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Abstract: This paper presents dynamic analysis studies of planar parallel flexible 3-RRR manipulator with and without 

considering the flexibility of mobile platform. Initially, by treating all the members of the manipulator as flexible, the joint 

displacements, reaction forces and stresses are obtained during a specified trajectory tracking in Cartesian space. A comparative 

study is conducted with manipulator configuration having rigid mobile platform using coupled dynamics of limbs and kinematic 

constraints of mobile platform. Dynamic response of flexible manipulator is validated using ANSYS simulations for two 

different cases of trajectories. The results show a remarkable effect of flexibility of mobile platform on the overall dynamic 

response. After validation of the model, the inverse dynamic analysis data is used to create the system dynamics by employing 

generalized regression neural network (GRNN) model and the forward dynamic solutions of the flexible manipulator are 

predicted instantaneously. This study is useful for the real time implementation of motion control of flexible manipulators with 

complex dynamic model of manipulators. 

Keywords: Flexible Manipulator, Static Analysis, Dynamic Modeling, Finite Element Method, Kinematic Constraints,  

Neural Network Model 

 

1. Introduction 

In industrial environments, flexibility of links affects 

significantly the overall precision and performance and 

therefore it is of paramount importance in overall design. In 

certain applications like cable-driven manipulators or space 

robots where the links are of flexible type, a special design is 

adopted. In such cases, a single link can be defined as an 

assemblage of members connected to each other, such that no 

relative motion can occur among them. On the other hand, 

flexible manipulators offer several advantages such as higher 

speed, better energy efficiency, improved mobility and higher 

payload-to-arm weight ratio. At high operational speeds, 

inertial forces of moving components become quite large, 

leading to considerable deformation in the flexible links, 

generating unwanted vibrations [1-3]. It is therefore 

challenging task to achieve a high accuracy end-effector 

motion in flexible manipulators due to unwanted structural 

vibrations. Hence, elastic vibrations of lightweight links must 

be considered in the design and control of the manipulators 

with link flexibility. 

Among various methods for solving flexible mechanisms, 

substructure approach, finite element method, lumped 

parameter modelling and assumed mode method have become 

popular [4-10]. Over several years, finite element models have 

been employed for analysis of flexible mechanisms. Piras et al. 

[11] studied the dynamic analysis of parallel manipulator with 

flexible links using finite element analysis. The natural 

frequencies of the manipulator were obtained with 

convergence analysis. Wang and Mills [12] formulated the 

flexible linkages with finite element method. The synthesis 

theory to assemble the dynamic modeling with constrained 

Lagrangian formulation was proposed to identify the dynamic 

behavior of the 3-PRR flexible planar parallel manipulator. In 

order to understand the dynamic characteristics of the 

mechanism for trajectory tracking control applications, 

dynamic modeling of flexible parallel linkages was studied 

extensively [13-16]. Zhao et al. [17] presented a kinematic 

simulation to investigate the stiffness performance of a planar 

mechanism with flexible joints based on the principle of 

virtual work and discussed the direction of stiffness 
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characteristics. Du et al. [18] discussed a method for the 

dynamic stress analysis of planar parallel robots with flexible 

links and a rigid moving platform and proposed a finite 

element-based dynamic model of flexible parallel robots. 

Zhaocai et al. [19] described a finite element method for 

dynamic modeling of parallel robots with flexible links and 

rigid moving platform. The elastic displacements of flexible 

links are investigated by considering the coupling effects 

between links due to the structural flexibility. Hu and Zhang 

[20] presented a method for the dynamic modeling of parallel 

robots with flexible links and rigid platform. Using constraint 

relations, the dynamic equations of the flexible links and rigid 

platform were obtained. The displacement and orientation 

errors of the moving platform were analyzed with numerical 

simulations. Shan-Zeng [21] derived the dynamic modeling 

equations of a 3-RRS manipulator with flexible links, 

analyzed the dynamic response of the end-effector, and 

indentified the actuator torques required to drive the flexible 

mechanism. Vakil et al. [22] introduced a method by 

combining the assumed mode shape approach and Lagrange’s 

equations to obtain a closed-form finite dimensional dynamic 

model for planar flexible-link, flexible-joint manipulators. 

