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Abstract: In 1956, Jeśmanowicz conjectured that, for positive integers m and n with m > n, gcd(m, n) = 1 and m 6≡ n
(mod 2), the exponential Diophantine equation (m2 − n2)x + (2mn)y = (m2 + n2)z has only the positive integer solution
(x, y, z) = (2, 2, 2). Recently, Ma and Chen proved the conjecture if 4 6 |mn and y ≥ 2. In this paper, we provide a proposition
that, for positive integers m and n with m > n, gcd(m, n) = 1 and m2 + n2 ≡ 5 (mod 8), the exponential Diophantine
equation (m2 − n2)x + (2mn)y = (m2 + n2)z has only the positive integer solution x = y = z = 2 with 2| gcd(x, y). Then
we present an elementary and simple proof of the result of Ma and Chen by using Jacobi’s symbols.
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1. Introduction

Let a, b and c be positive integers satisfying a2 + b2 = c2.
Such a triple (a, b, c) is called a Pythagorean triple. If
gcd(a, b, c) = 1, this triple is called primitive. It is well-
known that a primitive Pythagorean triple (a, b, c) can be
parameterized by

a = m2 − n2, b = 2mn, c = m2 + n2,

where m and n are relatively prime positive integers with
m > n and m 6≡ n (mod 2). In 1956, Jeśmanowicz [8]
proposed the following problem:

Conjecture 1.1
The exponential Diophantine equation

(m2 − n2)x + (2mn)y = (m2 + n2)z (1)

has only one positive integer solution (x, y, z) = (2, 2, 2).
Using elementary methods, Le [9] showed that if mn ≡ 2

(mod 4) and m2 + n2 is a power of a prime, then Conjecture
1.1 is true. Guo, Le [6] applied the theory of linear forms
in two logarithms to prove that if n = 3, m ≡ 2 (mod 4)
and m > 6000, then Conjecture 1.1 is true. Takakuwa

[20] extended the result of Guo, Le [6] by proving that if
n = 3, 7, 11, 15 and m ≡ 2 (mod 4), then Conjecture 1.1
is true. Cao [1] also showed that if m ≡ 5 (mod 8) and n ≡ 2
(mod 8), then Conjecture 1.1 is true. In 2014, Terai [23]
showed that if n = 2, then Conjecture 1.1 is true without any
assumption on m. In 2015, Miyazaki and Terai [17] proved
some further results.

Recently, Ma and Chen [11] proved the following
proposition.

Proposition 1.1
Suppose that 4 6 |mn. Then the equation

(m2 − n2)x + (2mn)y = (m2 + n2)z, y ≥ 2,

has only the positive integer solution (x, y, z) = (2, 2, 2).
Deng and Huang[2], Deng and Guo [3] proved some

theorems for 2||mn by using biquadratic character theory and
an elementary method. For more results on the conjecture, see
[4, 5, 10, 7, 12, 13, 14, 15, 16, 18, 21, 22, 24, 25].

For the proof of the above Proposition 1.1, Ma and Chen
[11] used some complicated computations of Jacobi’s symbols
and a known result of Miyazaki ([13] Theorem 1.5), which
is based on deep results on generalized Fermat equations via
sophisticated arguments in the theory of elliptic curves and
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modular forms. We also note that the proof of the main result
in Terai [23] used the same known result of Miyazaki ([13]
Theorem 1.5).

In this paper, we present an elementary proof of Proposition
1.1 by using Jacobi’s symbols, however the computations of
Jacobi’s symbols are more involved here.

2. Some Lemmas
For more self-contained, in this section, we provide some

simple lemmas which will be used in the proof of Proposition
1.1. The following two results are well-known.

Lemma 2.1
Let (u, v, w) be a primitive Pythagorean triple such that

u2 + v2 = w2, 2|v and w ≡ 5 (mod 8). Then there exists
coprime positive integers s and t with s > t, 2||st and

u = s2 − t2, v = 2st, w = s2 + t2.

proof
The others being obvious, only 2||st needs a proof, this

follows from the condition w ≡ 5 (mod 8).
The equation x4−y4 = z2 has no nonzero integer solutions.
For the proof of the above Lemma, we refer to Mordell [19].
Let m, n be coprime positive integers with m2 + n2 ≡ 5

(mod 8) and m > n, then the Diophantine equation

(m2 − n2)x + (2mn)y = (m2 + n2)z (2)

has only the positive integer solution x = y = z = 2 with
2| gcd(x, y).

