
 

American Journal of Modern Physics 
2014; 3(2): 113-117 
Published online April 20, 2014 (http://www.sciencepublishinggroup.com/j/ajmp) 
doi: 10.11648/j.ajmp.20140302.20  

 

Three-mode approximation of symmetrical triple-square 
wells 
XinJian Liu, WeiDong Li* 

Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan, China 

Email address: 
15364839097@163.com (XinJian Liu), wdli@sxu.edu.cn (WeiDong Li) 

To cite this article: 
XinJian Liu, WeiDong Li. Three-Mode Approximation of Symmetrical Triple-Square Wells. American Journal of Modern Physics.  
Vol. 3, No. 2, 2014, pp. 113-117. doi: 10.11648/j.ajmp.20140302.20 

 

Abstract: One transformation, analogy to two mode approximation, is presented for triple-square wells. The energy 
splitting is determined by the strength of the tunneling coupling between nearest neighbor wells, while the next-nearest 
neighbor tunneling coupling plays crucial role to the invariant first excited state with the maximum entanglement states for 
the far separated square-wells. 
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1. Introduction 
As a bridge between the simple double well and the 

multi-well systems, the triple-well system has been being 
extensively systems, the triple-well system has been being 
extensively investigated in various branches of physics, for 
example, adiabatic transport [1-4] in triple-well solid-state 
systems (quantum dots [1], ionized donors and 
superconductors [2]), and quantum phase transition and 
quantum dynamics in cold atoms with triple-well [5-9]. 
Compared with the double well, one more well provides a 
additional energy level to make solid systems realize one 
kind of electrons coherent population transfer, which 
amounts to transporting electron coherently from one end 
of well to the other by various methods, an analogy of 
Stimulated Raman Adiabatic Passage (STRIRAP) protocol 
in quantum optics (coherently transfer electron population 
between two long-lived atomic or molecular energy levels); 
in the other hand, the effect of next- nearest-neighbor 
coupling on quantum tunneling allows novel quantum 
dynamics, nonlinear Josephson oscillation [7], macroscopic 
quantum self trapping and dipolar quantum gases has been 
explored in cold atom field [10]. In coherent tunneling 
adiabatic passage of solid-state system, macroscopic 
quantum self trapping and even quantum phase transition in 
cold atom physics, spatial dark state plays an important role 
and can be determined from the energy spectrum of 
triple-well. Similar as in double well [11-13], the three 
modes approximation is expected to provide a picture to 
understand the nature of these processes. For double well 

case, the original degenerate ground states for each single 
well are split into the two lowest global energy levels by 
tunneling mechanism. The strength of the coupling 
determines the energy gap (called as energy splitting in 
some sense) between the lowest two global energy levels. 
Two mode approximation provides a transformation by 
which the localised two modes (approximated to the ground 
states of single well) can be obtained from the two lowest 
global levels. It is natural to look for one similar 
transformation for triple-well case, by which the localised 
three modes, both wave-functions and eigenvalues can be 
obtained from the three lowest global levels. 

 

Figure 1. Triple-square well and adjusting biased energy 
1V . 

In this manuscript, we are going to develop this kind of 
transformation by considering a triple square wells. With 
the help of the analytical solution, the validity of this 
transformation is checked, both for the eigenvalues and 
wave-functions. A two tunneling procedures, each one 
consisting with two levels tunneling coupling, are 
suggested to understand the forming process for three 
lowest global levels. The energy splitting between the 
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ground state and first excited state, and the first and the 
second excited state is determined by strength of tunneling 
coupling between nearest neighbour wells, but next-nearest 
neighbour tunneling coupling (very weak than the nearest 
neighbour one) plays an crucial role to realize the first 
excited state, being the maximum entanglement states. 

Our manuscript is organised as following. In Sec. II, we 
introduce the mode and analytical solution, the Energy 
spectrum varied with the width of the barrier. One 
transformation is presented Sec.III, and its validity is 
checked by calculating the eigenvalue and eigen-functions, 
and two tunneling procedures are suggested to understand 
the invariant first excited state. 

2. Mode and Energy Spectrum 

The one-dimensional triple-square wells can be 
composed by the two semi-infinite square and one finite 
square well (see Fig. 1). The energy spectrum and 
corresponding the following one dimensional Schrodinger 
equation 
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Figure 2. One example of eigen-functions for the lowest three global energy 
levels for triple-square well. 

where E  is the eigenvalue for given eigen wave function 
( )xΦ . The external potential )(xV  can be expressed as 
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where
0

V and w denote the Barrier height and width 

respectively; L  is the width of square well, which play as 
the typical length in our paper, and the related energy unit is 

defined by 2 2/ 2mLℏ . 
It is natural to solve stationary Schrodinger equation 
(1) by assuming ( )xΦ  as in region I, III and V 
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where 3,2,1=i  for regions  I, III and V ,and 2,1=j for 

regions  II  and  IV , Ek = and EV −= 0β . 

