phonons and 

block-spin phonons may disappear with decreasing of the 

relevant fluctuations, only the lattice-spin phonons exist 

when temperature decreases. In addition, we notice that the 

lattice-spin phonons can be regarded as ideal Bose gas, its 

special property at low temperature should be reviewed. 

Since Bose-Einstein condensation (BEC) in dilute atomic 

gases has produced by experimental groups in 1995 [2-5], 

the experimental observations and relevant theoretical 

explanations for BEC phenomena in diverse physical 

systems have successively been reported [6-14], among 

them the interesting issues for us are that refer to BEC of 

magnons [8-12]. The similarity between magnons and 

lattice-spin phonons enable us to believe that an Ising 

model, as an example of ferromagnet, may experience a 

BEC phase transition at ultralow temperature, which will 

determine a characteristic of magnetic saturation. In 

section3, we discuss change in mechanism of heat capacity, 

there is a continuous phase with a 3/2T  law in BEC process, 

and we then link it to quantum effect. Comparison of 

lattice-spin phonons with magnons has demonstrated that 

spin-wave theory is only available after BEC phase 

transition, having the same properties as the lattice-spin 

phonons’. Energy-level overlap effect at ultra-low 

temperature is discussed. There is a transition of energy 

levels. Finally, a prediction of BEC phase transition in a 

crystal is given as generalizing our research on the low-

temperature behavior of Ising models. 



American Journal of Modern Physics 2014; 3(4): 178-183 179 

 

2. Theory 

2.1. Lattice-Spin Phonons in Blocks 

The characteristics of correlation for inner lattice spins in 

a block can be considered from two hands. On the one hand, 

the conservation of inner product of a block spin shows that 

the correlation obeys rotation symmetry, behaving as a 

harmonic motion. On the other hand, according to the 

hierarchical property of blocks the inner lattice spins of an 

r-order block on the r-th hierarchy are originally the (r-1)-

order blocks on the (r-1)-th hierarchy [1], the property of 

these lattices is similar to the one of the (r-1)-order blocks 

due to the self-similarity. This means that the lattice spin 

correlation, like the block spins’, demonstrates wave 

feature, which relevant quanta are called lattice-spin 

phonons. The inside space of a block amounts to a D-di-

mensional hypercube with side n and lattices DnP =  equal 

to the number of solid-state physics primitive cells [15]. A 

periodic boundary condition is introduced, and the 

components of wave vector k are 
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volume of radium k gives a total number  of  models,  and  

the related wave-vector magnitudes are smaller than k.  For  

a D-dimensional  hypersphere  its  volume  is DLk , where  

L  is  a constant  (see Appendix A). We then get a relation 

for each polarization: DD
Lk
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π
. A dispersion 

relation is given by vk=ω , where ω  is angular  

frequency  and  v  is sound  velocity. Since there are infinite  

blocks  the  total number of  inner lattice spins are also  

infinite,  therefore  we  can  describe  the  lattice-spin 

phonons in statistical law. A state density for each  polari-

zation is 
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The maximum of k determines a Debye’s cutoff 

frequency Dω : D
D Lv /12 −⋅= πω . The inside space of a 

block is D dimensions, being equal to independent degrees 

of freedom for a lattice-spin phonon. The thermal energy 

contributed by the lattice-spin phonons in each polarization 

is written by 
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Where >< )(ωn  is the mean quantum number at 

temperature T in the energy levels with frequency ω , and 

>< )(ωn [exp(= 1]1) −−
TkB

ωℏ , ℏ  is Plank constant, Bk  
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Therefore, we get the heat capacity of lattice-spin 

phonons for a constant number P of lattice spins: 
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where 
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ωℏ= . Equation (5) is suitable to all 

inner lattice spins of block spins and of sub-block spins. 