Reis and Sada Costa [23] proposed a linear quadratic regulator 

theory for trajectory control of single link flexible arm. The 

vibration control of the manipulator was combined with 

piezoelectric actuation to improve the performance of the 

manipulator under parameter uncertainty. The dynamic 

characteristics of planar 3-RRR parallel manipulator with 

flexible linkages under temperature change are studies in 

[24-28] to determine the change of stresses in the links. Chen 

et al. [29, 30] developed a curvature-based finite element 

method for discretization of the flexible links for the dynamic 

modelling approach. They also proposed an approach for 

rigid-body motion and flexible-body motion. Zhao et al. [31] 

presented the kineto-elasto dynamic model and analyzed the 

dynamic characteristics related to natural frequency, 

sensitivity, energy ratios and displacement responses for the 

8-PSS flexible redundant parallel manipulator. Dynamic 

analysis of parallel manipulators with link flexibility is one of 

the recent topics of research. In parallel manipulators, the 

mobile platform should be rigid enough to hold a cutting tool 

or welding torch. However, if other links have finite flexibility, 

the overall effect on motion and force control needs special 

attention. 

In the present work, static and dynamic analysis of first kind 

of parallel manipulator namely planar 3-RRR manipulator 

with flexible links is considered. The kinematics including 

inverse analysis and Jacobian formulation are employed as 

subroutines for conventional rigid body dynamics. The 

presented two dimensional finite element formulation models 

the link flexibility of all limbs. After, formulating stiffness, 

inertia and nonlinear terms, the eigenvalue solutions are 

obtained for the cases with and without platform elasticity 

considerations. The remainder of paper is organized in the 

following: section 2 presents detailed description of dynamic 

model of flexible manipulators. Section-3 gives the kinematic 

constraints required in coupling rigid platform dynamics with 

flexible limbs. The effect of platform rigidity on dynamic 

behavior is illustrated using two trajectory cases. 

2. Dynamic Modeling 

2.1. Description of Manipulator 

Dynamics of parallel manipulators has been studied over 

several years, but most of these are closed-form dynamic 

formulations compatible with rigid links. The 3-RRR (in 

which the underscore at first R indicates active revolute joint) 

manipulator considered here is a symmetrical three limb 

configuration planar parallel manipulator possessing three 

degrees of freedom (two translations and one rotation) at the 

mobile platform. Each limb is attached to fixed base platform 

with an active revolute joint. Figure 1 shows the line diagram 

of one of the limb in 3-RRR planar parallel manipulator. 

 

Figure 1. Kinematic structure of 3-RRR Planar Parallel Manipulator. 

2.2. Dynamic Analysis 

The dynamic model of open-loop system of the 3-RRR 

mechanism can be expressed as: 

tτqqqqqq =++ )(),()( NCM ɺɺɺɺ       (1) 

Where 

19T],,[ ×ℜ∈= mpa qqqq  is the joint vector, 

T
321 ],,[ aaaa θθθ=q is the active joint vector, 

T
321 ],,[ pppp θθθ=q is the passive joint vector, 

19T],,[ ×ℜ∈= φppm yxq is the mobile coordinate vector.

19T],,[ ×ℜ∈= pFτττ pat  is the torque vector. 

Here, 
T],,[ 321 aaaa τττ=τ is the input joint torque vector 

of active joints and TT ]0,0,0[],,[ 321 == pppp ττττ  is 

the input torque vector of passive joints. Also, 

T],,[ zyxp mff=F  is the applied wrench vector at the 

end-effector. 

 qq ɺɺ)(M  and 
99

  ),(
×ℜ∈qqq ɺɺC  are the inertial and 

Coriolis matrices respectively, which are given in the matrix 

form below and 
19   )( ×ℜ∈qN  is the vector of actuated 
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torque. The above dynamic model can be simplified by 

considering external disturbances at the active joints. 

The loop closure constraints are considered using a 

Jacobian matrix. From D’Alembert’s principle and the 

principle of virtual work, the configuration space can be 

smoothly parameterized by the actuator joint vector qa. 

ta ττ TW=                   (2) 

where 
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is the Jacobian matrix. 

