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Abstract: An analysis of both the original and the CHSH Bell inequalities is presented. Two additional mathematical 
assumptions are identified in the theorem. These are: all variables in the inequalities have a field algebraic structure, and all 
variables have measurability as a mathematical property. This means the variables are of metric-type, mathematically 
indistinguishable from those of classical theories. The consequences of attributing the violation of Bell’s theorem to these 
assumptions are examined. 
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1. Introduction 

Bell’s theorem is considered to be the testing ground on 
fundamental questions on the nature of objective reality [1]. 
Far reaching conclusions have been drawn on the theorem’s 
failure to predict experimental outcomes.  

By mathematically modelling an ensemble of correlated 
particle pairs, the theorem obtains inequalities which 
contradict the corresponding quantum analysis. Bell’s 
theorem is not however primarily about reproducing 
experiment but rather testing underlying assumptions. 
Traditionally, two assumptions, usually termed “realism” 
and “locality”, have been identified. Violation of the 
inequality, which has been reported in many experiments, 
notably A. Aspect et al (1982) [2], leads to the conclusion 
that “one or other or both” of these classical notions of 
reality must be rejected. 

Clearly such logic is correct only if no further 
assumptions are present. If additional assumptions are 
being made the implications of the theorem’s violation 
would be more complex. It is this possibility which will be 
the focus of this discussion. Questions of validity or 
primacy of identified assumptions, while in no way 
diminished in significance, will be of lesser relevance here. 

Although it was non-locality which captured Bell’s 
interest and motivation, “realism” has also attracted 
theoretical interest [3]. Leggett developed new inequalities 
which abandon locality but maintain realism and which are 
also in disagreement with QM. Subsequently, experimental 
violation was confirmed [4]. However, notable contributors, 
while stressing the importance of this line of investigation, 

argue that due to the restrictive nature of Leggett’s theory, 
rejection of “realism” is not a matter of logical deduction 
[5,6]. 

Nevertheless, the consensus view, not to suggest that 
such matters be resolved by polling, is that locality is the 
critical inoperative assumption. Indeed, it is argued that 
since Bell’s inequality can be obtained with only the 
locality assumption, the “realism” assumption becomes 
secondary [7,8].   

This sketchy outline is presented only for context. There 
is wide ranging discussion on the precise meaning of these 
concepts and their philosophical implications. These 
profound questions will not, however, be considered. 
Primarily, the focus of this discussion is the mathematical 
structure of the theorem and its underlying mathematical 
assumptions, particularly assumptions made about the 
properties of the variables involved in the inequalities. This 
work is not an attempt to solve the EPR paradox, introduce 
new thought experiments or extend the theorem with new 
mathematical formulations.  

Experimental violation of the theorem leads some to 
draw conclusions on the nature of deeper hidden variables 
theories. Such thinking is motivated by the ERP 
questioning of whether quantum mechanics is complete. 
These important questions will likewise not be considered. 
This discussion is restricted to the more modest view that 
Bell’s theorem servers to focus more sharply the difference 
between classical and quantum theories. 

Bell’s theorem has its origins in the EPR paradox. This 
celebrated construction introduces notions (EPR 
terminology will be used throughout) of “objective reality”, 
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which is independent of the “physical theory” and the 
“physical concepts” with which the theory operates; 
“physical concepts” are intended to correspond with 
“objective reality”. Also introduced is the idea of an 
“element of physical reality” which is to have a 
counter-part in the “physical theory”. 

For the sake of definition, the term “variable” will refer 
specifically to an entity in a mathematical formulation 
having mathematical properties which somehow have 
correspondence with the properties of physical concepts. 
As will become clear, the translation from physical concept 
to variable is not a simple procedure. 

While Bell’s theorem has its motivation in EPR it is 
fundamentally different. EPR does an operational analysis 
of a hypothetical QM experiment. Bell’s theorem is, 
however, a mathematical modelling of the proposed 
experiment. This raises its own set of problems. The most 
basic is that of authentically interpreting physical concepts 
into mathematical variables.  

The role geometry plays in a physical theory is well 
understood by considering the classical theories. The 
structure of space and time is represented by the axioms of 
the underlying geometries. Both classical mechanics and 
relativity adopt a metrical geometry. As will be seen, 
geometry is also an influencing consideration in Bell’s 
theorem. 

