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Abstract: In the energy operator matrix of four-level configurations with s  and i -electrons in external shells, we take 

into account the following magnetic interactions: spin-other-orbit, spin-spin, and orbit-orbit interactions. The calculation of 

matrix elements is done in the uncoupled moments representation with subsequent translation (passage) to the LSJM- 

representation. Comparison with independent calculations in LSJM-representation for si and is configurations is done. The 

method of calculation in electronic configuration is extended to the holes configurations 
25i s . As results the energy operator 

matrix is complemented with new physical conditions on radial integrals of Marvin’s spin interactions, which permits to 

ameliorate the precision of future calculations of fine structure parameters by semi-empirical methods. 
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1. Introduction 

The higher excited 'nsn i configurations are practically 

not investigated. They are realized in the Helium atom, 

group II atoms of the periodic table, their ions and their 

isoelectronic series (for instance, Mg I, Cd I, In II, etc..). Up 

to now there exist only experimental energy levels of fine 

structure of four 1sni (i=7-10) Helium atom configurations 

[1]. Therefore the problem of construction of the energy 

operator matrix of these systems, taking into account the 

maximum possible number of interactions in the Breit’s 

Hamiltonian, in particular with small magnitude 

spin-other-orbit and spin-spin magnetic interactions as well 

as orbit-orbit interaction is still unsolved. The main attention 

will be given to these interactions in this paper. 

2. Method of Calculation 

The calculation of the angular coefficients in the radial 

integrals is done in one configuration, in the formalism of 

irreducible tensor operators and in two representations, 

namely the uncoupled moments and LSJM using 

Lithuanian’s monograph formulae of general form as in [2]. 

The uncoupled moments representation (used by authors of 

[2]) is the most adequate because in it all calculations lead 

basically to calculation of 3j Wigner symbols (but not to 

9j-symbols, like in LSJM-representation). In the present 

paper one considers again the nin’s configuration (they are 

realized with elements of the 4
th

 group of the periodic table) 

and holes ni
25

n’sconfigurations (rare gas atoms, except 

helium). In the uncoupled moments representation the 

energy operator is differentiated by the magnetic quantum 

number M (the same as in the external electric and magnetic 

fields). Furthermore, in this representation the state of two 

electron atoms (i.e. two electrons of the external shell, 

moving in the central symmetric field of nuclei and electrons 

of full shells) depend only on the individual quantum 

numbers of the electrons. Thus the angular part of the wave 

functions in the uncoupled moments representation is given 

the following set of quantum numbers:
1 2 1 21 2 1 2 l l s sl l s s m m m m . 

In the single configuration approximation the states of 

systems are differentiated only by the last four quantum 

numbers, namely the orbital and the spin projections of 

electrons. It is not indispensable to consider all values of M. 

It is sufficient to be restricted to the energy operator matrix 

with M=0, which describes all four configuration levels 
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(with 1, 2, 3, 4, 5M = ± ± ± ± ± ).We recall that in the LS 

approximation (the LSJM representation) the configuration 

with s and i electrons have the following levels: 
3
I7, 

3
I6, 

3
I5, 

1
I6. Consequently, for the matrix with M=0 (fourth level) the 

si wave function configuration of the independent moments 

representation is: 

1 2 1 2

1

2

3

4

0 1 1 2 1 2

0 0 1 2 1 2

0 1 1 2 1 2

0 0 1 2 1 2

l l s sm m m m

λ
λ
λ
λ

− −
−

−
−

           (1) 

During the permutation of electrons in (1), the first 

column is interchanged with the second while the third 

column is swapped with the fourth. In the hole i
25

s 

configuration, the sign of the orbital and spin projections of i 

electrons are changed. The change of the sign of the 

projections of the holes (almost full shell) helps to transform 

the multi-electron problem to one of two particles and 

permits the use of Breit’s Hamiltonian. 

