
 
American Journal of Mathematical and Computer Modelling 
2020; 5(1): 1-11 

http://www.sciencepublishinggroup.com/j/ajmcm 

doi: 10.11648/j.ajmcm.20200501.11 

ISSN: 2578-8272 (Print); ISSN: 2578-8280 (Online)  

 

Perturbation Procedures in the Dynamic Analysis of a 
Toroidal Shell Segment Pressurized by a Step Load 

Anthony Monday Ette, Joy Ulumma Chukwuchekwa
*
, Williams Ifeanyichukwu Osuji,  

Atulegwu Chukwudi Osuji 

Department of Mathematics, School of Physical Sciences, Federal University of Technology, Owerri, Imo State, Nigeria 

Email address: 

 

*Corresponding author 

To cite this article: 
Anthony Monday Ette, Joy Ulumma Chukwuchekwa, Williams Ifeanyichukwu Osuji, Atulegwu Chukwudi Osuji. Perturbation Procedures in 

the Dynamic Analysis of a Toroidal Shell Segment Pressurized by a Step Load. American Journal of Mathematical and Computer Modelling. 

Vol. 5, No. 1, 2020, pp. 1-11. doi: 10.11648/j.ajmcm.20200501.11 

Received: November 22, 2019; Accepted: December 13, 2019; Published: January 17, 2020 

 

Abstract: This paper uses perturbation techniques in asymptotic procedures to determine the normal displacement, the 

associated Airy stress function and the dynamic buckling load of an imperfect, finite toroidal shell segment pressurized by a 

step load. The adoption of asymptotic and perturbation procedure is made possible by the presence of small non-dimensional 

parameter on which asymptotic expansions are made possible. It is assumed here that the imperfection can be regarded as the 

first term in the Fourier Sine series expansion. The buckling modes are also assumed to be strictly in the shape of the 

imperfection which is in turn given in the shape of the classical buckling mode. In the final analysis, a simple but implicit 

formula for determining the dynamic buckling load was obtained. The dynamic buckling load was related to the corresponding 

static buckling load and that relationship is independent of the imperfection parameter. It is observed, that this procedure, 

perhaps more than other ones, can be used to analyze relatively more complicated problems particularly where more demands 

and restrictions are placed on the imperfection parameter. The results are strictly and are valid as far as the imperfection 

parameter is relatively small compared to unity. 
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1. Introduction 

An elastic toroidal shell segment is one of the most 

imperfection–sensitive structures in Structural Mechanics, 

yet, little (to our knowledge) seems to be known about its 

dynamic stability when subjected to time dependent loads. 

Unlike cylindrical shells which it shares some form of 

semblance of structural similarity, investigations probing into 

the dynamic behavior of toroidal shell segments appear to be 

rather scanty. In this investigation, our aim is to explore the 

deformation, in terms of the normal displacement and Airy 

stress function, of a finite imperfect toroidal shell segment 

pressurized by a step load. We shall also aim at deriving an 

implicit formula for evaluating the dynamic buckling load of 

the structure assuming that it is pressurized by a step load. 

One of the earliest investigations on toroidal shell 

segments was done by Stein and McElman as in [1], while 

later, Hutchinson in [2] studied the initial post buckling 

behavior of toroidal shell segment. Some of the relatively 

recent studies on the structure include investigations by 

Oyesanya in [3, 4], who used perturbation techniques and 

asymptotics to study the static stability and imperfection–

sensitivity of the structure when pressurized by a static load. 

Thus, except for a few of these investigations, there seems to 

be a dearth of strictly analytical studies on the dynamic 

behavior of the structure when loaded dynamically. However, 

over the years, there have been studies, in the dynamic realm, 

of similar structures including circular cylindrical and 

spherical shells as well as plates. Such investigations include 

those found in [5], that studied the dynamic buckling of 

externally pressurized imperfect cylindrical shells, as well as 

the work in [6], that studied nonlinear axisymmetric dynamic 

buckling of laminated angle–ply composite spherical caps. 

Other relevant studies include investigations in [7–11] among 

others. Mention must however be made of the investigation 
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by Kriegesman as in [12], that investigated sample size 

dependent probabilistic design of axially compressed 

cylindrical shells, while in [13], Hu and Burgue��o equally 

investigated elastic post buckling response of axially loaded 

cylindrical shells with seeded geometric imperfection design. 