Let (x, y, z) be a positive integer solution of (2) with
2| gcd(x, y) and (x, y, z) 6= (2, 2, 2). Since m2 + n2 ≡ 5
(mod 8) and (m2 + n2)z = (m2 − n2)x + (2mn)y ≡ 1
(mod 8), we obtain that 2|z. Put

x = 2X, y = 2Y, z = 2Z,

then we have

(m2 − n2)X = u2 − v2,

(2mn)Y = 2uv, (3)

(m2 + n2)Z = u2 + v2,

where u, v are positive integers with u > v. If Y = 1 and
Z = 1, then it is easy to see that X = 1, and we are done.

If Y = 1 and Z > 1, then we have

(2mn)2 = (m2 + n2)2Z − (m2 − n2)2X

≥ (m2 + n2)Z + (m2 − n2)X

> (m2 + n2)Z > (2mn)2,

a contradiction. Finally we consider the case where Y > 1. If
Y > 1 and Z is even, we have

m2 + n2 ≡ 5 (mod 8), m2 − n2 ≡ ±5 (mod 8).

Considering equation (2) by taking modulo 16, we have

(m2 − n2)2X ≡ 1 (mod 16),

hence 2|X , which is impossible by Lemma 2.2 since 4|x, 4|z
and (m2 + n2)x − (m2 − n2)y = (2mn)2Y . Therefore Z is
odd when Y > 1. Now

(m2 + n2)Z ≡ 5 (mod 8).

It follows from (3) that (m2 + n2)Z = s2 + t2 ≡ 5
(mod 8), hence 2||st by Lemma 2.1, which contradicts to
2st = (2mn)Y and Y > 1. This completes the proof.

Lemma 2.3
Let (x, y, z) be a solution of (1) with y ≥ 2. Suppose that

2||mn. Then both x and z are even.
proof
Let (x, y, z) be a solution of (1). Since 2||mn, so m2 +

n2 ≡ 5 (mod 8) and we have(
2mn

m2 + n2

)
=

(
(m + n)2

m2 + n2

)
= 1,(

m2 − n2

m2 + n2

)
=

(
2m2

m2 + n2

)
=

(
2

m2 + n2

)
= −1.

Taking (1) modulo m2 + n2, we have
(

m2−n2

m2+n2

)x
=(

−1
m2+n2

)(
2mn

m2+n2

)y
, i.e. (−1)x = 1, so 2|x. In view of

y ≥ 2, (3) and 4|2mn,

5z ≡ (m2 + n2)z = (m2 − n2)x + (2mn)y ≡ 1 (mod 8).

It follows that z is even.

3. A Simple Proof of Proposition 1.1
In this section, we will present an elementary and simple

proof of Proposition 1.1.
A simple proof of Proposition 1.1: Let (x, y, z) be a

solution of (1) with y ≥ 2. Noting that 2||mn, by Lemma 2.3,
2|x and 2|z. If 2|y, then (1) has only the solution (x, y, z) =
(2, 2, 2) by Proposition 2.1. Hence we may assume that 2 6 |m,
2||n, n = 2n′, 2 6 |n′ and 2 6 |y. Let t be the positive integer
with 2t||z. Since 2|x, we have

(4mn′)y = (m2 + 4n′2)z − (m2− 4n′2)x > (m2 + 4n′2)z/2.

If t = 1, then we have y ≥ 3 because 2 6 |y and y > 1. If
t > 1, then y ≥ z/2+1 ≥ t+1, and thus 2y ≥ 2(t+1) > t+2.

Taking modulo 2t+3 for (1), we get

(m2 − 4n′2)x + 22y(mn′)y ≡ (m2 − 4n′2)x

≡ (m2 + 4n′2)z

≡ 1 + 2t+2 (mod 2t+3),

which yields 2t||x since m2 − 4n′2 ≡ ±5 (mod 8).
Let x = 2tX and z = 2tZ, where X and Z are positive

integers and 2 6 |XZ.
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Case I: t is even: By (1), we have

(m2 + 4n′2)2
tZ − (m2 − 4n′2)2

tX

=
(
(m2 + 4n′2)Z − (m2 − 4n′2)X

)
t−1∏
i=0

(
(m2 + 4n′2)2

iZ + (m2 − 4n′2)2
iX
)

=22y(mn′)y.