Apart from the independent moments representation, in 

this paper the independent calculation of matrix elements of 

energy operator in the LSJM representation is done by 

totally different formulae than in [2]. The comparison of the 

results of calculation in the two representations permits 

exclusion of possible errors, while their concurrence 

justifies the accuracy of the energy operator matrix. 

The transition from one representation to another is 

effected with the help of the matrix coefficients 

of  Clebsch–Gordan’s transformation according to the 

chain: 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2L S l l s sl l s s LSJM l l s s LM SM l l s s m m m m→ →  (2) 

The last term in (2) is the angular part of the wave 

function in the independent moments representation, as said 

earlier. 

Table1. Matrix coefficients of wave functions transformation of LSJM representation through wave functions of independent moments representation for 

M=0. 

 0 1−−−− −−−− 0 0 −−−− ++++ 0 -1 ++++ ++++ 0 0 ++++ −−−− 

��
�  √3/√13 √7/√26 √3/√13 √7/√26 

��
�  1/√2 0 �1/√2 0 

�

�  √7/√26 �√3/√13 √7/√26 �√3/√13 

��
�  0 �1/√2 0 1/√2 

Remark. In the heading of the table the wave functions are brought back from (1). The spin projections are denoted only by the sign. The matrix is unitary, i.e. 

the normalization and of the orthogonality conditions of Clebcsh-Gordan coefficients are fulfilled.   

The  Clebsch–Gordan’s matrix coefficients for 0M =  
is presented in table1 (our calculation of the matrix 

coefficients for all values of M , are not presented here 

because they are bulky). 

Let’s point out that for further determination of the fine 

structure parameters by semi empirical methods, and also for 

the study of the Zeeman splitting one uses the energy 

operator matrix of LSJM representation which is the most 

compact in comparison with the many dimensional matrices, 

written in the independent moments representation. 

3. Orbit-Orbit and Electrostatic 

Interactions 

Even though, the calculation of matrix elements of energy 

operator of the electrostatic interaction in the LSJM 

representation does not present difficulties, angular 

coefficients of radial Slater’s integrals for all sl 

configurations do, see appendix 2 of [2]. Let’s consider the 

two interactions at the same time according to the following 

principle: In our previous articles [3,4] it was shown that, the 

angular coefficients for Slater’s exchange radial integrals Gk 

and the set of exchange radial integrals (further denoted by 

Roman numbers I and II),referring to the orbit-orbit 

interaction, are the same as in the independent moments 

representation(see formulae (3) and (4) below). This reduces 

the calculation for exchange matrix elements of energy 

operator matrix of the orbit-orbit interaction a lot, (see 

formula (9.38b) in [2]). The cited formula contains the 

summation on four parameters, and also Racah's coefficients 

[5,6], depending on these parameters. Effecting in it all the 

necessary mathematical operations, we obtain the following 

“ working” formula for the calculation of exchange matrix 

elements of energy operator matrix for orbit-orbit 

interaction: 

( )

( ) ( )

1 2 1 2 1 2 1 200 000

12 12.

000 110

12 12 1 2 2 1

1
1

13

3 ( ' ) ( ' )

l l s sl l s s m m m m

exch

s s s s

H t

z z I II m m m mδ δ

+ + + − − − −  = − − × 
 

× + ⋅ ⋅ + ⋅
  (3) 

And for electrostatic interaction from (5.23b) [2] we have: 

000 000 110

12 12 12 6

12

1 1
( 3 )

13
t z z G

r
= − + ⋅            (4) 

(The phase factor and δ-condition are the same, as in (3)). 

The stated formula is a many component expression, 

where
0

12

xxt  and
' '0

12

x xz  are the unit two-electron orbital and 
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spin operator respectively. Furthermore the orbital 

parameter of summation x  takes the values:

1 20,10..., min(2 , 2 )x l l=  while the spin parameter of 

summation � ′ � 0, 1(see [2]). 
0

12

xxt  and
' '0

12

x xz are nothing 

but the scalar product of orbital and spin parameters of the  

individual electrons, i.e. 

