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Abstract: Time series analyses are statistical methods used to assess trends in repeated measurements taken at equally 

spaced time intervals and their relationships with other trends or events, taking account of the temporal structure of such data. 

An important aspect of descriptive time series analysis is the choice of model for time series decomposition. This paper 

examined the challenges in choosing between additive and mixed models in time series decomposition. Most of the existing 

studies have focused on how to choose between additive and multiplicative models with little or no regards on mixed model. 

The ultimate objective of this study is therefore, to compare the row, column and overall means and variances of the Buys-

Ballot table for additive and mixed models. Table 1 shows that the column variances of Buys-Ballot table is constant for 

additive model but depends on slope and seasonal effects for mixed model. Results show that seasonal variances of the Buys-

Ballot table is constant for additive model and a function of slope and seasonal effects for mixed model. Also, when there is no 

trend (b=0), the estimates of row, column and overall means are the same for the two models while the estimates of seasonal 

indices are not the same for both additive and mixed models. 

Keywords: Buys-Ballot Table, Time Series Decomposition, Additive Model, Mixed Model, Trend Parameter,  

Seasonal Indices 

 

1. Introduction 

An important goal in time series analysis is the 

decomposition of a series into a set of non-observable (latent) 

components that can be associated to different types of 

temporal variations [1]. The models most commonly used to 

describe time series data are additive, multiplicative and 

mixed models. For short series, the cyclical is embedded in 

the trend [2]. The decomposition models are 

Additive model:  

t t t t
X M S e= + +                             (1) 

Multiplicative model: 

t t t t
X M S e= × ×                              (2) 

Mixed model: 

t t t t
X M S e= × +                              (3) 

where t
M  is the trend-cycle component, t

S  is the seasonal 

component and t
e  is the error. For equation (1) it is assumed 

that the error term t
e  is the Gaussian white noise ( )2

10,N σ  

and sum of the seasonal component over a complete period is 

zero 

1

0
S

j

j

S
=

 
= 

 
∑                                (4) 

For equation (2) it is equally assumed that the error term 

te  is the Gaussian white noise ( )2

10,N σ  and the sum of 

seasonal component over a complete periods 
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while for Equation (3), t
e  is the Gaussian white noise 

( )2

10,N σ  and sum of seasonal component over a complete 

period is  

1

S

j

j

s S S
=

 
= 

 
∑                                (6) 

An additive model is based on the assumption that the sum 

of the components is equal to the unadjusted data. In 

particular, this means that the fluctuations overlapping the 

trend-cycle are not dependent on the series level. They do not 

depend on the level of the trend [3]. 

According to [4], the appropriate model is additive when 

the seasonal standard deviations show no appreciable 

increase or decrease relative to any increase or decrease in 

the seasonal means. On the other hand, the appropriate model 

is multiplicative when the seasonal standard deviations show 

appreciable increase/decrease relative to any increase 

/decrease in the seasonal means. Here again, no statistical test 

was provided for the choice. 

The multiplicative model was adopted when the magnitude 

of the seasonal pattern in the data depends on the magnitude 

of the series. In other words, the magnitude of the seasonal 

pattern increases as the data value increases and decreases as 

the data value decreases level of the trend. The higher the 

trend, the more intensive these variations are. The additive 

model was adopted when the magnitude of the seasonal 

pattern does not change as the series goes up and down while 

the additive model was adopted when the magnitude of the 

seasonal pattern does not change as the series goes up and 

down [5]. 

An important aspect of descriptive time series analysis is 

the choice of model for time series decomposition. The 

emphasis is to compare the row, column and overall means 

and variances of the Buys-Ballot table for additive and mixed 

model when trend-cycle component of time series is linear. 

Iwueze and Akpanta [6] pointed out that an additive model 

is appropriate when the seasonal standard deviations show no 

appreciable increase or decrease relative to any increase or 

decrease in the seasonal means while a multiplicative model 

is usually appropriate when the seasonal standard deviations 

show appreciable increase/decrease relative to any increase 

or decrease in the seasonal means. 

Linde [7] observed that, the differences between the 

Additive and Multiplicative and the models are (i) for the 

additive model, the seasonal variation is independent of the 

absolute level of the time series, but it takes approximately 

the same magnitude each year while in the multiplicative 

model, the seasonal variation takes the same relative 

magnitude each year. This is an indication that the seasonal 

variation equals a certain percentage of the level of the time 

series. The amplitude of the seasonal factor varies with the 

level of the time series; also for additive model, the seasonal 

component is the same (roughly constant) in the same period 

over different years. Sometimes the seasonal component is a 

proportion of the underlying trend value. In such cases it is 

appropriate to use a multiplicative model. 