By using the matrix W from the equation (3), the dynamic 

model of equation (1) can be transformed into the 

closed-loop kinematic structure as: 

aτqqqqqq =++ )](),()([
T

NCMW ɺɺɺɺ         (4) 

Thus, they are expressed in terms of active joint 

coordinates. The complete dynamics of the closed-loop 

mechanism can be written as: 

aaaaaaa τqqqqqq =++ )(),()( NCM
⌢

ɺɺ
⌢

ɺɺ
⌢

        (5) 

where 

MWWM T=
⌢

 

CWWWMWC TT += ɺ
⌢

NWN T=
⌢

 

Accordingly, the active joint torques can be computed. The 

dynamic model of equation (5) satisfies the following 

properties: 

Property 1: M
⌢

 is positive definite and symmetric. 

Property 2: CM
⌢⌢

2−  is a skew-symmetric. 

Based on above set of equations of motion, an inverse 

dynamic module is developed as a separate function, which 

takes the Cartesian space trajectory as input and computes 

the necessary joint torques for a rigid body manipulator. The 

same formulation is used with finite element approach for 

solving the flexible linkages. 

Before the static and dynamic equations of the manipulator 

can be obtained, it is necessary to derive strain and kinetic 

energy expressions of the flexible elements. 

Therefore, the element strain energy of the beam element 

can be derived as 

              (6) 

where qb is nodal displacement vector of plate, E is elastic 

modulus of material, I is the cross-sectional moment of inertia 

and the elemental stiffness matrix (ke,b) is 
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where le is the length of the elemental beam. Likewise, the 

element inertia matrix needed in dynamic analysis of linkage 

is obtained from kinetic energy expression and is given as 

me,b= ∫
e

bbA
ℓ

0

T dxNNρ . 

where Nb is the shape function matrix of the beam element 

[32]. When the flexibility of the mobile platform is considered, 

the platform is to be treated as a member moving in a plane. 

The simplest option is treating it as an assemblage of linear 

triangular elements (constant strain triangle). As shown in Fig. 

1, for each node, there are two degrees of freedom. 

Likewise strain energy of the plate element is 

pp qq pepe ,
T

,
2

1
U k=               (8) 

where pek ,  is the element stiffness matrix and qp is the nodal 

displacement vector of plate which can be given as 

dA

A

p ∫∫= DBBk T
e,             (9) 

Here, B is strain-displacement matrix D is stress-strain 

relation matrix. Likewise, the element inertia matrix for the 

plate is obtained from kinetic energy expression and is given 

as: 

bqq bebe ,
T
b,

2

1
U k=
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p

e

ppepe dAt ∫=    T
, NNm ρ

 

where Np is the shape function matrix of the plate element. 

The element matrices are first converted into global fixed 

reference frame using the transformation matrix defined in terms 

of the angular position of the link (ϕ) with respect to the global 

frame. The coordinate transformation matrix Ts is defined as: 
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The stiffness and mass matrices of each element are thus 

given as Ke=Ts
T
 ke Ts and Me=Ts

T
 me Ts respectively. For the 

study of kinematics and statics of the flexible linkage, the joint 

displacements, reaction forces and stresses are obtained from 

the following equation: 

FQ= K                    (11) 

where K is the global structural stiffness matrix, Q is the 

global displacement vector and F is the global force vector. 

The dynamic modelling of the manipulator can be obtained 

through assembly of element matrices with a standard finite 

element procedure. With the nodal displacement vector 

T],[ pb qqq =  using strain energy Ue, kinetic energy Te and 

non-conservative forces Fe, the Lagrangian equation can be 

written as 

e
eee

F
dt

d =
∂
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∂
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







∂
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qqq

UTT

ɺ
        (12) 

Substituting the element strain and kinetic energies of the 

beam and plate into the Eq. (12) we get, 

eeeeeee F=++ QKQCQM ɺɺɺ          (13) 

Where Ce are the elemental mass, stiffness and damping 

matrices of the system, respectively, Qe is the generalized 

coordinate vector in the global reference frame and 

fegcee ,, FFF +=  is the total external force vector [25]. 