Considering the boundary conditions at wLx ±±= 2/3 , 
we have, wL += 2/31γ and wL −−= 2/33γ . Other 

parameters 232221212111 ,,,,,,,, γEABBABBA can be fixed by 

solving the matching conditions 
at ( )wLx +±=′ 2/0 , 21 Lx ±=′ , and normalization condition 

 

Figure 3. The energy spectrum (for lowest three energy levels) with width 

of barrier for 
1 0E E≠ (a), and 

1 0E E= (b). 
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First of all, we can find the ground state of each single 
square wells (two semi-infinite ( )(1 xφ with 1E ) and one 

finite square well ( )(0 xφ with
0E )), by using similar 

assumption. It is interesting to mention that 01 EE ≠ , for 

same 0V . This makes us classify the triple-square wells as 

two categories. Both of them are geometrical symmetry  as 
shown in Fig. 1, but one with the different ground energies 
( 01 EE ≠ ), other one with same ground energies( 01 EE = ) 

by adjusting one additional potential 1V  (see Fig. 1). 

Then arranging the three single square wells as Fig.1 and 
adjusting width w of the barrier, we can find the global 
lowest three eigen energies by solving the matching 
condition (3). In Fig. 3, the relations of the corresponding 
energy spectrum with w have been plotted by setting 

1,2000 == LV , wherein Fig.(3) (a) is for 01 EE ≠ and Fig.(3) 

(b) is for 01 EE = . With decreasing w , the coupling between 

neighbor square wells is enhanced by tunneling mechanism, 
and a energy splitting is found once w  is smaller than 

some critical values cw . As one example, we also show the 

eigen-functions, in Fig. 2 for 2.0=w , where the solid 
curve is for the ground state energy ( GE ) with wave 

function ( GΦ ), the dashed one for the first excited state 

energy ( FE ) with wave function ( FΦ ) and the dotted line 

for the second excited state energy ( SE ) with wave function 

( SΦ ). 
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3. Two Tunneling Procedures and 
Invariant First Excited State 

Analogies with double wells cases, we are going to look 
for one transformation by which the global eigen-states ( Φ , 
shown in Fig.3) can be constructed by the three, localized 

ground states ( iφ ) of each single square wells, therefore, 

called as three-modes approximation. Following the same 
procedures as in the two-modes approximation. Following 
the same procedures as in the two-mode (symmetrical 
double well) case, a transformation matrix S can be written 
as 
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By which the global eigen functions ),,( SFG ΦΦΦ=Φ can 
be constructed as 

,S φΦ = ⋅                 (5) 

Where T),,( 321 φφφφ = is the local or ground states of 

single square wells. The corresponding Hamiltonian H are 
expressed as 
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Where 1E and 0E are defined as before, and are the 

ground states of the side of triple-square well(semi-infinite 
square well) and the middle one (finite deep potential well) 

respectively, and e and 1e denote the tunneling coupling 

between the neighbor wells and defined as 
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It is easy to prove that 1e is usually much smaller 
than e and can be neglected, since those two wells are far 
separated by middle one. Therefore, the lowest three global 
eigen states can be expressed as  

1 2 32 2

1 3

1 2 32 2

( ( ) ( ) ( )),
2

1
( ( ) ( )),

2

( ( ) ( ) ( )),
2

G
G

G

F

S
S

S

e
x x x

ee

x x

e
x x x

ee

φ φ φ

φ φ

φ φ φ

∆
Φ = − +

+ ∆

Φ = −

∆
Φ = + +

+ ∆

       (7) 

 

Figure 4. Localised wave function (bottom) obtained from Eq. (10) and 
ground states for each single square wells (top). 

during the process 1e  has been neglected, 

G G FE E∆ = − and SFS EE −=∆ . It is interesting to 

note that the similar results as (7) has been obtained in [1]. 

Table 1. The eigen-values of lowest three states. 

w 0.5 0.4 0.15 0.12 

0GE  7.56341 7.56326 7.41303 7.24193 

1GE  7.56341 7.56334 7.47646 7.37639 

Percentage 0 0.00106 0.84840 1.82280 

0FE  8.60075 8.60085 8.69148 8.52232 

1FE  8.60075 8.60075 8.60075 8.60075 

percentage 0 0.00035 0.39264 0.91190 

0SE  8.60075 8.60085 8.69148 8.78778 

1SE  8.60075 8.60083 8.68771 8.78381 

percentage 0 0.00023 0.04339 0.04518 

The valid of relations (4) can be easily checked with the 
help of the global eigen states for triple-square well and the 
single square well. In Table 1, we list the lowest three 
global eigen energies with a few width w , 
where 0⋯E denotes the values by solving the matching 

condition (3) and 1⋯E  is found by 

.
2

8)()(

,

,
2

8)()(

22
0101

1

22
0101

eEEEE
E

EE

eEEEE
E

S

F

G

+−++
=

=

+−−+
=

        (8) 