Gupta [8] observed that, the additive model assumes that 

all the four components of the time series operate 

independently of each other so that none of these components 

has any effect on the remaining three. This means that trend 

may be, has no effect on the seasonal and cyclical 

components nor do seasonal swings have any impact on 

cyclical variations. According to him, this series are not 

independent of which other. The seasonal or cyclical 

variation may virtually be wiped off by very sharp and rising 

or declining trend. While multiplicative, model assumes that 

the four components of the time series are due to different 

causes but that, they are not necessarily independent and they 

can affect each other. 

Oladugba et al [9] gave brief description of additive and 

multiplicative seasonality. According to them, the seasonal 

fluctuation exhibits constant amplitude with respect to the 

trend in additive case while amplitude of the seasonal 

fluctuation is a function of the trend in multiplicative 

seasonality. 

Iwueze and Nwogu [10] observed that when the trend-cycle 

component is linear, the column variances of the Buys-Ballot 

table are constant for the additive model, but contain the 

seasonal component for the multiplicative model. Thus, choice 

between additive and multiplicative models reduces to test for 

constant variance to identify the additive model. They pointed 

out that any of the tests for constant variance can be used to 

identify a series that admits the additive model. This is an 

improvement over what is in existence. However, this 

approach can only identify the additive model (when the 

column variance is constant), but does not tell the analyst the 

alternative model when the variance is not constant. The 

implication of this is that when the test for constant variance 

says the appropriate model for a study series is not the additive 

model; an analyst still faces the challenge of distinguishing 

between mixed model and the multiplicative model. 

2. Material and Methods 

The method adopted in this study is the Buys-Ballot 

procedure in descriptive time series. The procedure has been 

developed for choice of model, among other uses, based on 

the row, column and overall means and variances of the 

Buys-Ballot table see [11-13]. For a series that has linear 

trend, the row, column and overall means and variances of 

the Buys-Ballot table for additive and mixed models are 

obtained by Iwueze and Nwogu [14], Nwogu el al [15] are 

given in Table 1. 

For additive and mixed models, 1 (a) The row means 

mimic the shape of the trending parameters and do not 

contain the seasonal effect for the additive model. (b) The 

row means of the mixed model mimic the shape of the 

trending curves of the original series and contain seasonal 
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effect in 1

1

s

j

j

C JS
=
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2 (a) The column means mimic the shape of the trending 

parameters and contain seasonal indices for additive model. 

(b) For mixed model, the column means mimic the shape of 

the trending curves of the original series and contain the 

seasonal indices. 3. The row and overall variances contain 

both trending parameters and seasonal indices for additive 

and mixed models. 4. The column variances of the Buys-

Ballot table is constant for additive model, but a function of 

slope and seasonal indices for the mixed model. 

Table 1. Summary of row, column and overall means and variances of Buys-Ballot for additive and mixed models. 

Measures Additive model Mixed model 
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2
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Source: Iwueze and Nwogu (2014), Nwogu el al (2019). 

These properties of row, column and overall averages and 

variances of the Buys-Ballot table are what could be used for 

estimation and assessment of trend parameters, estimation 

and assessment of seasonal indices and choice of the 

appropriate for time series decomposition. 

Estimation of Trend Parameters 

Row means and overall means are used to estimate 

parameters of the trend line. We assume that the length of 

periodic interval is s  

For additive model, using the expression in table 1, we 

obtain 

( ) ( )1
2

i

b
X a s bs i= − − +                           (7) 

i
α β≡ +                                         (8) 

where ( )1 ,
2

b
a s bsα β= − − =  

( )ˆ 1
2

b
a sα∴ = + −                              (9) 

b̂
s

β=                                        (10) 

This reduces to  

i iX a e= +                                      (11) 

when there is no trend. That is when 0b =  (Table 1) 

For mixed model, we obtain using the expression in Table 

1 

( ) ( )1iX a b s c bs i= − − +                          (12) 

i
α β≡ +                                       (13) 

Hence,  

( )1
ˆâ b s cα∴ = + −                            (14) 

b̂
s

β=                                    (15) 

when 0b = , that is when there is no trend 

.iX a ei= +                               (16) 

Estimates of , 1, 2,...,5jS j =  

The column and overall means are used to estimate the 

seasonal indices. Again, we assume that the length of 

periodic interval is s . Using the expression in Table 1 we 

obtain, additive model 
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2

j j j

b
X a n s b S= + − + +                     (17) 

j j
Sα β ≡ + +                               (18) 

where ( )
2

b
a n sα = − −  

bβ =                                       (19) 