000 2 0 000 0 0 110 1 1

12 1 2 12 1 2 12 1 2; ;t t t z z z z z z= ⋅ = ⋅ = ⋅       (5) 

Where the lower indices 1 and 2 refer to the first (s) and 

the second (i) electron respectively. 

The Wigner–Eckart theorem is applied to each unit of 

one-electron operators, in which the matrix elements of 

irreducible operators are the product of the phase factor, the 

matrix element and the Wigner’s 3j-symbol (the phase factor 

is already written in (3)).For the unit operators the stated 

matrix elements are equal to unity, that is why the 

calculation by formulae (3) and (4) leads to the calculation 

of 3j-symbols. 

Due to the fact that the energy operators of electrostatic 

interaction and the orbit-orbit interaction do not contain the 

spin variables and are scalar, in formulae (3) and (4) appears 

the δ -condition on spin projection of electrons, which 

reduces the number of non-null matrix elements. 

Table 2. Angular coefficients for radial integrals in the exchanged matrix elements of energy operator for orbit-orbit interaction. 

 ���� �′
�
 �′

�
 �′′

�
 Common factor for the line Configuration 

I  � � 5  � � 6 �� � 1  -4 1 1 -1 42/11 
 

si 
II  � � 7  � � 6 �� � 1  4 -1 -1 1 14/5 

I  � � 5  � � 6 �� � 1  120 -6 5 -1 42/11 
is 

i25s 
II  � � 7  � � 6 �� � 1  -224 8 -7 1 14/5 

 

The contents of the blocks I and II in formula (3) are 

presented in table 2, where 
1kN − is the Marvin’s radial 

exchange integral [2];
' ' '', ,z u zK K K are radial exchange 

integrals, related to the Marvin’s integral. The summation 

parameter in the exchange terms takes the values: 

1 2 1 2 1 2
1 2, ,..., ,k l l l l l l− = − − − +  

i.e. for the considered configurations k=5 and 7. The 

summation parameter 1K k= ± . 

The calculation of the matrix elements (3) with the wave 

function in the independent momenta representation (1) 

gave the following results: 

!",   "!
#�#� � #�#� � � �

�� �� � �� 
#$#% � #%#$ � � �

�� �� � �� 
    

  "$
!
#$#$ � #%#% � � �

�� �� � ��  
#$#% � #%#$ � �

�� �� � �� 
 

(6) 

The non-written matrix elements in (6) are equal to zero. 

The translation of the expressions (6) from the 

independent momenta representation to the LSJM 

representation with the help of coefficients from table 1 

leads to the following matrix elements: 

3 3

1 1

,

1
( )

3

1
( )

13

si is

I I I II

I I I II

= − +

= +

    

25

3 3

1 1

0

2
( )

13

i s

I I

I I I II

=

= − +
      (7) 

Opening the contents of the blocks in (7) with help of the 

table 2, we have the following exchange matrix elements of 

energy operator matrix for orbit-orbit interaction of si 

configurations: 

�� �� � �
�� �� � �� � �

�� &%$
�� ��4()�� � �*+ � �*, � �**+ )-
 �.

.� �%

 �4()�� � �*+ � �*, � �**+ )-�/ .

(8) 

The diagonal triplet matrix elements 
3 3I I  in (8) have 

the opposite sign. 

For the is configuration: 

�� �� � �
�� &%$

�� �120()�� � 6�*+ � 5�*, � �**+ )-
 �.
.� �%


 ��224()�� � 8�*+ � 7�*, � �**+ )-�/
 (9) 

The triplet matrix elements
3 3I I in (9) have opposite 

sign. 

Finally, for the hole i
25

s configuration the only non-null 

singlet matrix element
1 1I I , is opposite in sign and two 

times bigger than (9) (see (7)). The diagonal triplets’ matrix 

elements 
3 3I I  are equal to zero. This result was to be 

expected. Although authors of the monograph [7] do not 

state the energy operator matrix of electrostatic interaction 

for configurations with s-electrons, in the text it is indicated 

that for hole configurations only diagonal singlet matrix 

elements are different from zero. 