The aim of this work is to use regular perturbation 

technique and asymptotic expansion of the relevant variables 

to determine the normal displacement, the associated Airy 

stress function and the dynamic buckling load of an 

imperfect, finite toroidal shell segment pressurized by a step 

load. The work also intends to relate the dynamic buckling 

load to the corresponding static buckling load and that 

relationship is independent of the imperfection parameter. 

2. Formulation of Relevant Equations 

As in [3–4], the relevant Karman–Donnel equation of 

motion and compatibility equation regarding the normal 

displacement W (X, Y, T) and Airy stress function F (X, Y, T) 

of a finite imperfect toroidal shell segment of length L, 

pressurized by a step load P (T) are respectively given as 

��,�� + �∇
� +	 �
 �,�� + �� �,�� + 	� ��� �� +�� �,�� +	�1 − �� 
�� �� +�� �,��� = ��� +�� , ��            (1) 

and 

�� ∇
� − �
�,�� − �� �,�� = − �� ��� +�� ,��         (2) 

0 < # < $, 0 < % < 2'                         (3) 

� = �,� = 0                                     (4) 

� = �,�� = � = 	�,�� = 0	()	# = 0, $          (5) 

where, E is the Young’s modulus and X and Y are the 

respective axial and circumferential coordinates, �  is the 

mass per unit area, T is the time variable, a and b are the 

inner and outer radii respectively, h is the thickness, S is a 

symmetric bilinear functional defined as 

���, *� = 	�,��*,�� + �,��*,�� − 2�,��*,��          (6) 

and ∇
  is the two-dimensional biharmonic operator defined 

as 

∇
≡ � ,-,�- + ,-,�-��                                 (7) 

Here, ��  is the time-independent, stress–free and 

continuously differentiable imperfection function of X and Y, 

while the bending stiffness D is 

� = 	 .ℎ012�1 − 1�� 
where 1 is Poisson’s ratio. 

3. Nondimensionalization of the 

Governing Equations 

For convenience, we now introduce the following 

nondimensional quantities: 

2 = 3�4 , 5 = �
 , 67� = 8� , 7 = 	8                       (8) 

9:�)� = 4-
;3-< , = = 	 4->����?@-�3-
 , A = 	  
                 (9) 

B = 4-�3
�- , C�B� = −� D�EF��                      (10) 

) = �3-�< GH �I -H
4-                                  (11) 

Here, 9 is a nondimensional load amplitude whose value, 9< at dynamic buckling, we are to determine. ��)� is a step load such that 

��)� = JK, L > 00, L < 0                              (12) 

while the imperfection amplitude 6 is such that 0 < 6 ≪ 1. 

We shall consider simply–supported boundary conditions as 

well as homogeneous initial conditions, and shall neglect 

boundary–layer effect by assuming that the pre-buckling 

deflection is constant so that we assume 

� = −K( �#� + ��O%�� + � -4-3-
��EF�- :               (13) 

� = P
-��?QR�� + ℎ7                       (14) 

The first terms on the right hand sides of (13) and (14) are 

pre–buckling approximations while the parameter α takes the 

value α = 1  if pressure contributes to axial stress through 

end plates but α = 0 if pressure acts laterally. 

On substituting all these quantities into (1) and (2) and 

simplifying, we get 

∇�
7 − 	C�B�T:,UU + BV:,WWX + 9 �Q� �7 + 67��,UU + B �1 − Q�� �7 + 67��,WW� = 	−C�B�AY�:, 7 + 67��        (15) 

∇�
: − �1 + B��T7,UU + BV7,WWX = − ��A�1 + B�Y�7 + 67�,7�                                    (16) 

0 < 2 < ', 0 < 5 < 2', ) > 0                      (17) 

7�2, 5, 0� = 7,Z�2, 5, 0� = 0               (18) 

7 = 7,UU = : = 	:,UU = 0	()	2 = 0, '.                (19) 

and 
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∇�
= � ,-,U- + B ,-,W-�� , Y�K, \� = K,UU\,WW + K,WW\,UU − 2K,UW\,UW (20) 

A subscript following a comma indicates partial 

differentiation and V = 
�. 
4. Perturbation and Asymptotic Solution 

of the Problem 

We shall now let 

)̂ = �1 + ^6� +⋯�)                    (21) 