Here, 

)( T
9

TT
8

2T
7

T
s, ϕϕ ɺɺɺ HRHHT −−= epgce rF       (14) 
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               (15) 

where, 
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Here, =sT Transformation matrix and em  are 

elemental mass matrices of beam be ,m  and plate pe ,m , 

=ek Elemental stiffness matrices of beam be ,k  and plate

pe,k  

=pR Planar transformation matrix 

=ϕ Angle between global to local frame 

=ρ Density of the material 

=oP Location of coordinate vector in local frame = [x y]
T
 

=er Position of element in local frame = [x y]
T
 

=I
⌢

Skew-symmetric matrix 

=gce,F Gyroscopic and Coriolis force components 

=fe ,F Generalized external force vector 

=pF External force vector 

By assembling all the elements in the Eq. (13) according to 

the compatibility at the nodes, the equations of motion of 

planar 3-RRR manipulator is given as 

F=++ KQQCQM ɺɺɺ                (18) 

where M, C and K are the global mass, damping and stiffness 

matrices of the system, respectively, Q is the global coordinate 

vector in the global reference frame. Rayleigh damping has 

been considered for the C in Eq. (13), which is a combination 

of mass and stiffness matrices given as follows: 

KMC 21 ϖϖ +=                 (19) 

where 1ϖ  is the mass damping coefficient and 2ϖ is the 

stiffness damping coefficient. The material of the mechanism 

considered in numerical studies is the aluminium 1060 alloy 

with 1ϖ = 0.02, 2ϖ =0.003 

2.3. Finite Element Modeling 

The deflected positions of the manipulator limb due to 

flexibility is shown in Figure 2. The design with a symmetric 

topology can achieve kinematic isotropy. The point P(xp, yp)
T
 

is the end-effector position in the global reference frame and ϕ 

is its orientation. 
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Figure 2. Flexible 3-RRR Manipulator. 

The point O is the origin of the fixed reference frame (not 

shown) and the points Ai, Bi, Ci, with i=1, 2, 3, define the 

rotational articulations of each limb. qi is the elastic 

displacement of links (i=1, 2, 3) and qpx and qpy are the elastic 

displacements of the centre of the mobile platform. Points Ai 

is actuated, so that all actuators are fixed to the base. Thus, the 

three fixed pivots A1, A2 and A3 define the geometry of a fixed 

base and the three moving pivots C1, C2 and C3 define the 

geometry of a moving platform. Together, the mechanism 

consists of eight links and nine revolute joints. The finite 

element formulation has been adopted here, which provides 

easier and systematic modeling techniques for complex 

mechanical systems and lays the groundwork for a general 

approach to the modeling of elastic mechanisms and 

manipulators. In order to verify and examine the dynamic 

performance of the 3-RRR flexible mechanism, the links in 

the mechanism are considered as a series of beam elements 

and the mobile platform as triangular plate element with 

flexible members undergoing flexural and axial deformations. 

In the present case, there are three degrees of freedom at each 

node, namely axial, transverse displacements and rotational 

angles. The mobile platform is considered as a constant strain 

triangle. It is divided into three elements; there are two 

degrees of freedom at each node, namely axial and transverse 

deflections. 

3. Kinematic Constraints of a Rigid 

Mobile Platform 

When mobile platform is considered as rigid, its rigid body 

dynamics has to be added to the dynamics of flexible links 

with kinematic constraints. As shown in Figure 3, the center 

and vertices of the rigid mobile platform P and Ci respectively 

are displaced to P' and Ci' due to elastic deformation of motion 

of the flexible links. For rigid platform assumption the identity 

PCi = P'C'i is valid. To transfer the deformed vertices from 

mobile frame to global frame, three transformation matrices 

Tp1, Tp2, Tp3 for P-x-y to O-X-Y, P'-x'-y' to P-x-y and P'-x'-y' to 

O-X-Y respectively are considered, such that, Tp3 = Tp1Tp2. 

 

Figure 3. Mobile platform configuration. 