The off-diagonal matrix elements of the said operator tend 

to zero because of the factor in the formula (9.38a) from [2], 

in which the parameter of summation �  takes the value 
� � �1 .Thus, the orbit-orbit interaction in the 

configurations, with s and i electrons is represented by 8 

exchange radial integrals (4 for each of the two values of the 
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parameter k ). The forms of these integrals are derived in 

monograph [2]. Let’s remark in advance, that in the semi 

empirical calculation of the fine structure parameters of the 

orbit-orbit interaction it is impossible to separate out the 

electrostatic interaction parameters because of the same 

angular coefficient in formulae (3) and (4), i.e. their linear 

dependence in the corresponding equations. One could have 

separated in expressions (8) and (9) Marvin’s integral 
1kN − , 

which is encountered also in matrix elements of energy 

operator of spin-other-orbit and spin-spin interactions, as it 

was done in pl configurations (l=1÷4) [3,4,8,9]. However for 

all configurations with s-electrons the angular coefficients 

for Marvin’s exchange radial integral
1kN −  for the rest of 

the considered spin-other-orbit and spin-spin interaction is 

equal to zero, as will be shown below. 

4. Spin-Other-Orbit Interaction 

Concerning the matrix elements of the named operator, 

we start with the exchange terms which are the most 

complicated. The calculation is based on the general form 

formula (for any values of orbital moments of electrons) 

(8.41b) from [2]. The formula is very cumbersome and 

contains the summation on six parameters

1 2 1 2, , , , ' , 'k K x x x x , where the parameter k  takes an 

unique value 6k =  for radial integral 'kK ; 1K k= ± ;

1 1 2 20,1, ..., 2 ; 0,1,..., 2x l x l= = ;
1x and 

2x  take two 

values 0 and 1 in equal combinations.  Furthermore, the 

cited formula is made up of the tensor products of unit 

orbital and spin operators 1 2 1

12

x x
t and 1 21

12

x x
z , and also 

Racah's and Fano’s coefficients, depending on the named 

parameters of summation. 

There are two radial integrals here: the Marvin’s exchange 

integral 
1kN − and 'kK , related to Marvin’s integral and 

characterizes only the spin-other-orbit interaction. 

For alls-electron configurations the angular coefficient of

1kN − tends to zero because of the factor a for 5,7k =  in 

the cited formula or because the corresponding derived 

matrix elements of spherical functions operators equal zero. 

Thus what is left in the exchange part of matrix elements is 

the radial integral 'kK  with the angular coefficient of the 

following form: 

�)
* � �√$

$√�·�� �3�$
4�� � 3�$

�4� 5�$
4��             (10) 

The phase factor, appearing according to the 

Wigner–Eckart theorem, here looks like: 

(-1) power �6� � 6$ � !� � !$ � 78� � 78$ � 79� � 79$ . 

Effecting the calculation in formula (10) with wave 

functions of independent momenta representation (1), we 

obtain following non null matrix elements: 

#�#� � #�#� � � �
$·�·�� �)

* ;

#�#$ � #�#% � #$#� � #�#% � √%$
$·��·�% �)

*
    (11) 

(the symmetric non diagonal matrix elements are not 

written). 

During the permutation of electrons (the is configuration) 

matrix elements (11) have the opposite sign due to the factor 
2( 1)

x− in the cited formula (8.41b) from [2]. 

For the hole i
25

s configuration the results are different. 