∴ 	7,Z = �1 + ^6� +⋯�7,Za , 	7,ZZ = �1 + ^6� +⋯��7,ZaZa	                                              (22) 

Now let 

�bc� = ∑ �b�e�c�e��fgh� 6g                                                                            (23) 

Substituting (23), (21) and (22) into (15) and (16) and equating the coefficients of powers of 6, we get 

i�6�: 7,ZaZa���+∇�
7��� − 	C�B�T:,UU��� + BV:,WW���X + 9 �Q� T7��� + 67�X,UU + B �1 − Q�� T7��� + 67�X,WW� = 0            (24) 

i�6�:	∇�
:��� − �1 + B��T7,UU��� + BV7,WW���X = 0                                                         (25) 

	i�6��:	7,ZaZa��� + ∇�
7��� − 	C�B�T:,UU��� + BV:,WW���X + 9 �Q�7,UU��� + B �1 − Q��7,WW����		= 	−C�B�AkYT:���, 7���X + 	YT:���, 7�Xl		                                        (26) 

i�6��:	∇�
:��� − �1 + B��T7,UU��� + BV7,WW���X = − ��A�1 + B�kYT7���, 7���X + 	YT7���, 7�Xl	                       (27) 

i�60�:	7,ZaZa��� + ∇�
7�0� − 	C�B�T:,UU�0� + BV:,WW�0�X + 9 �Q�7,UU�0� + B �1 − Q��7,WW�0��	= 	−C�B�AkYT:���, 7���X + 	YT:���, 7���X + YT:���, 7�X − 2^7,ZaZa���	l			                                (28) 

i�60�:	∇�
:�0� − �1 + B��T7,UU�0� + BV7,WW�0�X = − ��A�1 + B�kYT7���, 7���X + 	YT7���, 7���X + 	YT7���, 7�Xl          (29) 

7�g� = 7,UU�g� = :�g� = :,UU�g� = 0, ()	2 = 0, '                                                         (30) 

7�2, 5, 0� = 0, m = 1, 2, 3, …                                                                           (31) 

7,Za�p��2, 5, 0� = 0, Y = 1, 2;	7,Za�0��2, 5, 0� + 7,Za����2, 5, 0� = 0                                                  (32) 

r)s. 
The work in [5] had noted that any time–independent stress–free initial normal displacement 7��2, 5�, satisfying reasonable 

smoothness conditions, can be expanded in a double Fourier series. Thus, if the edge effects are neglected and the origin of the 

circumferential coordinate is appropriately chosen, such a series is 

7��2, 5� = 	(tYm�2Ym��5 +	∑ T(tuvYm�w5 + xtuvsyYw5XYm�z2	fuh�,vh{�u,v�|��,}�                                 (33) 

or 

7��2, 5� = ∑ T(tuvYm�w5 + xtuvsyYw5XYm�z2	fuh�,vh{                                                      (34) 

7m)ℎ 

xt�} = 0	                                                                                       (35) 

However, for the purpose of the solution of the problem posed in this work, we shall assume 

7��2, 5� = 	(tYm�z2Ym��5	                                                                       (36) 

where (t is a scalar. 

Throughout the analysis of this paper, we shall use the fact that, if 
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7�2, 5� = 	∑ �~�syY\5 + ~�Ym�\5�Ym�K2	fPh�,�h{                                                          (37) 

)ℎr� 

∇�
7 = 	∑ �K� + B\����~�syY\5 + ~�Ym�\5�Ym�K2	fPh�,�h{                                              (38) 

All through this analysis, any integration with respect to x, will have 0 and π as the lower and upper limits respectively while 

integration with respect to y will have 0 and 2π as the lower and upper limits respectively. 