Which is obtained by (5) based on the knowledge of 
ground states of the single square wells )(xiφ .Around the 

region 2.0~w ,the ratio of the tunneling e can be 
considered as a small quantity, compared with 01 EE − ,we 

can have a simple relations from (8), 
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Further decreasing the width of barrier, one clear 
deviation can be found in the region 25.0>w  in Fig.3. 
This may reveal the valid region for those three modes 
approximation or our simplified modes ( )(xφ ) are not good 

enough. 
But we still can have the localized modes from the 

inverse transformation of (5), by which we have the 
localized modes from the global lowest three levels with 

),()( 1 xSx Φ=′ −φ              (10) 

where all elements in S are defined by the information of 

global modes, means 0 0G G FE E∆ = − ， 00 SFS EE −=∆  

and 2G Se = ∆ ∆ . Similarly, we check the valid of (10) 

by calculating the following fidelity 

dxxxF iii )()(∫ ′= φφ              (11) 

As one example, the localized modes )(xiφ′ , based on (10) 
are plotted for 15.0=w in Fig. 4. Once the barrier is narrow, 
for example 15.0=w , we have 

99657.0,99431.0 23,1 == FF ,which shows the deviation of the 
energy spectrum too. While in the wide barrier, for 
example 38.0=w , a good consistent of the localized 
functions with the ground states can be found from the high 
fidelity 999999.0,999999.0 23,1 == FF . 

It is interesting to note that 

2
SGe

∆∆=                 (12) 

from the requirement of the orthogonal conditions of (4). 
Similar with the two-mode approximation, the energy 
splitting between the ground states and excited states are 
defined by the strength of the tunneling coupling. 
When w is large, each square well can be considered as one 
complete separated wells. In this case, e is small enough 
and can be safely neglected, we have two degenerate two 
square wells ( 1EEE SF == ), but separated by one finite 

square well with lower energy 10 EEEG <= . This is 

exactly what we shown in Fig.3 for 25.0>w . With 
decreasing the value of w , the tunneling coupling is 
increasing, and the energy splitting SG,∆ are found. 

Further investigation, we found the following two 
tunneling procedures  

,12 SSS ⋅=               (13) 
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Eq. (13) reveals a two tunneling procedures to form the 
final global eigen states from the single square wells: Firstly, 
the two far separated semi-square wells are coupled 
through 1S , during which the middle well keeps its original 

properties; The second process is a two levels coupling too, 
where the lowest energy level, obtained in the first process, 
is coupled with the ground state of middle square well. Both 
process are tunneling coupling, similar with the two modes 
approximation. It is interesting to mention that even the 
coupling between the first process is always smaller than the 
second one (due to far separated), but it prepares the 
coupling energy level for the second process. 

After analysing the geometrical symmetry triple square 
wells, one simple relation (5) is obtained to connect the 
global and localised modes. This relation can be easily to 
extend to the total symmetry case, means the energy also 
exactly same for those three single square wells. This could 
be easily to realised by experimentally adjusting the bias 
voltage 1V  applied on the middle quantum dot [2]. 

Theoretically, this can be obtained by asking 
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Where 1V is additional constant potential in region III. 

With same procedures, we have the energy spectrum for 
those symmetry triple-square wells, shown in Fig. 3 (b), 
where 04232.11 =V are used, other situation are the same as 

in the previous one. 

Table 2. The eigen-values of ground states. 

W 0.65 0.5 0.4 0.15 0.12 

0GE  8.60039 8.59792 8.55528 8.20980 7.74365 

1GE  8.60049 8.59859 8.56351 8.28838 7.96297 

percentage 0.00122 0.00784 0.09611 0.94807 2.75418 

Due to this energy symmetry, we found eSG 2−=∆=∆ , 

and substitute it into (4) we have 
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and similar two steps transformation matrix can be 
expressed as 12 SSS ⋅′=′ , where 
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Finally, we emphasis that the first excited state FΦ keeps 

its the value ( 1E , eigen values of semi-infinite square well) 

and does not change anymore with decreasing w for both 
cases. The global first excited state in this triple-square wells 
case can be expressed as 

))()((
2

2
31 xxF φφ −=Φ ， 

where, the )(3,1 xφ is nothing but the ground state of the left 

(right) potential well. This can be easily understood from the 
two steps process, wherein the first excited states after the 

first coupling process by 1S is survival and keeps away in the 

following second coupling process. In the point of view of 
quantum, this excited state is the maxima entangle state 
between those two loclized wave functions [14-16]. 
Therefore, this may suggest one way to create a maxima 
entanglement state between those far separated square wells. 
In other words, once our system is prepared in its first 
excited state, then we actually simultaneous got one 
maximum entanglement state. 

4. Conclusion 
We have investigated the three lowest states energy 

spectrum and its corresponding eigen-functions for 
triple-square well. With the analytical solutions for 
triple-square wells, we found a tree-mode approximation, by 
which the three local wave functions (modes) can be 
constructed from the global lowest states (similar to the two 
square wells case). Furthermore, a two tunneling process has 
been suggested to understand the forming process of the 
three lowest energy spectrum. One simple energy splitting 
relations between the ground state and first excited state are 
obtained. With this two tunneling procedures, we explain 
how its first excited state is formed and demonstrate that it is 
the maximum entangled states for the far separated 
square-wells. 
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