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Abstract: It is well known that the equations of conservation laws for energy, linear momentum, angular momentum, 

and mass are the equations of mechanics and physics of continuous media that describe material systems such as the ther-

modynamical, gas-dynamical and cosmological systems. And the field-theory equations, which are used for description of 

physical fields, are based on the conservation laws that one commonly relates with conservative quantities or objects. It is 

shown that to conservation laws for physical fields are assigned the closed exterior forms, which follow from the equations 

of conservation laws for material systems. The process of realization such closed exterior form describes the occurrence of 

observable formations in material systems (such as waves) and the generation of physical structures, the examples of which 

are physical structures that form physical fields.  

Keywords: Two Types of Conservation Laws, the Equations of Material Systems, Evolutionary Relation, Skew-

Symmetric Forms, the Field-Theory Equation 

 

1. Introduction 

In the process of science development the concept of 

"conservation laws'' in thermodynamics, physics and me-

chanics assumed different sense.  

In thermodynamics the conservation laws are associated 

with the principles of thermodynamics. The first principle 

of thermodynamics that relates to the energy conservation 

law, can be written as [1] 

qwdde δ=+                                (1) 

 where de  is the energy variation,  dw  is the work 

done by the system, qδ  is the heat delivered to the system. 

(Here the ambiguity is also observed; this relation includes 

not only energy, but the mechanical work as well. This am-

biguity of the first thermodynamical principle and the pecu-

liarity of the second thermodinamical principle will be ex-

plained below.)  

In mechanics and physics of continuous media the con-

cept of ``conservation laws" relates to the conservation 

laws for energy, linear momentum, angular momentum, and 

mass that establish the balance between the variations of 

physical quantities and external actions. These are conser-

vation laws that are described by differential equations. 

(From here on they will be referred to as the balance con-

servation laws.)   

In areas of physics related to the field theory and in the 

theoretical mechanics ``the conservation laws" are those 

according to which the conservative physical quantities or 

objects exist. These are conservation laws that are de-

scribed by closed exterior form. (Below they will be re-

ferred to as ``exact" ones.)  The Noether theorems can 

serve as an example of such conservation laws formulation, 

which, under some conditions, can be written as 

0ωd =                                  (2) 

(It is of interest to call attention to the fact that formulae 

(1, 2) have the form of relations in skew-symmetric diffe-

rential forms).  

Thus, the concept of ``the conservation laws" is con-

nected with exact conservation laws, balance conservation 

laws and the principles of thermodynamics.  

It turns out that the exact conservation laws are con-

nected with the balance conservation laws. Such a connec-

tion is at the basis of evolutionary processes.   

The role in evolutionary processes of the balance conser-

vation laws is demonstrated in section 1 on the basis of the 

analysis of the balance conservation law equations. From 

the balance conservation law equations it follows the evolu-
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tionary relation for functionals that specify the material 

system state (such as the wave function, entropy, action 

functional and so on). Such an evolutionary relation pos-

sesses the properties that enable one to disclose the me-

chanism of evolutionary processes.   

Firstly, the evolutionary relation proves to be nonidentic-

al. The nonidentity is due to the inconsistence of the con-

servation law equations, and this is a consequence of the 

noncommutativity of the conservation laws.  

It is impossible to obtain the state functional from the 

nonidentical relation. This means that the material system 

state is nonequilibrium.  

Furthermore, the evolutionary relation proves to be a 

selfvarying one. Such a property of the evolutionary rela-

tion points to the fact that the nonequilibrium state of the 

system can vary (under the action of internal force).  

Below it will be shown that the evolutionary relation 

connects the state functional and the evolutionary skew-

symmetric form, which depends on external actions and the 

characteristics of material system. From the properties of 

skew-symmetric forms it follows that, under degenerate 

transformation, the closed exterior form can be realized 

from the evolutionary skew-symmetric form (which is un-

closed).  

In this case from the evolutionary relation it can be ob-

tained the identical relation from which one can get the 

state functional, and this will point out to the transition of 

material system into the locally-equilibrium state. Such a 

transition is accompanied by an occurrence of some ob-

servable formations such as waves, turbulent pulsations and 

so on.  