It is important to be clear what Bell’s theorem is not: it is 
not a statistical analysis of the experimental data where 
underlying structures and relationships between variables 
are extracted by the analysis. Rather, the theorem is a 
mathematical model involving algebraic symbols for 
variables supposedly representing physical concepts; where 
the variables are subject to imposed mathematical 
conditions and subject to appropriate rules of algebra and 
arithmetic. Although restricted to a limited number of 
specific experiments, in this sense, Bell’s theorem is a 
physical theory as par the EPR definition. 

While Bell’s theorem attracts detailed analysis of the 
inequalities, both experimentally and theoretically, its 
broader context cannot be ignored. Bell’s primary 
motivation was to examine foundational questions of QM. 
Neither EPR nor Bell’s theorem are ends in themselves. 
These constructions are designed to critically examine 
basic concepts of QM. Bell’s theorem is central to the 
current lively debate on foundations question [6]. Such 
discussions have been seen as mainly philosophical in 
character and not technically required. Recent weak 
measurement experiments, probing the micro details of 
quantum particle movements, are seen as becoming 
powerful tools for investigating fundamental questions, 
which may challenge the orthodox view [9]. 

Weak measurement experiments have demonstrated that 
the uncertainty relation formulated by an operational 
analysis of the Heisenberg microscope is incorrect [10,11].  
While orthodox QM re-formulated, the hypothetical 
experiment was central to its initial development. 
Trajectories of quantum particles moving through 

interferometers have also been experimentally tracked 
[12,13,14]. These developments give at least some 
empirical justification for seriously considering theories 
based on what has been termed a “primitive ontology” [15]. 

2. Bell Inequality 

An overview of the Bell inequality and corresponding 
experiment is useful. Briefly, an operational description of 
the experimental arrangement to test Bell’s theorem in the 
original form can be summarised as follows: a pair of half 
spin particles in the singlet state move in opposite 
directions [16]. At location A, measurement of spin 
component σ1.a along unit vector a is made for particle 1. 
Similarly, at location B, σ2.b is measured for particle 2 in 
direction b. The results of both measurements are 

A(a, λ) = ±1 B(b, λ) = ±1            (1) 

where λ is the hidden variable parameter which plays no 
part in this discussion. A requirement of QM is that if 
measurement of particle 1 spin yields the value +1 then the 
measured spin component of the other particle must yield –1, 
and vice versa. The expectation value of the product of the 
two components is given by the expression 

P(a, b) = ʃdλ ρ(λ)A(a, λ)B(b, λ)        (2) 

Multiplying the measurement variables together is the 
mathematical condition to incorporate Locality. Bell 
introduces the critical condition that 

A(b, λ) = – B(b, λ)              (3) 

Equation (2) becomes  

P(a, b) = – ʃdλ ρ(λ)A(a, λ)B(b, λ)      (4) 

By introducing a third unit vector in direction c, together 
with some simple algebra subject to the field properties of 
real numbers the inequality results as 

1 + P(b, c) ≥ │P(a, b) – P(a, c) │      (5) 

Bell showed that this inequality contradicts the 
predictions of QM.  

Relation (3) is critical: the RHS symbols, B(b, λ) is the 
variable representing the outcome of the actual physical 
measurement of the spin of particle 2 at location B in 
direction b; A(b, λ) is the purely mathematical variable 
representing the spin value of particle 1 in direction b; 
critically, experimentally, this is not a measured value. Yet 
mathematically the two variables, according to (3), must 
have the same properties. Bell assigns number-values to 
both variables simultaneously. This meets the ERP element 
of reality criteria on the spin value of particle 1 along the 
unmeasured b direction. 

Relation (3) introduces two fundamental mathematical 
assumptions. Firstly, both variables, since they take 
number-values, have the algebraic structure of a field. 
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Secondly, both variables possess the mathematical property 
of measurability. Both variables are metric-type variables of 
classical physical theories. 

It is the second assumption which is of more immediate 
interest. Examining whether a mathematical variable 
somehow counter-parts measurability, or lack of it, may 
appear to be a novelty. However, this is not so. Recent 
experiments on fundamental aspects of the uncertainty 
principle have established that the measurement-apparatus 
plays no fundamental role in QM [11]. Non-classical 
measurement features of QM must then be attributed to its 
physical concepts. Hence mathematical variables in any 
physical theory which attempt to describe quantum objective 
reality must in some fashion incorporate such non-classical 
measurability.  