Solution of Equations of Order 6 

Generally, we shall let 

�b�e�c�e�� = ∑ �bI�e�cI�e��fPh�,�h{ Ym�K2syY\5 + �b-�e�c-�e�� Ym�K2Ym�\5	                                           (39) 

We now substitute (39) into (25), for m = 1 and get, using (38) 

∑ ���K� + B\���:���� + �1 + ξ���\�VB − K��7�����Ym�K2syY\5 +fPh�,�h{	��K� + B\���:���� + �1 + ξ���\�VB − K��7�����Ym�K2Ym�\5� = 0                                  (40) 

We now multiply (40) by Ym�z2syY�5 and see that for K = z, \ = �, we get 

:���� =	?��E��-T}-�F?u-XbI�I��u-EF�}-�- 	                                                                      (41) 

Similarly, we next now multiply (39) by Ym�z2Ym��5 and for K = z, \ = �, integrate to get 

:���� =	?��E��-T}-�F?u-Xb-�I��u-EF�}-�- 	                                                                       (42) 

Next, we assume (39) in (24), multiply by Ym�z2Ym��5 for m = 1, and assume (36) and simplify to get (using (42)) 

7�,ZaZa��� + ��7���� = 9(t �Qu-
� + ��B �1 − Q���	                                                        (43) 

7�����0� = 7�,Za����0� = 0	                                                                         (44) 

where, 

�� = ��z� + B���� + J�uD�E��� + ��VB� �1 + ξ�� � }-�F?u-
�u-EF}-�-� − 9 �Qu-

� + B�� �1 − Q����	              (45) 

Here, we shall assume �� > 0, ∀	z, �. The solution of (43 – 45) is 

7���� = ��1 − syY�)̂�	                                                                         (46) 

� = �
tJ��-- E}-F��?�-���- 	                                                                           (47) 

We also multiply (39) by Ym�z2syY�5 for m = 1, (assuming (36)), and simplify to get 

7�,ZaZa��� + ��7���� = 0	                                                                          (48) 

7�����0� = 7�,Za����0� = 0	                                                                      (49) 

The solution of (48) and (49) is 

7���� ≡ 0	                                                                                     (50) 

At this level of perturbation, we can write 

�b�I�c�I�� = � �?���7����Ym�z2Ym��5	                                                              (51) 

where, 
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�{ = �1 + ξ�� � }-�F?u-
�u-E}-�F�-�	                                                                 (52) 

Solution of Equations of order 6� 

On substituting for 7��� and :��� from (51) and (52) in (26) and (27) and simplifying, we get 

7,ZaZa��� + ∇�
7��� − 	C�B�T:,UU��� + BV:,WW���X + 9 �Oz�2 7,UU��� + B �1 − O2�7,WW���� 
= −C�B�A�{�z��� �7����� + (t7����� �syY2z2 + syY2�5�	                                                (53) 

∇�
:��� − �1 + B��T7,UU��� + BV7,WW���X = − ��A�1 + B��z��� �7����� + (t7����� �syY2z2 + syY2�5�   (54) 

We now substitute (39) in (54), for m = 2 and use (40) to get 

∑ � ��K� + B\���:���� + �1 + B���\�VB − K��7�����Ym�K2syY\5+	��K� + B\���:���� + �1 + B���\�VB − K��7�����Ym�K2Ym�\5�
= − ��A�1 + B��z��� �7����� + (t7����� �syY2z2 + syY2�5�	

fPh�,�h{                                               (55) 

Multiplying (55) by Ym�z2syY2�5 and for K = z, (m odd), \ = 2�, we get 

:���� = �-��I�����-� �b-�I�-E
tb-�I��?��EF�-T
}-�F?u-XbI�-��u-E
}-F�- 	                                                              (56) 

We can further write 

:���� = −��� �7����� + (t7����� − ���7����	                                                                  (57) 

��� = -��I�����-��u-E
}-F�- , ��� = ��EF�-T
}-�F?u-X�u-E
}-F�- 	                                                                 (58) 

Similarly, multiplying (56) by Ym�z2Ym�2�5 and for K = z, (m odd), \ = 2�, we get 

:���� = ?��EF�-T
}-�F?u-Xb-�-��u-E
}-�F�- 	                                                                            (59) 

Next, we substitute in (53) and thereafter, multiply through by Ym�z2syY2�5, and for K = z, (m odd), \ = 2�, simplify to 

get (using (56)) 

7�,ZaZa��� +  �7���� = −��� + �0� �7����� + (t7�����	                                                         (60) 

7�����0� = 7�,Za����0� = 0	                                                                              (61) 

where, 

 � = ��z� + 4B���� + J�uD�E��� + 4��B� �1 + ξ�� � 
}-�F?u-
�u-E
}-F�-� − 9 �Qu-

� + 4��B �1 − Q���� > 0, ∀	z, �                (62) 