The closed exterior form obtained is defined only on a 

certain structure. On this structure the exact conservation 

law is satisfied, since the closed exterior form (with the 

differential being equal to zero) describes a conservative 

quantity. As it will be shown in the next section, the physi-

cal structures, which made up physical fields, are just such 

structures.  

In section 2 it is shown that the connection the exact 

conservation laws with the closed exterior forms discloses 

the foundations of the field-theory equations and their con-

nection with the equations of conservation law for material 

systems. 

The results of present paper have been obtained due to 

using the skew-symmetric differential forms. Beside the 

exterior forms [2], the skew-symmetric forms, which are 

derived from differential equations, are used [3, 4]. Mathe-

matical apparatus of such differential forms, which possess 

the evolutionary properties, includes nontraditional ele-

ments like nonidentical relations and degenerate transfor-

mations and this enables one to describe evolutionary 

processes and generation of various structures.  

2. Properties and Peculiarities of Bal-
ance Conservation Laws 

The balance conservation laws are conservation laws of 

energy, linear momentum, angular momentum, and mass. 

They establish the balance between the variation of a phys-

ical quantity and the corresponding external action. These 

are the conservation laws for material systems (material 

media). [The material system is a variety of elements which 

have internal structure and interact to one another. Exam-

ples of elements that made up a material system are fluid 

particles, cosmic objects, electrons, protons, atoms and 

others. As examples of material systems it may be the 

thermodynamical, gas dynamical, cosmic systems, systems 

of elementary particles and others.]  

The balance conservation laws are described by differen-

tial (or integral) equations [5, 6]. (The Euler and Navier-

Stokes equations for gas-dynamical system are examples of 

such a set of equations [5].)  

2.1. Analysis of the Equations of the Balance Conserva-

tion Laws 

In mechanics and physics of material systems the equa-

tions of balance conservation laws are used for description 

of physical quantities, which specify the behavior of ma-

terial systems. But the balance conservation laws not only 

define the variation of physical quantities. Their role is 

much wider. They, as it will be shown, control evolutionary 

processes in material systems that are accompanied by the 

origin of physical structures.  

It appears that, even without knowledge of concrete form 

of these equations, with the help of skew-symmetric diffe-

rential forms one can see the specific features of these equ-

ations that elucidate the properties of balance conservation 

laws and their role in evolutionary processes.  

The solutions to equations of material system sought are 

usually functions which relate to such physical quantities 

like the particle velocity (of elements), temperature or 

energy, pressure and density. Since these functions relate to 

one material system, it has to exist a connection between 

them. This connection is described by state functional that 

specifies the material system state. The action functional, 

entropy, the Pointing vector, Einstein tensor, wave function 

and others can be regarded as examples of such functional 

[7].  

In the accompanying frame of reference,  which is tied to 

the manifold made up by the trajectories of particles (ele-

ments of material system), the balance conservation law 

equations for the unknown functions convert into the equa-

tions for state functionals. The study of such equations just 

allow to disclose the properties and specific features of 

conservation laws. 

2.1.1 Evolutionary Relation 

The functional properties and specific features of diffe-

rential equations or sets of equations depend on whether or 

not the derivatives of differential equations or the equations 

in the sets of differential equations are consistent.  

The equations are consistent if they can be contracted in-

to identical relations for the differentials, i.e. for closed 

forms.  
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Let us now analyze the consistency of the equations that 

describe the conservation laws for energy and linear mo-

mentum.  

In the accompanying frame of reference, the equation for 

energy is written in the form 

11
A=

ξ∂
ψ∂

                             (3) 

Here 
1ξ  are the coordinates along the trajectory, ψ  is 

the functional of the state, 
1A  is the quantity that depends 

on specific features of the material system and external 

(with respect to the local domain) energy actions onto the 

system [5, 7]. [Thus, accounting for the fact that the total 

derivative with respect to time is that along the trajectory, 

the energy equation expressed in terms of the action func-

tional S  has following form: LDtDS =/ , where Sψ =
and LA1 =  is the Lagrange function. The energy equation 

for ideal gas can be presented in the form: 0DtDs =/ , 

where s is entropy [5].]  