Also, if ∆Xp, ∆Yp, ζ are translational and rotational 

displacements of the mobile platform due to elastic motion of 

the flexible links, the following expressions can be 

formulated. 
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Assuming that (XCi, YCi) and (XC'i, YC'i) are the coordinates 

of the points Ci and C'i in the global reference frame, we can 

write 
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where ),(),( '' CC iiii
yxyx CC =  

= )3/22/sin(3),3/22/cos(3( ππππ kilkil ++  

for k=1, 2, 4. 

If Qj, Qj+1, Qj+2 are the elastic displacements and elastic 

rotational angle at the end point Ci of the flexible link BiCi, 

then 



179 K. V. Varalakshmi and J. Srinivas:  Dynamic Analysis of Flexible-Link Planar Parallel Manipulator with  

Platform Rigidity Considerations 



















∆

∆


























=












−














=













+
ζ

p

p

i

i

iC

i

iC

iC

j

j

y

x
Y

X
-

R     
Y

X

Y

X

Q

Q

C

CC

'

'

1

I  (24) 

∑
=

+=
19,12,5

2Q
j

jζ             (25) 

where I is 2×2 unit matrix of the mobile platform. The 

equation of motion of a mobile platform in terms of local 

reference frame P-x-y is 

ppp Fq =ɺɺM                 (26) 

where 
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M  is a diagonal matrix with mp 

as the mass, Jp as the moment of inertia of mobile platform and 
T],,[ φppypxp qqq=q is the vector of deflections of the 

mobile platform induced by the flexible deformation of the 

links and Fp is the vector of generalized external forces. Then, 

the equation of motion of the mobile platform in terms of 

global reference frame O-X-Y is 

pppppp F
T

11
T

1 TQTMT =ɺɺ           (27) 

Tp1 is the rotational transformation matrix, 
T],,[ φppp yx=Q is the deflection vector of the mobile 

platform in global reference frame due to flexible link 

deformation. The kinematic constraints allow in assembling 

the equations of flexible links with that of mobile platform to 

obtain global equation of motion. If Eqs. (13) and (27) are 

expanded to system size and by incorporating damping, the 

equation of motion of the complete system can be expressed 

similar to Eq. (18). 

3.1. Dynamic Characteristics and Sensitivity Studies 

The free vibration problem is defined from the dynamic 

equations described earlier as follows: 

0)(
2 =Θ+− nn KMω            (28) 

where nΘ  is the n
th

 mode shape and the corresponding 

natural frequency nω . In order to obtain nω  the characteristic 

determinant is equated to zero. i.e., 

0)det(
2 =+− KMnω             (29) 

The effect of design parameters on the performance of the 

manipulator can be measured with sensitivity analysis. By 

taking the derivative of the frequency equation Eq. (26) with 

respect to the design parameter (namely the link lengths = 

li1=li2=L) 
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Taking dot product of nΘ on both sides yields 
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Since, 
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where I is the unit matrix. 

It can be simplified as 
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3.2. Generalized Regression Neural Network Model 

Inspired from biological neural networks, artificial neural 

network (ANN) models can effectively predict the nonlinear 

relationship between the input and output variables. Over the 

past decades, several neural network models have been 

employed in various function approximation tasks. 

Generalized regression neural network (GRNN) algorithm is 

used in this study as it uses one-pass learning algorithm for 

sparse data with an extremely parallel structure for 

prediction or control. Classical back propagation network 

can fit nonlinear mapping between inputs and outputs from 

sampled data, but cannot distinguish impact factors on the 

data. An important step in GRNN prediction process is to 

preprocess the data set. The dataset pre-processing involves 

smoothing, omitting outliers, recognizing the missing data, 

etc. It was first proposed by Specht in 1991. GRNN is the 

probabilistic-based network performing regression. A 

GRNN consists of four layers. They are (i) input layer, (ii) 

radial or pattern layer, (iii) regression or summation layer 

and (iv) output layer. The clustering of the input training data 

is performed in the radial layer. Hence, the number of 

neurons in the radial layer is exactly equal to the number of 

data sets used for the training. The regression layer always 
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consists of an extra neuron compared to the output layer. 