For example, in a cubic lattice spin system a D-type spin 

has a D-dimensional inside space, a 
4D -type spin 

4D -

dimensional inside space. The heat capacity at cT  

attributed to all types of phonons takes 
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where 1a , 2a , 1b , and 2b  are constants, 2

cT  and 3

cT  are 

related to the sub-block spin phonons and the block-spin 

phonons, respectively. D

cT  and 
4D

cT  result from the lattice-

spin phonons in D-type spins and in 4D -type spins, 

respectively. By reference [15], the numerical calculation 

indicates that a small fractal dimension with integer side in 

close vicinity to the critical point is about 4781.2≅D , 

and 7116.374 =D . Inserting these data into equation (6) 

gives a heat capacity with very high power exponent: 
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Other fractal dimensions that are greater than the above 

one may also occur due to the fluctuation. It is expected 

that more high power exponents will appear in keeping 

with the experimental observations. 

The fractal structures of blocks will not disappear 

suddenly when temperature decreases from the critical 

temperature, the heat capacity of a system depends on a 

summation of Debye’s models for all kinds of spin phonons 

such as block-spin phonons and lattice-spin phonons of 

blocks. A system magnetization only is determined by the 

block-spin phonons since spin is a vector. Let bN  denote a 

total number of block-spin phonons, ex

bN  denote a number 

of block-spin phonons in excitation states and 
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density of block-spin phonons, V is the system volume. Let 

)(TM  be a magnetization at temperature T, )0(M  be a 

magnetization at absolute zero. A relative magnetization is 
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where the Debye frequency of block-spin phonons is given 

by 
V

N
v b

D

33 6πω = . The phonon density depends on the block 

size, if the size changes the relative magnetization per unit 

volume will change too, even though the temperature is 

constant. 

2.2. Lattice-Spin Phonons of System 

The formation of a block results from the locally strong 

correlation of lattice spins, which leads to a deviation in 

spin states between the lattice spins outside blocks and the 

lattice spins inside blocks. The deviation is just the 

fluctuation. The system is capable of eliminating the 

fluctuation at thermal equilibrium without foreign field as 

the fluctuation-dissipation theorem [16], such that the 

extent of correlation for lattice spins expands so rapidly 

when the temperature slowly decreases that the whole 

system becomes a block with infinite side, and there is not 

any other block in the temperature region not far from the 

critical temperature. With the same reason as introduction 

of block-spin phonons we can also introduce lattice-spin 

phonons with a spin parameter q. The heat capacity of 

system and the relative magnetization are described by 

Debye model of lattice-spin phonons of the system. In a 

low-temperature region, when 1>>Dx , the heat capacity 

vC  becomes [17] 
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θ
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where 
BD k/ωθ ℏ= , called Debye temperature, LN  

denotes a total number of lattice-spin phonons. 

Subsequently, the relative magnetization is 
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where 
Lα  is a constant, 

)0(
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M

TM  is a convex function of T. 

2.3. BEC Phase Transition 

Since lattice-spin phonons are assigned as ideal gases, 

when temperature decreases to a turning point the BEC of 

the gases as strongly degenerate condition become so 

significant that the system properties will be changed 

dramatically, different from ones above the point. We call 

the turning point a critical temperature BET  of BEC [18], 

which is 

2/3
2

]
)2/3(

[
2 ξπ V

N

mk

h
T

B

BE ⋅=             (11) 

where ℏπ2=h , m is effective mass of a phonon, )
2

3
(ξ  is a 

Rieman zeta function, and 
)

2

3
(ξ 612.2≅ . The ratio of the 

number 
ex

LN  of phonons in excitation state to the total 

number LN  of phonons is given by 
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The relevant magnetization is 
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We then get the heat capacity of the system 
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Equation (13) shows that the function of 
)0(

)(

M

TM  versus T 

is a convex curve, and its increases slowly as temperature 

decreases to demonstrate a characteristic of magnetic 

saturation. We call uniformly the laws exhibited by 

equations (12)-(14) a 
2/3T  law. Comparison of equations 

(13) and (14) with equations (9) and (10) indicates that the 

turning point BET  is another critical temperature of 

continuous phase transition for an Ising model. 