Similarly, in the accompanying frame of reference the 

equation for linear momentum appears to be reduced to the 

equation of the form 

,..., 2A =ννν =
ξ∂
ψ∂

                  (4) 

where 
νξ  are the coordinates along the direction normal 

to the trajectory, νA  are the quantities that depend on the 

specific features of material system and external force ac-

tions.  

Equations (3) and (4) can be convoluted into the relation  

ν=µµ
µ ξ=ψ ,, 1dAd                    (5) 

Relation (5) can be written as 

ω=ψd                            (6) 

Here 
µ

µ ξ=ω dA  is a skew-symmetric differential form 

of the first degree.  

Since the balance conservation laws are evolutionary 

ones, skew-symmetric differential form ω  and the relation 

obtained is also an evolutionary relation.  

Relation (6) was obtained from the balance conservation 

law equations for energy and linear momentum. In this re-

lation the form ω  is that of the first degree. If the balance 

conservation law equation for angular momentum be added 

to the equations for energy and linear momentum, this form 

in the evolutionary relation will be a form of the second 

degree. And in combination with the equation of the bal-

ance conservation law for mass this form will be a form of 

degree 3.  

Thus, in the general case, the evolutionary relation can 

be written as  

p
d ω=ψ                                 (7) 

where the form degree p  takes the values 3210p ,,,= . 

(The evolutionary relation for 0p = is similar to that in the 

differential forms, and it was obtained from the equations 

of energy and time.)  

[In the case of the Euler and Navier-Stokes equations a 

concrete form of relation (6) and its properties were consi-

dered in papers [8, 9]. In this case the functional is the en-

tropy s. In paper [3] (see, Appendix 3) and in [10] relations 

(7) when 2p = were considered for electromagnetic field.] 

2.1.2. Nonidentity of Evolutionary Relation. Inconsistency 

of the Balance Conservation Law Equations 

Evolutionary relation obtained from the equation of the 

balance conservation laws possesses some peculiarity. This 

relation proves to be nonidentical since the skew-

symmetric differential form in the right-hand side of this 

relation is not a closed form, and, hence, this form can not 

be a differential like the left-hand side.  

Let us analyse the relation (6). 

The form 
µ

µ ξ=ω dA  is not a close form since its diffe-

rential is nonzero. The differential ωd  can be written as

βα
αβ ξξ=ω ddKd , where 

β
α

α
βαβ ξ∂∂−ξ∂∂= // AAK  are the 

components of the differential form commutator built of the 

mixed derivatives (here the term connected with the nonin-

tegrability of the manifold has not yet been taken into ac-

count). The coefficients µA  of the form ω  can be ob-

tained from the equation of the balance conservation law 

for energy or from that for linear momentum. This means 

that in the first case the coefficients depend on the energetic 

action and in the second case they depend on the force ac-

tion. In actual processes energetic and force actions have 

different nature and appear to be inconsistent. The commu-

tator of the form ω  constructed from the derivatives of 

such coefficients is nonzero. The differential of the form 

ω  is nonzero as well. Thus, the form ω   proves to be un-

closed and cannot be a differential. This means that the 

evolutionary relation cannot be an identical one. In the left-

hand side of this relation it stands a differential, whereas in 

the right-hand side it stands an unclosed form that is not a 

differential. (Nonidentical relation was analyzed in paper 

J.L.Synge "Tensorial Methods in Dynamics" (1936). And 

yet it was allowed a possibility to use the sign of equality in 

nonidentical relation.)  [The skew-symmetric form in evo-

lutionary relation is defined on the manifold made up by 

trajectories of the material system elements. Such a mani-

fold is a deforming manifold. The commutator of skew-

symmetric form defined on such manifold includes an addi-

tional term connected with the differential of basis. This 

term specifies the manifold deformation and hence is non-

zero. Both terms of the commutator (obtained by differen-

tiating the basis and the form coefficients) have a different 

nature and, therefore, cannot compensate one another. This 

fact once more emphasize that the evolutionary form com-

mutator, and, hence, its differential, are nonzero. That is, 
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the evolutionary form remains to be unclosed.] 