Alternatively, if the ERP element of physical reality 
criteria requires that a representing variable have the 
mathematical property of being able to take number–values 
why not also have a characteristic mathematical feature to 
incorporate non-measurability? Quantum mechanics does so 
by requiring that the variables which express the theory have 
a ring rather than field algebraic structure. As will be shown 
shortly, variables in the classical theories have the dual 
properties of being able to be assigned number-values and 
also measurability. While these attributes of metric-type 
variables may seem the “natural order” that is not the 
mathematical reason why classical variables have such 
properties. 

To illustrate further the assumption of measurability of 
the Bell variables consider a purely hypothetical 
modification to the experiment. Suppose a “classical” 
Stern-Gerlach apparatus at A which measures both spin 
components σ1.a and σ1.b of particle 1 simultaneously, and 
likewise at location B. Clearly this is a purely hypothetical 
experiment which is completely unphysical! 

The expectation value of the product of the two 
components for the same particle is 

P1(a, b) = ʃdλ ρ(λ)A(a, λ)A(b, λ)          (6) 

where A(a, λ), A(b, λ) are both outcomes of measured 
variables in the hypothetical experiment for particle 1. 
However, the integrant in (6) is the same as that of (4). 
Hence, the Bell inequality fails to mathematically 
distinguish between the real and unphysical experiment. 

To avoid the perfect anti-correlation aspects of condition 
(3) the CHSH inequality has been developed for a modified 
experiment involving a system of four observables: A, A' for 
particle 1 and B, B' for the second particle. For the purpose 
of this discussion the derivation of Angel G. Valdenebro 
(2002) [17] will be followed. Possible values are denoted by 
the sets{ai},{aj'},{bk}and{bl'} which are bounded by ±1. 
Using the boundary constraint it can be shown that 

│ ai (bl' – bk ) + aj'(bl' + bk ) │≤ 2         (7) 

Mathematically all four values variables have the same 
two properties: all have a field algebraic structure, and either 

all have the property of measurability or none do so. Clearly 
the latter option cannot represent the experimental situation, 
and so is ignored. Condition (7) therefore applies also to the 
unphysical experiment with the “classical” SG apparatus.  
To obtain a combination of the expected value of the product 
of two observables a joint probability distribution function is 
introduced such that 

│Ʃi,j,k,l p(ai , aj', bk , bl ')[ ai (bl' – bk ) + aj'(bl' + bk )]│≤ 2   (8) 

Predominately from the properties of the probability 
function, Valdenebro examines the usual range of 
assumptions believe to underpin Bell’s theorem. The list 
includes: “realism”, which incorporates hidden variables 
(deterministic or stochastic) and reality as single valued; 
“fair distribution” which incorporates no selective efficiency, 
no conspiracy and no backward causation; and 
“Bell-Locality” incorporating parameter independence and 
outcome independence. The analysis does not identify a 
primal assumption. 

Applying various conditions to the JPD, which apply also 
to the “classical” SG apparatus, including that of 
factorability for the Locality criteria, gives the inequality 

│<AB'> + <A'B'> + <A'B> – <AB>│≤ 2     (9) 

These various assumptions, and whether one can be 
identified as primal to the others, are interesting but not 
central to this discussion. The central condition here is 
condition (7), where the variables are assigned number 
values and the boundary conditions calculated by simple 
arithmetic. These basic operations are only valid under the 
assumption that the variables are metric-type.  

The CHSH inequality has been generalised to what is 
claimed to define global constraints on any experimental 
situation not just quantum [18]. In this refinement, at 
location 1 the settings on the measurement-apparatus are 
designated by a, a’ and at location 2 by b, b’. Under the 
standard assumptions an inequality, equivalent in form to (9), 
is obtained for a combination of expectation values E(a, b), 
E(a, b’), E(a, b’) and E(a’, b’). These are now functions of 
the apparatus settings; hence the claim of generality. 
Operationally, the experiment is performed to the 
requirements of QM where at each location only one of the 
two possible settings at selected at random. However, as 
previously, there is no mathematical condition in the 
derivation of the inequality prohibiting simultaneous 
measurement at the one location. Analysis of the refined 
hypothetical experiment with a “classical” SG apparatus at 
each location gives an inequality which is mathematically 
indistinguishable from that with the quantum SG apparatus. 
As with the original Bell inequality, this inequality also fails 
to distinguish between the real and unphysical experiments. 