This additional neuron calculates the probability density 

function, whereas remaining neurons are used for calculation 

of outputs. The GRNN chooses an approximate function 

which relates the input and the output parameters directly 

based on the training data. Thus, the GRNN is less 

time-consuming than other iterative training networks. As 

the forward dynamics is a difficult problem for flexible link 

mechanism, a neural network model is developed to 

approximate relationship between the joint torques and 

displacement, velocities. Figure 4 shows the GRNN 

architecture used for the dynamic studies. 

 

Figure 4. Structure of GRNN Model. 

GRNN finds joint probability density function of x and 

y with a training set. The output from GRNN is estimated 

as 
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where ),( ii YX is a sample of ),( YX , 2
iD is the scalar 

function and 
2σ is the squared bandwidth of the Gaussian 

RBF kernel given as: 

)XX()XX(D i
T

i
2
i −−=            (37) 

4. Results and Discussion 

The static and dynamic performance of the 3-RRR flexible 

mechanism is verified with different positions of the following 

circular trajectory. 

Circular trajectory: 

sin(t)

cos(t)

×+=
×+=

ryy

rxx

p

p
             (38) 

where r = 0.01m, t ∈ [0, 2π] and (xp, yp) = (0.25, 0.144). 

Results are presented for static and eigenvalue analysis of 

this manipulator with and without considering the flexibility 

of the mobile platform. 

4.1. Static Analysis 

In static analysis using inverse kinematic analysis the 

location of joints are identified to transform the mechanism 

from local to global frame. At the center of the platform a 10N 

force in X-direction is applied and with boundary conditions 

of the mechanism. The influence of flexibility at the mobile 

platform and elastic displacements at mobile platform along 

the trajectory are identified. 

The material of the mechanism considered is the aluminum 

alloy Al-1060, the geometric and material properties are given 

in Table-1. 

Table 1. Geometric and Material properties of linkage. 

Parameter Dimension 

Length of each link 0.2 (m) 

Thickness of each link 0.0015 (m) 

Width of each link 0.03 (m) 

Length of the mobile platform 0.2 (m) 

Length of the base platform 0.5 (m) 

Platform thickness 0.0015 (m) 

Elastic modulus 6.9×1010 (N/m2) 

Density 2700 (kg/m3) 

Passions’ ratio 0.33 

Mass of each link 0.0234 (kg) 

Mass of the mobile platform 0.1205 (kg) 

Moment of inertia of the mobile platform 0.000799 (kgm2) 

Moment of inertia of the links 0.00078 (kgm2) 

As the user supplies the data, the program computes the 

global matrices and the equations are solved by inversion and 

resultant displacements (nodal data) and stresses (element 

data) are displayed at each point along the trajectory of the 

manipulator. Figure 5 shows the flowchart of the quasi-static 

approach, where a constant static load acts in every 

time-second. 

 

Figure 5. Proposed approach for identifying flexibility effect. 
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Initially a set of trajectory points are specified and inverse 

kinematics is solved at each of these points. The global stiffness 

matrix in every posture is estimated. The active joint torques are 

obtained later using Jacobian matrix of rigid manipulator 

consideration and end-effector forces. The joint displacements 

are obtained as the solution of simultaneous algebraic equations 

formed from stiffness matrix and load vector Γ. 

Case 1: All the links and mobile platform are flexible 

Figure 6 shows joint displacements at the active joints along 

the trajectory. The angular displacements at active joints are 

different and vary harmonically as the trajectory considered is 

circular and analysis is linear. 

 

(a) Active joint A1 

 

(b) Active joint A2 

 

(c) Active joint A3 

Figure 6. Active joint displacements. 

Figure 7 shows the displacements at midpoint of the 

end-effector and it is observed that the displacement along 

X-axis is higher due to external force applied in that direction. 

 

(a) X-displacements 

 

(b) Y-displacements 

Figure 7. Displacements at the end-effector point P. 

Figure 8 shows the joint reaction forces in X and Y 

directions at active joints A1, A2 and A3 respectively obtained 

from element stiffness matrices. 

 

(a) Reaction forces along X-axis 

 

(b) Reaction forces along Y-axis 
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(c) Reaction forces along X-axis 

 

(d) Reaction forces along Y-axis 

 

(e) Reaction forces along X-axis 

 

(f) Reaction forces along Y-axis 

Figure 8. Reaction forces at active joints. 