Namely the diagonal matrix elements are equal to zero, 

while the non-diagonal elements have the following form: 

#�#$ � #�#% � � √%$
%·�·�� �)

* ;

#�#% � #$#� � √%$
%·�·�� �)

*
            (12) 

Let’s effect the translation of matrix elements (11) and (12) 

to the LSJM representation with the help of the coefficients 

of transformation from table 1. For the si configuration we 

obtain the following exchange matrix elements of energy 

operator of spin-other-orbit interaction: 

�� ��
� � �

�·�� �)
* ;�

�
 �

� � � �

$� �)
* ;�     

�� ��
� � � �

��·�% �)
* ;�

�� ��
� � ��

� ��
� � 0.�       (13) 

The matrix elements (13) of the is configuration have the 

opposite sign, while in hole i
25

s configuration the unit 

off-diagonal matrix elements are different from zero: 

��
� ��

� � � √%$
�·�� �)

*             (14) 

In the monograph [2] the formula for the derived matrix 

elements of the considered operator in the LSJM 

representation was also given. The results of this 

independent calculation are the following: 

; �� �� ; � � �√��
��√� �)

* ; ; �� �� ; � 0.        (15) 

The dependence of (15) on the quantum number J is given 

by the following coefficients (see formula (8.13b) from [2]): 

�� ��
� � � �

√�·�� ;�

�
 �

� � √�

�√�� ;�
        

�� ��
� � �

�√�·�� ;�

��
� ��

� � � �
√�·�� .

    (16) 

Multiplying the derived matrix elements (15) by the 

coefficient (16), we obtain the same matrix elements as in 

(13). It’s impossible to calculate the holes i
25

s configuration 

in the LSJM representation, because here one has to change 

the sign of the orbital and spin projections of one i-electron, 

as was said earlier. 

Now let’s consider the direct matrix elements of energy 

operator of spin-other –orbit interaction. The general form 

formula (8.41b) from [2] (the independent momenta 

representation) after the corresponding mathematical 

transformation acquires the following form for 

configurations with s- and i- electrons: 
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|=|пр.
9@ � A��1 8BC8DC9B�EFB�EFD�EGBH�12√7 · 13I5�$

4��3�
� ·

J�79$79$
*  �..��1 8BC8DC9D�EFB�EFD�EGDH�6√7 · 13I5�$

4��3$
� ·

J�79�79�
*  KL$.             (17) 

Here the direct Marvin’s radial integral 

M)���N$6$, N�6� (see (8.57) in [2]) for the unit value of the 

parameter 1k =  is denoted by
2S . Let’s pay attention to the 

fact that, in (17) the spin unit operators are one-electron type 

(compared with (10)). That is why the two terms have 

different phase factors and δ -conditions. 

The calculation of matrix elements by the formula (17) 

with the wave functions (1) gave the following results: 

!": #�#� � #�#� � 3L$; #�#$ � #�#% � �√42L$;
#�#% � #$#� � �2√42L$;

  (18) 

"!: #�#� � #�#� � 3L�; #�#$ � #�#% � �√42L�;
#�#% � #$#� � �2√42L�;

  (19) 

 (the symmetric matrix elements are not written). 

It seems that, angular coefficients in (18) and (19) are the 

same; in spite of the fact that in (17) the ranks of 

two-electron unit orbital operator  
101

12( )t  change places. 

But as before, the upper rank of orbital operator 1 refers to 

i-electron, i.e. in the tensor product 1 2 1

12

x x
t nothing changes. 

The Marvin’s radial integral
1 2 2 1 1 2( , )kM n l n l S− =  in the si 

configuration now becomes
1 1 1 2 2 1( , )kM n l n l S− =  in the is 

configuration, thus the lower indices in our notation indicate 

that this integral belongs to the i-electron (in is it’s the first, 

while in si it’s the second).   

For the hole i
25

s configuration the change in (17) is the 

following: 
011

12t becomes
101

12t , consequently, the sign of this 

operator changes during the change of the sign of the orbital 

projection of the i- electron. The sign of the phase factor in 

the first term of (17) changes. That is why for the hole i
25

s 

configuration we obtain the following matrix elements: 

#�#� � #�#� � �L�; #�#$ � #�#% � �√42L�;
#�#% � #$#� � 2√42L�.   (20) 

Comparing (19) and (20) we see that, the diagonal matrix 

elements in (20) are three times smaller and have the 

opposite sign as compared to the electronic is configuration 

(19). The matrix elements
1 4 2 3λ λ λ λ=  in is and i

25
s have 

opposite signs. 