Since gcd(m,n′) = 1, it is easy to show that the greatest
common divisor of any two terms in the above product is 2
and (m2 + 4n′2)Z − (m2 − 4n′2)X ≡ 0 (mod 8), hence we
have

(m2 + 4n′2)Z + (m2 − 4n′2)X = 2(m1n1)y (4)

and

(m2 + 4n′2)Z − (m2 − 4n′2)X = 22y−t(m2n2)y, (5)

where mi|m, ni|n′, i = 1, 2 and gcd(m1, m2) =
1, gcd(n1, n2) = 1.

By (4) and (5), we have

(m2 + 4n′2)Z = (m1n1)y + 22y−t−1(m2n2)y. (6)

In view of (6), 2y − t− 1 ≥ t + 1 ≥ 3 and 2 6 |yZ, we have

m1n1 ≡ (m1n1)y ≡ m2 + n2 ≡ 5 (mod 8). (7)

For any prime factor p of n1, by (4),

m2Z + n′2X ≡ 0 (mod p),

it follows that p ≡ 1 (mod 8). Hence n1 ≡ 1 (mod 8), and
so m1 ≡ 5 (mod 8) by (7). Similarly, by (5) we have m2 ≡ 1
(mod 8).

On the other hand, since t is even, it follows from (6) that(
2m2n2

m1

)
=

(
n′2

m1

)
= 1,

(
2m2n2

n1

)
= 1

and (
m1n1

m2

)
=

(
n′2

m2

)
= 1,

(
m1n1

n2

)
= 1.

In view of t is even, n1 ≡ m2 ≡ 1 (mod 8) and m1 ≡ 5
(mod 8), we have(

m2n2

m1

)
= −1,

(
m2n2

n1

)
= 1 (8)

and (
m1n1

m2

)
= 1,

(
m1n1

n2

)
= 1. (9)

Let
(

m2

m1

)
= u, u ∈ {−1, 1}, by the first equalities of (8)

and (9), we have(
n2

m1

)
= −u,

(
n1

m2

)
= u. (10)

Now, by the second equalities of (8) and (10), we get(
n2

n1

)
= u. (11)

By the first equality of (10) and the second equality of (9),
we have (

n2

n1

)
= −u. (12)

Therefore we derive a contradiction from (11) and (12).
Case II: t is odd. Similarly, by (1), we have(
m2 + 4n′2

)2t−iZ
+
(
m2 − 4n′2

)2t−iX
= 2(mini)

y,

i = 1, 2, . . . , t− 1,
(13)

(
m2 + 4n′2

)Z
+
(
m2 − 4n′2

)X
= 2(mtnt)

y (14)

and(
m2 + 4n′2

)Z−(m2 − 4n′2
)X

= 22y−t(mt+1nt+1)y. (15)

Similarly, we have m1 ≡ n1 ≡ · · ·mt−1 ≡ nt−1 ≡ nt ≡
mt+1 ≡ 1 (mod 8) and mt ≡ m2 + 4n′2 ≡ 5 (mod 8).

By (13), we have(
2mini

m + 2n′

)
= 1, i = 1, 2, . . . , t− 1. (16)

Since m1 ≡ n1 ≡ · · ·mt−1 ≡ nt−1 ≡ 1 (mod 8), by (16)(
2

m + 2n′

)
=

(
n′

mi

)(
m

ni

)
, i = 1, 2, . . . , t− 1. (17)

By (14), we have(
2

m + 2n′

)
=

(
2mtnt

m + 2n′

)
. (18)

Since mt ≡ 5 (mod 8) and nt ≡ 1 (mod 8), by (18)

1 =

(
2n′

mt

)(
m

nt

)
= −

(
n′

mt

)(
m

nt

)
. (19)

By (15) and t is odd, we have(
2

m + 2n′

)
=

(
2mt+1nt+1

m + 2n′

)
. (20)

Since mt+1 ≡ 1 (mod 8), by (20)

1 =

(
2n′

mt+1

)(
m

nt+1

)
=

(
n′

mt+1

)(
m

nt+1

)
. (21)

Combine the three equations (17), (19) and (21), we obtain(
2

m + 2n′

)t−1

= −
t+1∏
i=1

(
n′

mi

)(
m

ni

)
= −

(
n′

m

)(m
n′

)
= −1,

contradicts to the fact that t is odd. This completes the proof.
2
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4. Conclusion
64 years ago, Jeśmanowicz proposed the Conjecture 1.1.

3 years ago Ma and Chen partly proved the conjecture, i.e.
Proposition 1.1. But their method is deep and complicated. In
this paper, we prove the Proposition 2.1, and then present an
elementary and simple proof of Proposition 1.1.
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