It should be emphasised that the introduction of the 
hypothetical experiment is purely illustrative: the critical 
issue is that with the inequalities all variables have the same 
mathematical properties even though they are supposed to 
represent quantities which have different physical 
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properties.  
Attributing the violation of Bell’s theorem to the 

inoperativeness of these additional assumptions leads to the 
conclusion that the mathematical variables of the physical 
theory describing quantum objective reality cannot be the 
metric-type variables of classical theories. But this is already 
known! 

The EPR paradox is based on two basic premises. Firstly, 
it is accepted from QM that if the operators corresponding to 
two physical quantities do not commute “then the precise 
knowledge of one of them precludes such knowledge of the 
other”. And secondly, the condition that both have 
simultaneous reality requires the both have definite values. 

Bell “interprets” these statements of physical concepts 
into a mathematical model. The most basic requirement is 
then to construct appropriate variables with the appropriate 
mathematical properties. Bell’s metric-type variables, since 
they can take number-values, obviously fulfil the second 
condition.  

However, to the extent that “knowledge” in the EPR 
definition can be interpreted to mean measurability for a 
mathematical variable, Bell’s metric-type variables do not 
adequately represent EPR’s first condition. Since all 
variables in Bell’s model have the mathematical property of 
measurability, which is a consequence of condition (3), there 
is no mathematical characteristic in the theorem where 
“knowledge of one precludes knowledge of the other”.   

From this discussion it would seem that: Bells’ theorem 
fails to distinguish between real and unphysical experiments, 
says nothing new about the mathematical nature of quantum 
variables, and does not fulfil the conditions of the EPR 
paradox! 

This does not mean to imply that the theorem is useless: 
its motivation is only to test underlying assumptions. Rather, 
Bell’s theorem, at least with this discussion, draws attention 
to the nature of quantum variables. Originally, the peculiar 
ring structure of QM variables was introduced for the 
pragmatic reason that the non-commuting algebra fitted 
experiments. With subsequent formulations of QM, 
representing observables by operators in Hilbert space is an 
axiom. Consequently, the origins of quantum variables, 
compared to corresponding to classical variables, lack 
clarity. 

To further purse this line of reasoning, it is worth 
clarifying how metric-type variables come about in classical 
theories. Classical mechanics is based on the structure of 
space and time described by Euclidean geometry.  It should 
be stressed that space and time as aspects of objective reality 
do not underpin the classical theory. Rather, it is the axioms 
of Euclidean geometry which fulfil this mathematical role. 

With Euclidean geometry its axioms permit purely 
geometrical constructions of what Hilbert calls the algebra 
of segments (referred to as the algebra of points in other 
treatments on foundations of geometry) [19]. These are 
geometrical rules for combinations of pairs of segments to 
give a unique third segment. As Hilbert shows, these 
geometrical constructions form a field. Real numbers under 

the rules of basic arithmetic also form a field. Hence, due to 
the isomorphism between the algebra of segments and real 
numbers, segments (and also points) in Euclidean geometry 
can be represented by real numbers.  

The axioms of Euclidean geometry also permit 
comparison of distances between points which is the basis of 
measurability. Hence measurability is also a property of 
variables in a physical theory underpinned by Euclidean 
geometry. While these features are true of all metrical 
geometries, including those on which relativity theories are 
based, they are not universal. Projective geometry does not 
sustain measurability, and in general does not define an 
isomorphism between points and real numbers via a field 
algebraic structure.  

The purpose of this brief refresher tutorial on foundations 
of geometry is to remind that the properties of variables in a 
mathematical model must be justified mathematically. There 
are fundamental reasons why the variables of classical 
theories have the metric properties that they have. These 
deeper considerations are absent in Bell’s theorem. Metric 
properties are simply assumed: even for spin the supposedly 
least “classical” of quantum quantities. 

A Bell inequality has also been obtained for position, 
momentum and energy variables for particles in a potential 
[20]. This inequality, which is also in disagreement with the 
predictions of QM, is considered to be closer to the original 
ERP experiment. In obtaining the inequality, the space and 
time variables are assumed to form an algebraic field. As in 
the original Bell inequality, this assumption is necessary to 
fulfil the EPR element of reality criteria.  

