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Abstract: In this paper the mathematical model of self - oscillation in Rijke's tube is found. We introduce the characteristic 

of the pressure of the heat supply. Using the energy equation in the form of the first law of thermodynamics to flow defined 

mechanisms of thermoacoustic instability in this problem. Using the pressure characteristic of the supply of heat and the 

classical Lyapunov’s theory of stability defines the conditions for self-excitation of oscillation. It was found that when the 

increasing combustion delay the harmonic self-oscillations of the "singing" flame are converted to the relaxation oscillations. 
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1. Introduction 

Small-amplitude thermoacoustic self-oscillations of 

oscillating (pulsating) combustion improve the economic and 

performance indices of combustion chambers of industrial 

units. However, as the thermal load increases, their 

amplitudes grow and become destructive. Serious 

complications and disturbances in operation are caused by 

pulsating combustion in blast-furnace stoves [1]. The results 

of investigations of this nonstationary regime by different 

authors are contradictory [2]. The same feature is also 

observed when the theoretical solutions [3] are compared to 

experimental investigations performed at a number of 

metallurgical plants. 

The simplest device in which thermoacoustic oscillations 

are set up is the Rijke’s tube. Its phenomenon lies in 

excitation of self-oscillations by heat supply from an internal 

heat source located in the lower part of a vertical tube that is 

open at both ends on formation of direct motion in the tube. 

The mechanisms of thermoacoustic oscillations proposed 

by the author and considered below enable one to 

mathematically model the modes of periodic motions in the 

Rijke’s tube. A complete qualitative coincidence of the 

results of the earlier experimental investigations and the 

theoretical solutions is observed. 

As the air flow rate in the Rijke’s tube increases, the 

temperature of the air moving in it decreases since the value 

W  of the heat flux is constant, which decreases its viscosity. 

This is responsible for the reduction in the hydraulic loss 

along the length with growth in the flow rate Q  in the 

laminar regime and for the formation of the descending 

branch ( )Qhfr  of the negative hydraulic resistance. As the 

power W  decreases, the mechanism of negative hydro 

resistance is attenuated; the self-oscillations are maintained 

due to the delay τ of heat transfer at high-temperature 

gradients and volume relaxation of the heat supply [4] 

Negative thermal resistance is responsible for the 

excitation of self-oscillations for a variable (flow-rate-

dependent) power W  of the heat flux. Apart from the 

phenomenological delay of the process of combustion, 

negative thermal resistance contributes to the formation of 

the "singing" flame mechanisms, which, under the 

corresponding conditions [4], can generate self-oscillations in 

the Rijke’s tube when a burner is used for supply of heat 

instead of the electric coil. 

Since the mechanisms of the Rijke’s phenomenon of 

excitation of oscillations remained constant, theoretical 

descriptions of the Rijke’s phenomenon rarely coincided with 

experimental ones even qualitatively [4]. Despite the 

seemingly contradictory experimental investigations of the 
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Rijke’s phenomenon, they are reliable and can be modeled 

mathematically but are very limited [5]. 

2. Formulation of the Problem 

Motion in a vertical tube in which a "singing" flame occurs 

[4-5] may be natural (Rijke’s tube) (Fig. 1) or be additionally 

created by a fan. The reason for the excitation of self-

oscillations due to heat supply or their necessary condition is 

the presence of the ascending branch on the head 

characteristic of the Rijke’s tube with an electric coil [5] and 

on the characteristic of heat supply of the singing flame. 

Furthermore, the mode and parameters of oscillations in the 

Rijke’s tube are dependent, in a certain manner, on the 

phenomenological retardation of combustion τ  and on the 

distinctive features of "turbulent" combustion where the 

electric coil is replaced by a gas burner burning gas. 

 

Fig. 1. Model of a Rijke’s tube with a "singing" flame. 

With decrease in the wave resistance Z of the primary 

furnace, when the condition 
∗< ZZ  is fulfilled [6], 

thermoacoustic oscillations become relaxation ones with a 

constant amplitude and further reduction in Z values. A 

regularity of such alternations in the flow parameters is 

growth in their amplitude with heat-supply power W , which 

is also observed in the furnaces of stoves of blast furnaces in 

which the dynamic load on the structure becomes destructive 

[5]. 