These may be used to find the stresses in the links. In order 

to illustrate the effect of link flexibility on the kineto-static 

characteristics, the model is next analyzed in ADAMS 

(Automatic dynamic analysis of mechanical systems) 

software. The rigid body model of the mechanism is converted 

into a flexible one using model neutral file in ADAMS for the 

static force analysis. Figure 9 shows the meshed model in 

ADAMS with fully flexible links. 

 

Figure 9. Meshed model in ADAMS. 

To simulate the static displacements, a 10N force in 

X-direction is applied at the middle point of the mobile 

platform, the positions of the mechanism are specified by 

motion and the simulation is performed to know the joint 

displacements and reaction forces of the mechanism. Figure 

10 shows joint displacements at the active joints. 

 

(a) Active joint A1 

 

(b) Active joint A2 

 

(c) Active joint A3 

Figure 10. Joint displacements at active joints. 
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Figure 11 shows the displacements at the midpoint of the 

end-effector and it is seen that the displacement magnitudes 

are well matched with the previously obtained beam element 

program results. 

 

(a) Displacements along X-axis 

 

(b) Displacements along Y-axis 

Figure 11. Displacements at the end-effector point P. 

The joint reaction forces in X and Y directions at active joints 

are illustrated at every point on the trajectory, which all well 

agreement with computer program results. From these results, it 

is observed that the static performance of the mechanism with 

the considered geometric parameters is moderate. 

Case 2: Links are flexible and rigid mobile platform 

During transmission of motion, often the mobile platform is 

treated as a rigid member compared to the legs of the parallel 

mechanism. In such cases, the finite element meshing is 

applied to the legs and the motion transmission between 

different legs is achieved by kinematic constraint equations. In 

order to illustrate the rigid platform situation, the same 

circular trajectory is considered as in the previous studies. The 

joint displacements at the active are shown in Figure 12. 

 

(a) Active joint A1 

 

(b) Active joint A2 

 

(c) Active joint A3 

Figure 12. Angular motion at active joints. 

Corresponding displacements (x, y and θ coordinates) at all 

the passive joints are also obtained. The corresponding 

displacements at the centre of the mobile platform are shown 

in Figure 13. It is seen that the displacements in X and Y 

directions of the mobile platform are relatively small in 

comparison with those of flexible mobile platform case. 

 

(a) X-displacement 

 

(b) Y-displacement 

Figure 13. Displacements at the end-effector point P. 
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The joint reaction forces in X and Y directions at all the 

joints are computed. Here, the reaction forces at the active 

joints in X and Y directions are very much close to the earlier 

case of the flexible mobile platform.  

Next, the simulation studies of rigid mobile platform with 

flexible links are carried out in ADAMS to find the joint 

displacements and reactions forces of the mechanism. The 

simulation is performed similar to previous study and the 

results obtained in post-processor are recorded. Displacements 

at the centre of mobile platform in X and Y directions are 

illustrated in Figure 14. 

 

(a) Displacements along X-axis 

 

(b) Displacements along Y-axis 

Figure 14. Displacements at the end-effector point P. 

4.2. Natural Frequency and Sensitivity Analysis 

The theoretical model developed is used to compute the 

natural frequencies of the system with optimized dimensions, 

without considering motor dynamics and joint flexibilities. 

Modal analysis is conducted in ANSYS Workbench. The 

significance of natural frequencies is to assess the dynamic 

interaction between the links and its supporting structure. 

Design changes can also be evaluated by using natural 

frequencies and mode shapes of a structure. First few natural 

frequencies and corresponding mode shapes as obtained from 

ANSYS solution are shown in Figure 15. 

 

(a) First mode (13.644 Hz) 
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(b) Second mode (16.973 Hz) 

 

(c) Third mode (18.631 Hz) 

Figure 15. First three mode shapes of the mechanism. 

The results obtained from finite element analysis program 

developed in Matlab are compared with that of ANSYS 

outputs as shown in Table-2. It is observed that the first three 

modes are close to each other correspond to difference 

between the first to sixth natural frequencies is increasing 

from 6.86% to 37.46%. 