While no statement of geometry is made, since the 
variables involve space and time an underlying geometry 
must also be assumed. Assuming the variables form an 
algebraic field requires assuming also that the underlying 
geometry is simultaneously for both position and 
momentum Euclidean. Consequently, the variables in the 
inequality must possess the mathematical property of 
simultaneously measurability.  Hence, non-simultaneous 
measurability is again not incorporated as a mathematical 
property of this inequality.  

Although receiving little attention, Bell also analysed 
(said to be one of his last papers) the original EPR 
experiment for free particles with position and momentum 
variables [21]. Surprisingly, the results show no 
disagreement with the predictions of QM. The analysis is 
based on the Wigner phase-space distribution with the EPR 
wave function expressed as a delta function. A subsequent 
treatment, verifying Bell’s original conclusion, used 
Gaussian functions [22]. Both works also give a CHSH-type 
inequality which, consistent with the Wigner analysis, 
shows no violation. 

Bell’s analysis again focuses on non-locality, and in this 
case, contradiction with the completeness of the EPR wave 
function. It is worth quoting Bell’s own conclusion: “with 
the wave function (original EPR), then, there is no 
non-locality problem when the incompleteness of the wave 
function description is admitted”. This would seem a rather 
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startling conclusion. 
This discussion, however, is more focused on the 

mathematical properties of the variables involved in the 
Wigner function. Since for free particles momentum is a 
constant of motion, the momentum eigenvalue is a 
metric-type variable. Hence, both position and momentum 
variables in the Wigner function are of metric type. The 
assumption of using metric-type variables is then valid.   

A different analysis to that of Bell, also for free particles, 
has been reported where position measurements are made on 
the same particle at different times [23]. Since position 
operators at different times do not in general commute a 
CHSH violation is expected. The analysis is done for three 
different conditions, for one of which, the operators are 
commutative. While violation of the CHSH inequality is 
found for the conditions of non-commutative operators, no 
violation is found with the commutative case. 

For the commutative case the variables form a field, the 
assumption of metric-type variables is then valid. This is not 
so for the non-commutative case where variables form a 
ring.  

While it can be legitimately argued that Bell inequalities 
are violated in some cases and not others, and that definitive 
conclusions should not be drawn from a restricted family of 
cases, nevertheless, these free particle treatments do provide 
at least some experimental connection to the issues raised in 
this discussion. Although restricted to just four experimental 
arrangements there is a small pattern: the situations where 
the assumption of metric-type variables is valid show no 
violation while those where the assumption is not valid there 
is violation. 

Violation of the position and momentum inequality, 
assuming that experimental realization will agree with QM, 
raises an interesting possibility. Namely, that the structure of 
space and time described by axioms of Euclidean geometry 
is the inoperative assumption. This is not compromised by 
the non-violation free particle results. The possibility has 
been explored that QM can be understood by a structure 
where space is represented by Projective geometry while 
time retains its Euclidean characteristics [24]. This approach 
has the appealing feature that QM is understandable from 
traditional concepts of space, time and geometry. And while 
the geometry differs, this places QM on the same common 
ground as the classical theories.  

Fundamental aspects of QM, such as non-classical 
measurability of the quantum path, ring algebraic structure 
of variables, asymmetry of space and time, are found to be 
explainable geometrically. 

Interestingly, the geometrical asymmetry between space 
and time is central. It is not possible to then construct the 
axiom of order for points in space and time; the consequence 
of which is that the algebra of such points has a ring not a 
field structure. An isomorphism then exits between such 
points, which describe the quantum particle path, and, in 
particular, Dirac’s q-numbers formulation of QM; or any of 
the non-commuting algebraic representations of QM. 

Distance between points is not invariant in Projective 

geometry so that variables based on such geometry cannot 
mathematically possess the characteristic of measurability; 
at least not as currently defined. Position, momentum, and in 
a quaternion representation (possible because quaternions 
form a ring structure) also spin, would be represented by 
such variables. This raises philosophical objections to 
represent the structure of space by Projective geometry. 
However, since under special case conditions Euclidean 
geometry is obtained from Projective geometry, subsets of 
points have the usual Euclidean properties. All 
measurability features of QM, in particular expectation and 
eigenvalues which play a significant part in the free particle 
experiments, are reproduced. 