The translation of matrix elements (18)-(20) to the LSJM 

representation gives the following results: 

!": ��
� ��

� � �18L$; �� ��
�� � 3L$;

�

� �


� � 21L$; ��
� ��

� � �√42L$;

"!: ��
� ��

� � �18L�; �� ��
�� � 3L�;

�

� �


� � 21L�; ��
� ��

� � �√42L�;

"$
!: ��
� ��

� � 6L�; �� ��
�� � �L�;

�

� �


� � �7L�; ��
� ��

� � �3√42L�.

 (21) 

The comparison of matrix elements in the is and 

i25sconfiguration (21) show that, the last diagonal triplet 

matrix elements are thre e times smaller, while the 

off-diagonal matrix element ��
� ��

�  is three times greater 

and all with opposite sign as compared to the is 

configurations. It’s the correct result (see [10]) and is one of 

the criteria of the validity of the obtained matrix elements. 

The independent calculations of matrix elements of si and 

is configurations in LSJM-representation by formulae from 

[2] (8.43)-(8.50) completely coincide with results (21). 

5. Spin-Spin Interaction 

The energy operator of spin-spin interaction can be 

represented in the form of a scalar product of irreducible 

tensor operator of second order [2,5]:
220

12 12

ssH H= (compare 

with 
0 110

12 12

sH H= . Similar to the spin-other –orbit 

interaction, the angular coefficient in the Marvin’s radial 

exchange integral
1kN −  tends to zero due to stated matrix 

elements of operator of spherical functions (see (7.31b) in 

[2]). Let’s explain this. The parameter of summation k in the 

cited formula takes two values: k=5 and k=7, while the 

stated matrix elements of operator of spherical functions are 

written in a product form as: 

�6�PQ)C�P6$ �6$PQ)��P6� .  (22) 

It is clear that, when k=5 the second factor is equal to zero, 

while when k=7 the first factor nullifies for the s-electron 

configuration (in our case
1 20; 6l l= = ). 

For the direct matrix elements of the considered operator 

from formula (7.31a) in [2] after corresponding 

mathematical transformation we have: 

|=|пр.
99 � �$·√�·�·��

√
·�� 5�$
4$$ · 3�$

��$L$.   (23) 

Here
2S is also the direct Marvin’s radial integral

1kM −  

when k=0, in the spin-other-orbit interaction (see formula 

(17) and comments therein). The tensor product of unit 

orbital 
022

12t  and spin
112

12z  operators are transformed 

according to formula (14.45) from [5] in the direct products, 

and to each of operators 
0 2 1 1

1 2 1 2, , ,t t z z  one uses the 

Wigner–Eckart theorem. According to the later, in (23) 

appears a phase factor, equal to (-1) power �6� � 6$ � !� �
!$ � 78� � 78$ � 79� � �79$ , while the corresponding 
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matrix elements 02 0 2

1 2 1 2 1 1 2 2( ) ( )( )l l t l l l t l l l t l=  are 

equal to unity (also for spin operators). 

From (23) for the si configuration we obtained the 

following matrix elements in independent moments 

representation: 

1 1 3 3 2 2 2 4 4 2 4 2

1 2 3 4 1 4 2 3 2 1 3 2

26 28
; ;

55 55

42 84
;

55 55

S S

S S

λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ

= = − = = =

= = = = − =
   (24) 

For the is configuration we have the same angular 

coefficients, as in (24), but already in radial integral
1S

((19)). In the i
25

s hole configuration the matrix elements 

with the change 
2 1S S→ have the opposite sign due to 

the phase factor. 

Further transforming the matrix elements (24) to the 

LSJM representation with the help of coefficients of 

transformation from table1, we have: 

�� ��
� � %


 L$;� �� ��
� � �2L$;� �
 �


� � �%
�� L$.�   (25) 

The off-diagonal matrix element 
3 1

6 6I I here is equal to 

zero, in contrast with the spin-other-orbit interaction (see 

(21)). 