Table 2. First six natural frequencies of the mechanism (Hz). 

 1 2 3 4 5 6 

FE Program 12.768 15.115 16.935 31.888 44.971 46.206 

ANSYS 13.644 16.973 18.631 38.462 54.58 64.514 

Difference (%) 6.86 12.29 10.015 20.616 21.853 37.46 
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The sensitivity studies are carried out with respect to link 

lengths. Figure 16 shows the sensitivity distribution of first 

natural frequency within the workspace of the manipulator at 

orientations ϕ=0°, 10° and 30°. As all link lengths are 

considered the same, one case is only depicted. 

 

(a) ϕ=0° 

 

(b) ϕ=10° 

 

(c) ϕ=30° 

Figure 16. Sensitivities of the first order natural frequency to the link 

lengths. 

When compared to the natural frequency, the effect of 

mobile platform orientation on sensitivity is more. As the 

orientation of mobile platform increases, the sensitivity also 

increases from 12.37% for ϕ=0° to ϕ=10° and 19.437% for 

ϕ=0° to ϕ=30°. Due to flexibility in the linkage, sensitivity is 

more. Therefore, it is necessary to select optimum design 

parameters to improve the performance of the flexible planar 

parallel manipulator. 

4.3. GRNN Model Implementation 

The data obtained from inverse dynamics is used for the 

training, validation and testing of a neural network model 

approximating forward dynamics of the manipulator. A total 

of 631 points are considered in a circular trajectory and 379 of 

these data sets (60%) are used for training while remaining are 

used for validation. 

The GRNN is implemented for the considered forward 

dynamic analysis is explained in the following steps. 

Step 1: Initialize the 631 number of points data sets. 

Step 2: Among the 631 data points, consider first 60% of 

datasets for training the model. 

Step 3: Obtain the smoothening parameter through cross 

validation procedure. In this analysis, grid search method is 

used to find the optimal adaptive parameter σ  with 

minimum cross-validation error. 

Step 4: Determine the scalar function 
2

iD (for i = 1–379) 

for i
th

 node and determine the coefficient (exponential term) of 

Eq. (38) by substituting 
2

iD and 
2σ . 

Step 5: Multiply the calculated exponential term with the 

corresponding actual output data point Yi. This step is 

processed in radial layer of the GRNN. 

Step 6: For the obtained outputs of radial units, regression 

layer is used. The regression layer contains an extra neuron 

that calculates the probability density function of the output 

parameters. 

Step 7: The weighted average of the GRNN output 

parameters are predicted in the observed range. 

Step 8: To check the efficiency of the proposed method, the 

remaining 40% data sets are used for validating and testing. 

Figures 17 and 18 show the actual joint displacements and 

velocities versus GRNN training data. The linear 

approximation is observed between the trained GRNN and 

experimental data with a minimal error. 

 

Figure 17. Actual and predicted values of joint angles. 
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Figure 18. Actual and predicted values of joint velocities. 

The graphical representation of the errors during GRNN 

training is depicted in Figure 19. 

 

(a) Joint displacements 

 

(b) Joint velocities 

Figure 19. Graphical representation of errors. 

A maximum of 0.05 error is found during GRNN 

training. The developed GRNN prediction tool was 

validated and compared with the actual data. Also, the 

proposed methodology is in good agreement with the 

GRNN predicted and actual values. The proposed GRNN 

approach can be used to predict/calibrate the forward 

dynamics. 

5. Conclusions 

This work presented static analysis and dynamic coupling 

model for a flexible link planar 3-RRR parallel manipulator. 

Using finite element method the elastic displacements at the 

mobile platform due to the presence of flexible links in the 

mechanism was obtained. The numerical simulations are 

important in understanding the behavior of the flexible 

manipulator. The results show that the link flexibility has a 

significant effect on displacement errors in planar parallel 

manipulator. The modal frequencies of the fully flexible linear 

manipulator model have been validated with ANSYS 

solutions. Finally, the developed GRNN tool could predict the 

joint displacements and velocities within 0.05% error. The 

developed new tool efficiently predicts the relation between 

the input and output parameters. The work can be extended 

towards development of a trajectory controller that minimizes 

the flexibility effects. 
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