Hence, without the knowledge of a particular expression 

for the form ω , one can argue that for actual processes the 

evolutionary relation proves to be nonidentical. 

The nonidentity of the evolutionary relation means that 

the balance conservation law equations turn out to be in-

consistent (thus, if from the energy equation one obtains the  

derivative of ψ  in the direction along the trajectory and 

from the momentum equation he finds the derivative of ψ  

in the direction normal to the trajectory and next he calcu-

late their mixed derivatives, from the condition that the 

commutator of the form ω  is nonzero it follows that the 

mixed derivatives appear to be noncommutative).  

[The first principle of thermodynamics is the example of 

nonidentical evolutionary relation (see, (1)). On the one 

hand, this relation involves energy and thus relates to the 

energy conservation law. And on the other hand, it involves 

the force components and thus is connected with the con-

servation law for linear momentum. This relation, as well 

as the evolutionary relation, combines two conservation 

laws: the balance law of energy conservation and that of 

linear momentum conservation. As well as evolutionary 

relation, this relation is nonidentical.] 

2.2. Noncommutativity of the Balance Conservation Laws. 

Nonequilibrium State of Material System 

Inconsistency of the balance conservation law equations 

points to the fact that the balance conservation laws are 

noncommutative [9].  

Noncommutativity of the balance conservation laws re-

flects the state of material system.  

Since the evolutionary relation is nonidentical, then from 

this relation one cannot get the differential of the state func-

tional ψd . This means that the functional ψ  is not a state 

function. And this points to the fact that the material system 

is in nonequilibrium state. It is evident that the internal 

force producing such nonequilibrium state is described by 

the evolutionary form commutator. (If the evolutionary 

form commutator be zero, the evolutionary relation would 

be identical, and this would point to the equilibrium state, 

i.e. the absence of internal forces.) Everything that makes 

contribution to the commutator of the form 
pω  leads to 

emergence of internal force. 

Nonidentical evolutionary relation also describes how 

the state of material system changes. This is due to that the 

evolutionary nonidentical relation is a selfvarying one. 

[This relation includes two objects one of which appears to 

be unmeasurable. The variation of any object of the relation 

in any process leads to the variation of another object and, 

in turn, the variation of the latter leads to the variation of 

the former. Since one of the objects is an unmeasurable 

quantity, the other cannot be compared with the first one, 

and hence, the process of mutual variation cannot terminate. 

This process is governed by the evolutionary form commu-

tator, that is, by interaction between the commutator made 

up by derivatives of the form itself and by metric form 

commutator of deforming manifold made up by trajectories 

of elements of material system.] 

The process of selfvariation of the evolutionary relation 

points to a change of the material system state. But the ma-

terial system state remains nonequilibrium in this process 

because the internal forces do not vanish due to the evolu-

tionary form commutator remains to be nonzero.  

Such selfvariation of the material system state proceeds 

under the action of internal (rather than external) forces. 

That will go on even in the absence of external forces. Here 

it should be noted that in a real physical process the internal 

forces can be increasing, and this can lead to development 

of instability in the material system. [For thermodynamic 

system this fact was firstly pointed out by Prigogine [11, 

12]. ``The excess entropy" in his papers is analogous to the 

commutator of the nonintegrable form for thermodynamic 

system. ``Production of excess entropy" leads to the devel-

opment of instability.]  

2.3. Transition of the Material System into a Locally -

Equilibrium State. Origination of Observable Forma-

tions 

During selfvariation of evolutionary relation the condi-

tions when an inexact (closed on pseudostructure) exterior 

form is obtained from evolutionary form can be realized. 

This leads to the fact that from nonidentical evolutionary 

relation it will be obtained an identical relation, from which 

one can get the state functional, and this will point to the 

transition of material system from nonequilibriun state to 

locally-equilibrium state.  