The comments to formula (24) are true for the is and 

i
25

configurations. 

Let’s calculate the matrix elements of the considered 

operator in LSJM representation. The derived matrix 

elements of the considered operator have the following form 

(the formula is derived from [2]): 

( )1 2 1 2 12 1 2 1 2

1 1 2 1 1 1 2 2

1 1 2 1 2 2 1 1

1 1 2 1 1 1 2 2

' ' ( ,1) ( ',1)

( ') ( , )

( ') ( , )

( ') ( , )

ss

k k

k kk

k k

n n l l LS H n n l l L S S S

m l l LL M n l n l

m l l LL M n l n l

n l l LL N n l n l

δ δ

− −

− −

− −

= ×

⋅ + 
 × ⋅ + 
 ⋅ 

∑ ɶ

    (26) 

Here the parameter k  takes a unique value 1k = . In this 

expression there is the δ -condition on spin, from which it 

follows that only triplet matrix elements ( ' 1)S S= =   are 

non-null as is the case with diagonal elements (see also 

[11,12]). Furthermore, the angular coefficient for the 

Marvin’s radial exchange integral 1kN − tends to zero due to 

the product (see (7.38) in [1]). The angular coefficient for 

Marvin’s direct integral in the first term of (26) also tends to 

zero, as in the expression (7.36) from [2] the derived matrix 

element 2
(0 0) 0.C =  

Thus, matrix elements of the energy operator of the 

spin-spin interaction are represented by the second term in 

(26). Let’s write his angular coefficient (formula (7.36) from 

[2]): 

( )( )

1 1 2

1 1

1 1

1 1 2 2 2 2

( ')

1

1

' 2

k

k k

m l l LL

l l k

A l C l l C l l l k

L L

−

− +

=
− 

 = + 
 
 

ɶ

   (27) 

Here the factor R � S5�2� � 3 �
 �2T � 1 �2T* � 1 �
� 130√6 for the considered si configuration. 

The calculation by the formula (27) gave the following 

result: 

7U)�� � %√�·�·��
√��

.    (28) 

All the matrix elements of the considered operator, taking 

in to account the quantum number J (further coefficient 

D),are determined by the formula (derived from [2]): 

|=$$4| � ��1 VCWCX�TLP=99PTYLY Z T L [
LY TY 2\. (29) 

The coefficients D, calculated by this formula, have the 

following values: 

�� ��
� � √��


√�·�·�� ;� �� ��
� � � √��

$√�·�·�� ;�

�
 �

� � √�

$√�·��·�� .�
  (30) 

It’s not difficult to verify that, multiplying (28) by the 

coefficients (30), we have the same results (25), as in the 

independent moments representation with the translation to 

the LSJM representation, as was required. 

6. Conclusion 

The energy operator interaction matrix has been built for 

the orbit-orbit electrostatic, the spin-other-orbit, the 

spin-spin interactions for si, is, i
25

s configurations. The 

calculation of matrix elements was done in the independent 

moments representation with the further translation to the 

LSJM representation for the si and is electronic 

configurations. The results of the calculation by both 

representations coincided, thus this testifies to the accuracy 

of matrix elements of electronic configurations. For the 

holesi
25

s configurations there was no need to effect new 

calculations, it was sufficient to take into account the change 

of the sign of orbital and spin projections of i-holes (the 

quasi-full shell), in the matrix elements of the is 

configuration. It concerned the phase factor, the δ
-condition on spins projection and the orbital operator of odd 

rank 
1

1t  (the sign of the corresponding Wigner 3j-symbol). 

The matrix energy operator of the above listed 

interactions is destined for the subsequent numerical 

calculations of the fine structure parameter, the coefficient of 

the intermediate constraints, the gyromagnetic relations, and 

also for the study of Zeeman splitting. 
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