Since increase in the heat load and hence in the blowing 

temperature yields a multimillion economic effect only on 

one blast furnace due to the decrease in the burden coke, the 

problem of reduction in the oscillation amplitude of 

vibrational combustion is pressing. Below, we consider the 

solution of such a problem using mathematical modeling for 

self-oscillations of vibrational combustion by acting on the 

mechanisms of their sustaining and by possible changing the 

wave resistance of the oscillatory circuit. The efficiency of 

solution of this problem is illustrated by oscillations in a 

Rijke’s tube (Fig. 1) when the supply of heat is from the 

combustion of fuel. 

3. Equations Describing Self-Oscillations 

in Rijke’s Tube with Variable Heat 

Flow Power 

Apply the d’Alembert principle to the heated gas column 

after the combustion zone (Fig. 1), considering it as a 

material particle oscillating at self-oscillations as a single 

whole. Obtain  

( ) frout FmgSpp
dt

dw
m −−−= ,              (1) 

where w  is velocity of gas column motion, Sm ℓρ=  is 

mass of gas column, S is area of normal section of the tube 

with diameter d  (Fig. 1), frF  − the force of viscous friction 

on the side surface of the tube. Considering that:

ℓgpp 00out ρ−= , 
2

2

fr

w

d
h ρλ= ℓ

, where 
S

F
h fr

fr = , 0p  is 

pressure in the ambient medium, λ is coefficient of hydraulic 

losses, the equation of motion (1) will have the following 

final form: 

( ) PQF
dt

dQ
L −=a ,                   (2) 

where: 
S

L
ℓρ=a  is acoustic mass of the heated gas column, 

( ) ( ) ( ) ( )QhQhQAQF Tfr −−=  − head characteristics of 

heat supply [7-9], ( ) ( )ρ−ρ= 0ℓgQA  − lifting force 

pressure, p  − the pressure in the tube at the outlet of the 

combustion zone, ( ) ppQh −= eT  − the hydraulic 

resistance of the combustion zone (thermal resistance) [9], 

e0 ppP −= , ( )Qhfr  − dependence of viscous stress over 

the length of the heated part of the tube (Fig. 1) on volume 

flow rate of heated gas SwQ = . 

Write the equation of mass conservation for gas in the 

volume located after the combustion zone (Fig. 1): 

( ) ( )( )dtGtGtdM −τ−= in ,                   (3) 

where: ( )tM  is mass of cold gas in the volume in the 

moment of time t , τ  − combustion time delay SwG 00in ρ=  

is gas mass flux incoming in the volume, and wSG ρ=  is 

mass-flow rate of heated gas. Note that 

ee ρ= dVdM , 
2
e

e

e c
d

dp
=

ρ , ee RTc γ= , 

where eV  is tank volume in front of electric coil, eρ  and 

eT  is density and temperature of gas in it, respectively, ec  

is velocity of sound propagation in this volume, γ  is 
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adiabatic exponent, and R  is gas constant. Thus, equation 

(3) may be written as follows: 

QQ
dt

dp
C −

ρ
ρ

= 0
ee

a , 

where 
e

2
e

1
a VcC −−ρ=  is acoustic flexibility of the volume 

in front of electric coil, and 0SwQ =  is volumetric flow 

rate of incoming cold gas.  

To control gas flow rate through the vertical tube, the 

throttle is mounted at the receiver input (Fig. 1). From 

equation of hydraulic losses on this throttle it may be inferred 

that  

2
0ein kQpp =− ,                  (4) 

where k  is coefficient of hydraulic losses. Assuming 

ℓℓ<<∆  obtain that 0in pp ≈  and according to (4), 

eppQ −η≈ρρ −
00

1
e , ( ) 1

e

−
ρρ=η k . Thus, equation (3) 

will be finally written as follows. 

( )PQ
dt

dP
С ϕ−=a ,                      (5) 

assuming that ( ) PP η=ϕ . 

The obtained dynamic system (2), (5) formally coincides 

with equations of the theory of longitudinal self-oscillations 

(surging) in the compressor as a dynamic system with 

lumped parameters [15]. In the considered analogy the role of 

the introduced function ( )QF  is played by the head 

characteristic of the blower, determined experimentally. At 

that the head characteristic of the compressor characterizes 

part of mechanical energy of drive rotation, transformed in 

the head developed by the blower, and the introduced 

characteristic of heat supply ( )QF  determines part of heat, 

supplied to flow that is transformed into its head. 

4. Mechanisms of Thermoacoustic 

Oscillations for a Heat-Flux Power 

Varying with Flow Rate 

The presence of the descending branches on the ( )Qhfr  or 

( )QhT  plots and the growing character of change in the lift 

pressure ( )QA  contribute to the formation of the ascending 

branch of the head characteristic ( )QF . 