Here there is a certain specific point. The transition from 

unclosed evolutionary form (with nonzero differential) to 

closed exterior form (with vanishing differential) is possi-

ble only as degenerate transformation, namely, a transfor-

mation that does not conserve the differential.  

The degenerate transformation can take place under ad-

ditional conditions.  

The conditions of degenerate transformation are closure 

conditions of dual form that define the integral structure 

(the pseudostructure), on which the closed exterior form 

realizes. 

[The conditions of degenerate transformation are reduced 

to vanishing of such functional expressions as determinants, 

Jacobians, Poisson's brackets, residues and others. They are 

connected with the symmetries, which can be due to the 

degrees of freedom (for example, the translational, rota-

tional and oscillatory degrees of freedom of material sys-

tem).] 

If the conditions of degenerate transformation are rea-

lized, it will take place the transition  

0d
p ≠ω → 0d0d

pp == ωω ∗
ππ ,  

The relations obtained  

0d
p =ωπ ,  0d

p =ω∗
π                          (8) 
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are closure conditions for exterior inexact form and for 

dual form. The dual form is a metric form of manifold. The 

closed dual form describes the pseudostructure π , on 

which closed inexact (only on pseudostructure) exterior 

form is defined. (Integral structures and manifolds, such as 

the characteristics, potential surfaces, eikonal surfaces, sin-

gular points, are examples of pseudostructures and relevant 

manifolds.)  

[The degenerate transformation is realized as the transi-

tion from nonintegrable manifold, made up by the trajecto-

ries of the material system elements (on which the unclosed 

evolutionary form is defined), to the integral structures and 

surfaces.]  

The realization of the closure conditions (8) points to the 

fact that the exterior form closed on pseudostructure is rea-

lized. 

In this case, on the pseudostructure 
π

evolutionary rela-

tion (7) converts into the relation 

p
d ππ ω=ψ                            (9) 

which proves to be an identical relation. Since the form 
p

πω  is a closed one, on the pseudostructure this form turns 

out to be a differential. There are differentials in the left-

hand and right-hand sides of this relation. This means that 

the relation obtained is an identical one. 

[For example, the identical relation realized from the 

evolutionary relation obtained from the noncommutative 

conservation laws for energy and linear momentum, points 

out to the fact that the conservation laws become commuta-

tive. However, this is true only along a certain direction, i.e. 

energy and impulse (realized from linear momentum) 

commutate rather then energy and linear momentum do. As 

examples of the identical relation it may be the second 

principle of thermodynamics, which follows from the first 

one [10]. The second principle of thermodynamics follows 

from the first principle under the fulfillment of the condi-

tion of integrability, i.e. a realization of the integrating fac-

tor (the inverse temperature).]  

From identical relation one can obtain the differential of 

the state functional ψπd  and find the state function. This 

points to that the material system state is an equilibrium 

state. But this state is realized only locally since the state 

differential is interior one defined exclusively on pseudo-

structure. (The total state of material system turns out to be 

nonequilibrium because the evolutionary relation itself re-

mains to be nonidentical one.) 

The transition of the material system from nonequili-

brium state into a locally equilibrium one means that the 

unmeasurable quantity described by the nonzero commuta-

tor of the unclosed evolutionary differential form
pω , that 

acted as an internal force, transforms into the measurable 

quantity. In material system this reveals as an occurrence of 

certain observable formations, which develop spontaneous-

ly. Such formations and their manifestations are fluctua-

tions, turbulent pulsations, waves, vortices, and others.  The 

intensity of such formations is controlled by a quantity ac-

cumulated by the evolutionary form commutator. (In paper 

[9] the process of production of vorticity and turbulence is 

described.) 

Thus, it has been shown that the evolutionary noniden-

tical relation, which possesses the unique physical sense, 

follows from the balance conservation law equations for 

material systems. This relation describes the mechanism of 

evolutionary processes that proceed in material systems and 

are accompanied by the origin of some observable forma-

tions.  