3. Discussion 

3.1. Quantum Effect and 2/3T law 

The fact that our 
2/3T  law of heat capacity and relative 

magnetization accords with the conclusion of spin-wave 

theory reveals a connection between the two theories. The 

spin-wave theory put forward by Dyson starts with the 

assumption that quantum collision effect can produce the 

spatial-temporal spin oscillations, which states propagate in 

a wave manner in a 3-dimensional ferromagnetism such as 

a cubic lattice spin system [19-21]. The BEC of lattice-spin 

phonons also arise from a quantum effect, the wave packets 

of phonons overlap so tightly that the mean interparticle 

separation becomes comparable to the particle’s thermal 

wavelength, such that the quantum attraction leads to 

phonon condensation in ground state. We may owe the 
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2/3T  law to the quantum effect, and the spin-wave theory 

is only operable to the temperature below .BET  Therefore, 

the two kinds of quasiparticles are the same thing. In fact 

M. Matsubara and H. Matsuda first called attention to the 

magnon’s characteristics by pointing out that a quantum 

spin system is equivalent to an interacting Bose gas [22]. 

The spin-wave theory, however, cannot predict the BEC 

phase transition. 

To obtain a clear insight into the relation between the 
2/3T  law and the quantum effect we introduce a revised 

Bloch’s spin-wave model [23], and apply it to a simply 

cubic lattice spin system in the following discussion. At 

first, we don’t confine the spin orientation to a particular 

direction, and the components in x, y, and z axes are 

nonzero. There are only the nearest neighbor interactions. A 

Hamiltonian of exchanging action of these spins takes 

  ∑
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where the letter i denotes a pure imaginary, t is time. From 

equation (16) we get a component equation 
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Using equation (19), we have 
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By the same treating, we can get 
dt

dS y

R  and 
dt

dS z

R  

equations similar to equation (20). According to Bloch’s 

suggestion there is only one spin to be anti-parallel to all 

other spins parallel to z-axis in the immediate of absolute 

zero, resulting in a small increasing energy. The increment 

of energy amounts to that a negative infinitely small spin is 

additionally apportioned to each of lattice spins, and all 

spins are still visualized as parallel to one another along z-

axis, such treatment is different from Bloch’s. The 

approach makes us identify the system with an Ising model, 

meeting the requirements of a classical model. In the 

quantum mechanics sense, however, the zero components 

of spins in x and y axes can be considered statistical mean 

values for xS  and yS , respectively. We think that an 

electron is responsible for a lattice spin, its quantum effect 

cannot be neglected at such low temperature, namely, we 

should make much account of the quantum fluctuation in 

spins about their mean values. Uncertainty principle that is 

markedly predominant gives all lattice spins additional 

increments of negative or positive values in x, y, and z axes, 

such that we obtain: xS<0 SS y <<, , SS z ≅ , where S is 

the magnitude of a lattice spin at high temperature, it is a 

constant. Therefore, from equation (20) we have 
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where the coordinate number is Z=6 for a simple cubic 

system. The solution of equation (21) is 
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Inserting equation (22) into equation (21) yields 
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The equations have a solution for F and G if the 
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determination of the coefficients is equal to zero, from 

which we get 

∑
→

→→
⋅−=

τ

τω )]exp(6[2 KiJSℏℏ           (24) 

Long-wavelength limit condition holds at low 

temperature. We expand the exponent term of equation (24) 

in series about k, and keep quadratic term, and get 

22)2( kJSa=ω                                      (25) 

where the lattice constant is a. Equation (25) shows a 

typical feature of the dispersion relation of ω  and k for 

magnons. Using Bose-Einstein statistics and equation (24), 

we can get the same results for vC  and 
)0(

)(

M

TM  as the 

previous ones. That the theories mentioned above get the 

same result proves again that quantum effect plays a role of 

the utmost important for the 2/3T  law. 