( )ˆ
2

j j j

b
S X a n s b

 ∴ = − + − + 
 

                   (20) 

when there is no trend. That is when ( 0b = ), it is clear from 

Table 1 that 

.
ˆ

j j jS X a e= − −                              (21) 

For mixed model, we obtain using the expression in Table 1 

.
2

j j j

n s
X a b b S

 −  = − +  
  

                            (22) 

j jSα β ≡ +                                     (23) 

where 

2

n s
a bα − = +  

 
                                  (24) 

bβ =                                          (25) 

.ˆ

2

j

j

j

X
S

n s
a b b

∴ =
− + + 

 

                       (26) 

When there is no trend ( 0b = ) we obtain from (Table 1) 

.

.

ˆ j

j

j

X
S

a e
=

+
                                (27) 

Table 2. Estimates of Parameters for linear trending curve and seasonal 

indices. 

Parameter Additive model Mixed model 

a ( )
ˆ

1
2

b
sα + −  ( )1b̂ s cα + −  

b 
s

β  
s

β  

jS  ( ).
2

j j
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 − + − + 
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 .

2

j

j

X

n s
a b b

− + + 
 

 

Note α  and β  are estimates obtained from the regression equations of row 
means on row number. 

From table 2, we observed that the estimates of the trend 

parameters and seasonal indices are not the same for both 

additive and mixed. 

Table 3. Estimates of trend parameters and seasonal indices when there is 

no trend i.e. (b=0). 

Estimate Additive model Mixed model 

iX  
ia e+  

ia e+  

Estimate Additive model Mixed model 

. jX  
. j

a e+  
. ja e+  

..X  
..

a e+  
..a e+  

jS
 

j jX a e− −  .

.

j

j

X

a e+

 

It is clear from Table 3 that when there is no trend i.e. 

(b=0), the estimates of row, column and overall means are the 

same for the two models while the estimates of seasonal 

indices are not the same for both additive and mixed models. 

3. Real Life Example 

The real life example is based on monthly data on number 

of registered road traffic accidents in Owerri, Imo State, 

Nigeria for the period of 2009 to 2018 shown in Table A1. 

The data of 120 observations has been arranged in a Buys-

Ballot table as monthly data (s = 12) and for 10 years (m = 

10). The actual and transformed series are given in figures 

3.1 and 3.2. The expressing of a linear trend and seasonal 

indices for an additive model is given as 

 

Figure 1. Time plot of the actual series on the number of road accidents 

between (2009-2018). 

Hence, . 3.0291 0.0276jX i= +  

Using (9), (10) and (20) we have 

0.0276ˆ
12

b =  

0.0023=  

12 1
ˆ 3.0291 0.0023

2
a

− = +  
 

 

ˆ 3.0418a =  

( ).

0.0023ˆ 3.0418 120 12 0.0023
2

j jS X j
 = − + − + 
 

 

.
ˆ 3.166 0.0023j jS X j= − −  

The expression of linear trend and seasonal indices for the 

mixed model is given a 

Hence, 3.214 0.0052jX j= −  

Using (24), (25) and (26), we obtain, 
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ˆ 0.0052b = −  

( ) 120 12
ˆ 3.214 0.0052

2
a

− = − −  
 

 

ˆ 3.4948a =  

.ˆ
3.214 0.0052

j

j

X
S

j
=

−
 

 

Figure 2. Time plot of the transformed series on the number of road 

accidents between (2009-2018). 

Table 4. Estimates of Parameters of Trend and Seasonal Indices. 

Parameter Additive model values Mixed model values 

â  3.0418 3.4948 

b̂  0.0023 -0.0052 

1Ŝ  1.2737 1.3823 

2Ŝ  -0.3806 0.8683 

3Ŝ  -0.4029 0.8622 

4
Ŝ  -0.0722 0.9659 

5Ŝ  -0.1195 0.9521 

Parameter Additive model values Mixed model values 

6Ŝ  -0.00252 0.9709 

7
Ŝ  -0.2881 0.9012 

8Ŝ  -0.2554 0.9122 

9
Ŝ  -0.0347 0.9818 

10Ŝ  -0.375 0.8766 

11Ŝ  -0.4233 0.8624 

12Ŝ  1.1364 1.3492 

1

ˆ
s

j

j

S
=
∑  0.0000 12.0000 

Note (1) Additive model satisfies 

1

0
s

j

j

S
=

 
= 

 
∑  as in (4) 