While addressing the “profound questions” on the nature 
of reality is not within the scope of this discussion, some 
reference to “realism” is appropriate. Factorability plays no 
part in the assumptions identified here. There are two 
immediate aspects to the “realism” question: is there a 
measurement-independent reality? And, how is 
measurability represented mathematically? It is worthwhile 
considering the second question; the first is too profound.  

EPR requires that measurability is represented 
mathematically by assigning number-values. However, this 
definition may be too restrictive. Numbers are, despite their 
awesome powers, just mathematical constructions subject to 
certain rules of algebra, as are various other entities.  

It is worthwhile considering the most basic physical 
quantity: the distance between two points. A fundamentalist 
application of EPR would require that the distance is given 
by “x units of length”, where x is a number. Should such a 
statement not be possible then “distance” is not a physical 
concept and cannot be included in a physical theory. 
However, distance is itself generically defined from 
relationships between points which are determined 
geometrically. This raises the question whether 
constructions of sets of points can also be considered as 
identifying realism; especially, constructions which have 
invariant properties.  

Since distance is not invariant with Projective geometry 
its introduction must begin from generic definitions. 
Concerning any two points P and Q the distance between 
these points, defined as (PQ), has certain fundamental 
properties: 

(PP) = 0                (10a) 

(PQ) = – (QP)             (10b) 

(PQ) + (QR) + (RP) = 0         (10c) 

for P, Q, R collinear points. Based on these properties the 
projective distance between P and Q is defined by the 
expression 

(PQ) = k ln{PQ, OU}           (11) 

where k is a scale constant, O and U are chosen fixed 
points on a line, and {PQ, OU} is the cross ratio. It is easily 
shown that this definition fulfills the three generic properties. 
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Furthermore, under special case conditions Euclidean 
definitions can be obtained.  

Adopting a broader definition of measurability to include 
relationships between points would overcome philosophical 
objections to descripting the structure of space with 
Projective geometry. Clearly, this requires some departure 
from classical ideas. However, unless further assumptions 
are identified in Bell’s theorem showing otherwise, violation 
of the inequalities calls for rejection of some classical 
notions of objective reality.  

Variables associated with Bell’s theorem are 
dichotomously defined as non-contextual (measurement 
reveals a pre-existing inherent property) and contextual 
(measurement dependent). Inequalities can be equivalently 
obtained by the assumption of NCHV alone, and by that of 
locality alone, although the latter is claimed to the primal 
assumption [7]. 

An inconsistency arises for NCHV for the bound and free 
particle experiments. For the same particle, for example, an 
electron in the ground state of hydrogen which escapes the 
Coulomb potential, an inherent property cannot exist and 
then cease to exist. The CHV definition is also faced with 
experimental complications. Weak measurement 
experiments showing the Heisenberg microscope analysis to 
be incorrect places a direct challenge to the Bohr 
construction of measurement-dependence. If the 
measurement-apparatus does not play a fundamental role it 
then becomes difficult to define measurement-dependent 
variables.  

By extension of word formulation definitions of both 
variable types could be modified to accommodate any 
possible experimental inconsistencies. It would be desirable, 
however, to have definitions which are not constructed 
solely from experimental outcomes.    

Nevertheless, experimental evidence does require, in 
some fashion, rejection of inherent properties; although the 
situation becomes complicated if Bell’s conclusion for the 
free particle case is not ignored. Likewise, experiments do 
suggest that some kind of contextual aspects are required.   

Variables defined by the geometry proposed, while 
reducing measurement from fundamental to a 
geometrical-mathematical property, both retain inherent 
characteristics as well as having contextual-like properties. 
Their geometrical-mathematical properties, being assigned 
number-values and being measurable, are only possible 
under geometrically defined conditions. There is no 
dichotomy in this definition. Furthermore, the variable 
properties are not tailored from quantum experiments. 

Locality is defined by concepts of space-separation, and 
time-separation for communication, between locations. 
These are metric concepts. For the particle whose path is 
described by a non-metric geometry this definition would 
require re-defining.  

3. Conclusion 

Apart from the speculative possibility, this discussion is 

solely an analysis of additional assumptions present in Bell’s 
theorem. This is not an attempt to somehow invalidate or 
disprove the theorem. What emerges is that there are 
additional assumptions giving rise to additional 
consequences which allow for an alternative line of 
investigation from the much considered questions of realism 
and non-locality. 
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