Below it will be shown that the process of origin of ob-

servable formations relates to generation of physical struc-

tures, on which exact conservation laws are satisfied.  

3. Exact Conservation Laws. Connec-
tion between Exact Conservation 
Laws and the Balance Conservation 
Laws 

The exact conservation laws are those that state the exis-

tence of conserved physical quantities or objects.   

The exact conservation laws are described by closed ex-

terior differential forms.  

From the closure conditions for exterior differential form 

(vanishing the differential of the form) 

0d
k=θ                                 (10) 

one can see that the closed exterior differential form is a 

conservative quantity (
kθ  is the exterior differential form 

of degree k  ( k -form)). This means that it can correspond 

to conservation law, namely, to existence of a certain con-

servative physical quantity.  

If the exterior form is a closed inexact form, i.e. is closed 

only on pseudostructure, the closure condition is written as 

0d
k =θπ                              (11) 

And the pseudostructure π obeys the condition 

0d
k =θ∗

π                                (12) 

where kθ∗  is a dual form. From conditions (11) and (12) 

one can see that the closed exterior form and the dual form 

constitute a conservative object, namely, the pseudostruc-

ture with conservative quantity. Hence, such an object can 

correspond to some conservation law.  

The closure conditions for the exterior differential form 

( 0d
k =θπ ) and the dual form ( 0d

k =θ∗
π ) are mathe-

matical expressions of the exact conservation law. 

3.1. Generation of Physical Structures by Material Sys-

tems 

Closed inexact exterior form and relevant closed dual 

form describe the differential-geometrical structure: the 
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pseudostructure (dual form) and the conservative quantity 

(closed exterior form). It is evident that the pseudostruc-

tures with conservative quantity are structures, on which 

exact conservation laws are satisfied.  

Below it will be shown that such structures have a physi-

cal meaning, and therefore, they can be named as physical 

structures. (It should be noted that the differential-

geometrical structures have also a mathematical meaning. 

The integral structures and relevant integrable manifolds 

such as the characteristics, singular points, characteristical 

and potential surfaces, which are obtained while solving the 

mathematical physics equations, are such differential-

geometrical structures. G-structures are mathematical ex-

amples of such structures.) 

In section 1 it has been shown that the transition from 

nonidentical evolutionary relation to identical one (which 

describes the transition of material system from nonequili-

brium state to equilibrium one) relates to realization of 

closed dual form and exterior inexact skew-symmetric 

form.This points out to the occurrence of pseudostructure 

(dual form) with conservative quantity (closed exterior 

form), i.e. an occurrence of physical structure on which the 

exact conservation law is fulfilled.  

On the other hand, as it has been shown, the transition of 

material system from nonequilibrium state to locally- equi-

librium one is accompanied with origin of any observable 

formations. From this it follows that the process of origina-

tion of observable formation relates to the occurrence of 

physical structure. This fact also fixes by identical relation 

(9), which possesses the duality. 

The left-hand side of identical relation (9) includes the 

differential, which specifies material system and whose 

presence points to the locally-equilibrium state of material 

system. And the right-hand side includes the closed inexact 

form, which describes physical structure. An existence of 

the state differential (left-hand side of relation (9)) points to 

the transition of material system from nonequilibrium state 

to the locally-equilibrium state (and origination of observa-

ble formations). And the emergency of the closed (on pseu-

dostructure) inexact exterior form (right-hand side of rela-

tion (9)) points to the origination of the physical structure. 

[Physical structures and the formations of material systems 

observed are a manifestation of the same phenomena. The 

light is an example of such a duality. The light manifests 

itself in the form of a massless particle (photon) and as a 

wave. On the other hand, the observed formation and the 

physical structure are not identical objects. If the wave be 

such a formation, the element of wave front made up the 

physical structure while its motion.]  

Thus, the analysis of the balance conservation law equa-

tions for material systems show that material systems gen-

erate physical structures, which correspond to exact con-

servation laws. This means that it exists two types of con-

servation laws and this points to the connection between 

the balance and exact conservation laws. 