To find the conditions of appearance of the ( )QhT  

descending branch we take that the hydraulic head loss 

( )Qhfr  is absent, i.e., the compressible fluid is hydraulically 

ideal. Since the flow head decreases with growth in ( )QhT  

and increases with its reduction, we determine the character 

of variation in the dependence ( )QhT  from the change in the 

head ( )QF  in heat supply. For this purpose we use the 

equation of the first law of thermodynamics in differential 

form for flow in a horizontal channel 

2

2w
d

P
ddudq +









ρ
+= ,                      (6) 

or 

( ) ( )uqdQdF −ρ= .                        (7) 

Since the heat supplied in the polytropic process is 

dT
n

kn
cdq

1−
−= v , and the change in the internal energy is 

dTcdu v= , with allowance for the dependence of the 

temperature on the volumetric flow rate ( )QTT ψ+= 0  we 

may write Eq. (7) as 

( ) ( )Qd
n

k
cQdF ψ

−
−ρ=

1

1
v .                  (8) 

If the function ( )Qψ  is increasing, the ascending branch 

of the function ( )QF  results from the descending branch of 

( )QhT  and, according to Eq. (8), occurs in the polytropic 

process of heat supply with an exponent of the process n  for 

which 10 <≤ n , which is realized in vertical primary 

furnaces.  

In the case where the function ( )Qψ  is decreasing, the 

fulfillment of the inequality 1>n  is required for the 

descending branch to occur on the ( )QhT  plot. Thus, under 

the conditions given above, the ascending branch of the 

characteristic ( )QF  in the nonviscous-gas flow appears 

because of the descending branch of ( )QhT . An analogous 

result is obtained in analyzing the head loss equal to the 

difference of the total pressures and caused by the heat 

supply in the flow of an ideal gas. 

The lift pressure ( )QA  is involved in the head 

characteristic ( )QF  and contributes to the generation of its 

ascending branch, if the function ( )Qψ  in the device (Fig. 

1) increases. This is the second reason why self-oscillations 

are excited in vertical primary furnaces; this reason is the 

most substantial for blast-furnace stoves.  

The increase in the hydraulic resistance of the throttle in 

the device (Fig. 1) contributes to the fact that the temperature 

in the flow will grow with heat load more appreciably than 

velocity. Under this condition, the Reynolds number 

decreases with increase in the flow rate. The ( )Qhfr  

descending branch of hydraulic loss along the length is 

formed in the process of turbulent-to-laminar transition 

because of the reduction in the loss, which is the third 

mechanism of thermoacoustic oscillations of a "singing" 

flame. Further increase in the flow rate will contribute to the 

growth in the hydraulic loss in accordance with the laminar 

regime of motion, if it is preserved. 



 American Journal of Mechanical and Industrial Engineering 2017; 2(1): 48-53 51 

 

5. Conditions of Excitation of Vibrational 

Combustion 

Self-excitation of self-oscillations in Rijke’s tube results 

from the loss of stability of stationary convective flow of 

heated gas that correlates with the positioning of the dynamic 

system equilibrium (2), (5). The character of equilibrium 

position stability is determined by the characters of real 

components of respective Lyapunov characteristic indicators 

[10]. In the considered problem they take the form: 

aa

2

aaaa
21

4

CLCLCL
, −







 β+α±β−α=λ ,         (9) 

where 
( )

ξ=
=α

Q
dQ

QdF
, 

( )
( )ξ=

ϕ=β
FPdP

Pd
, ξ  − is 

stationary volume flow rate of heated gas determined from 

the equation ( )
2










η
ξ=ξF . It can be easily verified that 

{ } 0Re 21 >λ ,  ⇔ 0>α  ⇔ 0>
ξ=Q

dQ

dF
.        (10) 

From correlation (9) it may be inferred that at the 

performance of inequality 
( )

0<
ξ=Q

dQ

QdF
 the stationary 

mode of the flow determined by the flow rate ξ=Q  is stable, 

and in this case self-excitation of self-oscillations is 

impossible. Thus, for self-excitation of self-oscillations there 

is a need of the zone of “negative” strength, where with an 

increase of the flow rate Q  the head F  of the heated gas 

column does not decrease but vice versa increases, i.e. the 

inequality 
( )

0>
dQ

QdF
is performed. 

The condition (10) is necessary for self-excitation of self-

oscillations. The sufficient condition of their appearance is 

existence of the limit cycle in the equation of integral curves 

[9] 

( ){ } ( ){ }dQPQLdPPQFС ϕ−=− aa .            (11) 

Dimensions and form of the limit cycle of equation (11) 

are determined by the values of acoustic parameters aL  and 

aC . 