The following facts give two other pieces of evidence for 

our reasoning. In a spin-gap magnetic compound TlCuCl 3  

a BEC of magnons is found upon application of a magnetic 

field, 2/3T  law occurs at temperature below BET , 

consisting with theoretical prediction [9]. The same law is 

also discovered in a system of NiCl 2 -4SC(NH 2 ) 2 , which 

transition under a critical magnetic intensity can be 

theoretically interpreted as a phenomenon of BEC for 

magnons [8], and the theory different from that is used in 

the first case. In fact, the BEC transition will certainly 

appear as long as there is formation of bosons, no matter 

whether a system is composed of molecules, atoms or 

electrons [24-27]. 

3.2. Energy-Level Overlap Effect 

An energy level nE  of a lattice-spin phonon with 

quantum number n is expressed as ωℏ)
2

1
( nEn +=  

analogous to a quantum-harmonic oscillator’s. For a 

harmonic oscillator system ω  is unique; for an Ising 

model, however, it is only an element of a set of 

frequencies. This means that there is an energy-level 

spectrum of ground states ranging from zero frequency to a 

maximum Dω . Since there are infinite lattice spins the 

frequency values vary continuously such that it is possible 

that the energy-levels of ground states overlap partially 

ones of excitation states, and an energy-level of ground 

state may equal an energy-level of excitation state, if the 

former frequency is high enough to the latter one. This 

effect is equivalent to that the Debye frequency Dω  

becomes higher to increase the number of lattice-spin 

phonons in excitation state without losing energy, and 

lowers its frequency. Such crucial transfer occurs only in 

the vicinity of absolute zero, while the asymptotic process 

of magnetic saturation will slow down. 

Such effect will also occur in a crystal. The early 

experimental observations found that the Debye frequency 

anomalously increases when temperature decreases to 

absolute zero, regardless of the effect [28-29]. 

3.3. Prediction about BEC Phase Transition in a Crystal 

Since the phonons in a crystal are very much the same as 

the lattice-spin phonons in an Ising model, an effect of 

BEC for phonons in a crystal is expected to exhibit at the 

temperature near absolute zero. Therefore, the 3T  law is no 

more than behaviour of phonons at low temperature before 

the BEC phase transition. We believe that modern advanced 

experimental technique will help us demonstrate some 

evidence of this potential phenomenon heralding a 2/3T  law 

for heat capacity. 

4. Conclusion 

There are three characteristic regions of temperature for 

an ordered 3-dimensional Ising model. The first one spans a 

range from absolute zero to the second critical temperature 

BET  wherein 2/3
T  law is attributable to BEC of lattice-spin 

phonons. The third refers to the scope of temperature being 

near and involving the first critical temperature cT , where 

there are fractal structures of blocks, and the block-spin 

phonons, the sub-block spin phonons, and the lattice-spin 

phonons are responsible for the heat capacity by their 

Debye models. 
)0(

)(

M

TM
 is only determined by the block-spin 

phonons. The second region is in between the above two 

regions, in which only lattice-spin phonons play role due to 

there is no block or sub-block. We here call uniformly sub-

block spin phonons, block-spin phonons, and lattice-spin 

phonons and their relevant theories spin phonons and spin-

phonon theory, respectively. Clearly, the application of 

fractal theory and spin-phonon theory extends the extent of 

Ising model research, the model not only shows the well-

known properties in the range from high temperature to the 

first critical temperature cT , but also exhibits many other 

distinct features from the temperature near absolute zero to 

the cT , involving the existence of the second critical 

temperature BET . This versatile model is fairly favorable for 

us to understand the mystery nature of matter. 

Appendix A 

Suppose there are two hypercubes with volumes 
DL1

 and 

DL2
 in a D-dimensional space, a hypersphere of volume Ω  

is their inscribed sphere and circumscribed sphere, 

respectively, i.e. DD LL 21 <Ω< . Clearly, there exists a 

hypercube of side 3L , and it satisfies a condition: 

231 LLL << , which makes an identity hold: Ω=D
L3 . If the 

hypersphere has a radium R, we certainly have DLR=Ω , 

and 
D

R

L
L )( 3= , since topology tells us that a sphere and a 

cube are homoeomorphism only if both have the same 
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dimensionality. When D is a natural number, L  is a 

Gamma function with D as its variable [30]. For the fractal 

dimension L  is a constant related to D. 
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