Below it will be shown that the physical structures, from 

which physical fields are formatted, are generated by ma-

terial systems. This result follows from the analysis of the 

field-theory equations.  

3.2. Closed Inexact Exterior Forms as the Basis of Field 

Theories 

One can see that the existing field theories are based on 

the properties of closed exterior forms. Closed inexact exte-

rior or dual forms are solutions of the field-theory equa-

tions. And there is the following correspondence:  

-Closed exterior forms of zero degree correspond to 

quantum mechanics.  

-The Hamilton formalism bases on the properties of 

closed exterior and dual forms of first degree. 

-The properties of closed exterior and dual forms of 

second degree are at the basis of the equations of electro-

magnetic field.  

-The closure conditions of exterior and dual forms of 

third degree form the basis of equations for gravitational 

field.  

[One can see that field theories equations are connected 

with closed exterior forms of a certain degree. This enables 

one to introduce a classification of physical fields and inte-

ractions in degrees of closed exterior forms. If to denote the 

degree of closed exterior forms by k , then 0k =  corres-

ponds to strong interaction, 1k =  does to weak one, 

2k =  does to electromagnetic one, and 3k =  corresponds 

to gravitational interaction. Such a classification shows that 

there exists an internal connection between field theories 

that describe physical fields of various types. It is evident 

that the degree of closed exterior forms is a parameter that 

integrates field theories into unified field theory. This can 

serve as a step to constructing the unified field theory.]  

The connection of field theory and the theory of closed 

exterior forms, corresponding to exact conservation laws, 

underlines the fact that field theories are based on the prop-

erties of exact conservation laws. 

3.3. Connection between the Field-Theory Equations and 

the Equations of Conservation Laws for Material Sys-

tems 

A connection between the field-theory equations and the 

equations for material systems is executed by the noniden-

tical evolutionary relation.  

The analysis of functional properties of the field-theory 

equations showed that the field-theory equations, as well as 

the evolutionary relation obtained from the balance conser-

vation laws for material systems, prove to be nonidentical 

relations.  

The field-theory equations differ in their functional prop-

erties from the equations for material systems. The equa-

tions for material systems are differential equations, its 

solutions are functions (which describe physical quantities 

such as a velocity, pressure and density). And the solutions 

to the field-theory equations are closed inexact exterior 

forms, i.e. they are differentials. Only the equations that 

have the form of relations (nonidentical) may have the so-

lutions which are differentials rather then functions. 
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One can verify that all equations of existing field theo-

ries have the form of nonidentical relations in differential 

forms or in the forms of their tensor or differential (i.e. ex-

pressed in terms of derivatives) analogs.  

The Einstein equation is a relation in differential forms.  

The Dirac equation relates Dirac's bra- and cket- vectors, 

which made up the differential forms of zero degree.  

The Maxwell equations have the form of tensor relations.  

The field equation and Schrodinger's one have the form 

of relations expressed in terms of derivatives and their ana-

logs. 

Another specific feature of the field-theory equations 

consists in the fact that all field-theory equations are non-

identical relations for functionals such as a wave function, 

action functional, the Pointing vector, Einstein's tensor and 

so on [7]. (Entropy is such a functional for the fields gener-

ated by thermodynamical and gas-dynamical systems.)  

The evolutionary relation obtained from the equations 

for material systems is a nonidentical relation for all these 

functionals. That is, all field-theory equations are an analog 

to the evolutionary relation.  

The correspondence between the field-theory equations 

and the evolutionary relation points to a connection be-

tween field theories and the equations for material systems.  

Connection of the field-theory equations with the equa-

tions for material system points to the fact that physical 

structures, from which physical fields are formatted, are 

generated by material systems. This means that there exists 

a connection of physical fields with material systems.  

The results obtained show that when building the general 

field theory it is necessary to take into account the connec-

tion of existing field theories (that describe physical fields 

and are based on exact conservation laws) with the equa-

tions of noncommutative conservation laws for material 

media (the balance conservation laws for energy, linear 

momentum, angular momentum and mass).  
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