6. The Results of Mathematical Modeling 

Self-oscillations are harmonic, when the values of the 

wave resistance 
a

a

C

L
Z =  are high. Their amplitudes 

increase with manifestation of the action of 

phenomenological retardation (Fig. 2). As the wave 

resistance decreases, the oscillations become relaxation ones, 

whereas under the condition that ∗< ZZ  their amplitudes 

are independent of further decrease in the quantity Z  and on 

the change in the flow rate Q  in the system, as has already 

been noted. Upon the transition to relaxation oscillations, the 

dependence of the amplitude on the manifestation of the 

retardation τ  becomes weaker. 

The limit cycle of constant-amplitude relaxation self-

oscillations or the cycle close to it (Fig. 2) is independent of 

the retardation τ . 

 

Fig. 2. Transformation of the limit cycle of harmonic oscillations to a limit cycle of relaxation oscillations of variable and constant amplitudes with decrease 

in the wave resistance: a and d) Z = 325.09, b and e) 79.63, and c and f) 17.8 3m

secPa⋅
; a–c) τ = 0 and d–f) 0.04 sec . 



52 Boris Basok and Vladimir Gotsulenko:  Mathematical Modeling of Self-Oscillations in a Rijke’s Tube with  

Variable Heat Flow Power 

 
Thus, for the vibrational-combustion mechanism due to the 

phenomenological retardation, the oscillation amplitude 

remains constant under the conditions in question. In such a 

regime, self -oscillations are mainly determined by the 

character of heat-to-head conversion, i.e., by the head 

characteristic ( )QF . The limit cycle increases with heat-

flux power [7, 9]. 

An efficient method for controlling thermoacoustic self-

oscillations of a "singing" flame is the introduction of the 

active vortex resistance 2
whwh Qkh = , in which 

varwh =k , into the primary furnace. In this case we have a 

controlled change in the characteristic ( )QF , which enables 

us to control self-oscillations [7]. The same limit cycle of 

constant-amplitude oscillations is preserved in the case of 

series connection of a passive oscillatory circuit of dynamic 

damping, through which straight-through motion is carried 

out. 

The second efficient method for controlling and 

neutralizing constant-amplitude oscillations is the 

transformation of the primary furnace to a "honeycomb" one 

(Fig. 3), in which the acoustic masses 
iaL  of each individual 

primary furnace are increased, and the acoustic flexibility of 

oscillatory circuits may be variable. In this structure, a 

constant limit cycle becomes variable due to the increase in 

the wave resistance 
vara,

ai

С

L
Z =  in individual primary 

furnaces [7], and it is brought closer to the cycle of nearly 

harmonic oscillations by changing the quantity vara,С , if it 

seems possible for the corresponding structure. 

 

Fig. 3. "Honeycomb" primary furnace with individual burners and a variable 

acoustic flexibility vara,С : 1) fan; 2) gas collector; 3) atomizers; 4) 

honeycomb primary furnaces; 5) additional mass accumulator of the 

oscillatory circuit. 

The character of motions in devices of a "honeycomb" 

primary furnace corresponds to limit cycles dependent on the 

wave resistance Z  and determined by the condition ∗< ZZ  

[6] (Fig. 2), whereas the harmonic oscillations are easily 

controlled. 

7. Conclusions 

When the harmonic oscillations of vibrational combustion 

are transformed to relaxation ones, the influence of the 

phenomenological combustion retardation on the oscillation 

amplitude becomes weaker. The formation of a limit cycle of 

constant-amplitude relaxation oscillations or of that close to 

it totally eliminates such influence and the value of the 

amplitude for these conditions is mainly determined by the 

intensity of conversion of heat to the flow head, growing 

with heat-supply power. 

Relaxation self-oscillations corresponding to the limit 

cycle of constant-amplitude oscillations do not change the 

value of the amplitude in dynamic damping. 

Control of such oscillations is difficult; it involves the 

action on the mechanisms of their excitation and sustaining 

by the use of which one can decrease the values of the 

intensity 
( )

dQ

QdF
 of the ascending branch of the head 

characteristic ( )QF . 

Increase in the wave resistance Z  of the oscillatory circuit 

transforms the limit cycle of constant-amplitude oscillations 

to a variable cycle, which enables one to control the 

oscillations; a certain influence of the mechanisms of 

phenomenological retardation on the oscillation amplitude 

manifests itself. 
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