(2) Mixed model satisfies 

1

s

j

j

S s
=

 
= 

 
∑  as in (6) 

4. Concluding Remark 

This paper has discussed the Buys-Ballot procedure for 

comparing the row, column and overall means and variances 

of the Buys-Ballot table for additive and mixed models in 

time series decomposition when trend-cycle component is 

linear. Estimates of trend parameters and seasonal indices are 

discussed. Results show that seasonal variances of the Buys-

Ballot table is constant for additive model and a function of 

slope and seasonal effects for mixed model. Also, when there 

is no trend ( )0b = , the estimates of row, column and overall 

means are the same for the two models while the estimates of 

seasonal indices are not the same for both additive and mixed 

models. 

Appendix 

Table A1. Buys-Ballot table for the data on the number of road accidents (2009-2018). 

Months/Year JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC .IX  2

.iσ  

2009 36 8 18 30 26 26 38 26 18 20 22 46 26.2 105.8 
2010 68 14 16 12 18 48 14 34 32 20 38 70 32.0 425.5 

2011 98 8 6 18 46 16 36 28 16 30 24 70 33.0 731.3 

2012 106 20 4 20 26 42 4 48 36 30 20 122 39.8 1386.5 
2013 86 24 30 16 40 4 26 8 14 50 12 52 30.2 555.2 

2014 42 10 20 64 6 24 24 16 56 24 68 48 33.5 452.5 

2015 68 12 12 8 10 12 10 2 40 2 2 38 18.0 408.0 
2016 80 16 12 12 12 30 6 14 10 8 2 54 21.3 531.2 

2017 154 22 28 30 18 14 24 20 6 6 16 144 40.2 2644.0 

2018 254 72 64 78 66 86 54 62 78 40 50 314 101.5 7595.0 

. jX  99.2 20.6 21.0 28.8 26.8 30.2 23.6 25.8 30.6 23.0 25.4 95.8   

2

. jσ
 

4085.5 358.3 298.9 557.5 352.2 567.5 251.4 336.4 520.9 232.2 442.7 7080.4   

Table A2. Buys-Ballot table for the transformed data on the number of road accidents (2009-2018). 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec .IX  2

.iσ  

2009 3.5835 2.0794 2.8904 3.4002 3.2581 3.2581 3.6376 3.2581 2.8904 2.9956 3.0910 3.8286 3.181 0.207 
2010 4.2195 2.6391 2.7726 2.4849 2.8904 3.8712 2.6391 3.5264 3.4657 2.9957 3.6376 4.2485 3.283 0.394 

2011 4.5850 2.0794 1.7918 2.8904 3.8286 2.7726 3.5835 3.3322 2.7726 3.4012 2.9957 4.2485 3.205 0.665 

2012 4.6634 2.9957 1.3863 2.9957 3.2581 3.7377 1.3863 3.8712 3.5835 3.4012 2.9957 4.8040 3.257 1.119 
2013 4.4544 3.1781 3.4012 2.7726 3.6889 1.3863 3.2581 2.0794 2.6391 3.9120 2.4849 3.9512 3.101 0.760 

2014 3.7377 2.3026 2.9957 4.1589 1.7918 3.1781 3.1781 2.7726 4.0254 3.1781 4.2195 3.8712 3.284 0.574 

2015 4.2195 2.4849 2.4849 2.0794 2.3026 2.4849 2.3026 0.6932 3.6889 0.6932 0.6932 3.6376 2.314 1.391 
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Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec .IX  2

.iσ  

2016 4.3820 2.7726 2.4849 2.4849 2.4849 3.4012 1.7918 2.6391 2.3026 2.0794 0.69312 3.9889 2.625 0.951 

2017 5.0370 3.0910 3.3322 3.4012 2.8904 2.6391 3.1781 2.9957 1.7918 1.7918 2.7726 4.9698 3.158 1.014 
2018 5.5373 4.2767 4.1588 4.3567 4.1897 4.4544 3.9889 4.12713 4.3567 3.6889 3.9120 5.7494 4.400 0.384 

. jX  4.442 2.790 2.770 3.103 3.058 3.118 2.894 2.929 3.152 2.814 2.768 4.330 3.283 0.394 

2

. jσ
 

0.329 0.429 0.638 0.538 0.546 0.732 0.714 0.976 0.648 0.994 1.465 0.429 3.205 0.665 

Source: Federal Road Safety Corps Owerri, Imo State (2009-2018). 
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