�� = J�uD�E��� + 4��B� ��¢��EF�u}-�uE
}-F�3 �	                                                                    (63) 

�0 = 
��¢u}-3 � D�E���	                                                                                (64) 

In the same fashion, we next multiply (53) through by Ym�z2Ym�2�5 and simplify to get 

7�,ZaZa��� +  �7���� = 0	                                                                            (65) 

7�����0� = 7�,Za����0� = 0	                                                                          (66) 
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Using (46), it is seen that (58) simplifies to 

7�,ZaZa��� +  �7���� = −�
£�¤ − �¥syY�)̂ + �¦syY2�)̂§	                                                  (67) 

where, 

�
 = �� + �0, �¤ = �0��� + (t��	                                                                (68) 

�¥ = �2�� + (t��, �¦ = ¨-� 	                                                                   (69) 

Solving (67 - 69) yields 

7���� = ©�syY )̂ − �
 ��ª«- − �¬­®p�Za«-?�- + �¯­®p��Za«-?
�- �	                                                    (70) 

where, 

©� = �
 ��ª«- − �¬«-?�- + �¯«-?
�-�	                                                                    (71) 

©� = ���
 � 0�«- − �«-?�- + ���«-?
�-�� + i���	                                                   (72) 

Similarly, the solution of (65) and (66) is 

7���� ≡ 0 

It follows at this order of perturbation, that 

�b�-�c�-�� = �bI�-�cI�-�� Ym�z2syY2�5	                                                                 (73) 

Solutions of Equations of Order 60 

We now substitute in (28) and (29) to get 

7,ZaZa�0� + ∇�
7�0� − 	C�B�T:,UU��� + BV:,WW���X + 9 �Oz�2 7,UU�0� + B �1 − O2�7,WW�0�� 
= −�z���C�B�A£9Ym�3�5 − Ym��5 − syY2z2Ym�3�5 + 9syY2z2Ym��5§T27����7���� + (t7����X − 2^�7�,ZaZa��� Ym�z2Ym��5	   (74) 

∇�
:�0� − �1 + B���7,UU�0� + BV7,WW�0�� = − �± �z���A�1 + B�£9Ym�3�5 − Ym��5 − syY2z2Ym�3�5 + 9syY2z2Ym��5§�27����7���� + (t7����� (75) 

Now, let 

�b�²�c�²�� = ∑ �bI�²�cI�²��fPh�,�h{ Ym�K2syY\5 + �b-�²�c-�²�� Ym�K2Ym�\5	                                            (76) 

Substituting (76) in (75), gives 

³ � ��K� + B\���:��0� + �1 + B���\�VB − K��7��0��Ym�K2syY\5+	��K� + B\���:��0� + �1 + B���\�VB − K��7��0��Ym�K2Ym�\5�
f

Ph�,�h{
 

= − �± �z���A�1 + B�£9Ym�3�5 − Ym��5 − syY2z2Ym�3�5 + 9syY2z2Ym��5§T27����7���� + (t7����X	               (77) 

Next, we multiply (77) by Ym�z2Ym��5 and for K = z (odd), \ = �, get 

:��}��0� = ¢��EF�u}-��b-�I�bI�-�E
tbI�-���3�u-E}-F�- − ��EF�-T}-�F?u-Xb-����²�
�u-E}-F�- 	                                                     (78) 

In the same way, multiplying (77) by Ym�z2Ym�3�5, we get (after simplification) 
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:��0}��0� = − �´u}-¢��EF���b-�I�bI�-�E
tbI�-���3�u-E´}-F�- + ��EF�-T´}-�F?u-Xb-�²���²�
�u-E´}-F�- �	                                                (79) 

Let 

�± = ¢��EF�u}-�3�u-E}-F�-	                                                                                      (80) 

�´ = ´¢��EF�u}-�3�u-E´}-F�- , ��{ = ��EF�-T´}-�F?u-X�u-E´}-F�- 	                                                                (81) 

∴ 	:��}��0� = �±T27����7���� + (t7����X − �{7��}��0� 	                                                      (82) 

and 

:��0}��0� = −k�´T27����7���� + (t7����X + ��{7��0}��0� l	                                                   (83) 

We next substitute for terms in (74), multiply through by Ym�z2Ym��5 and for K = z, \ = �, get 

7��}�,ZaZa�0� + ��7��}��0� = ?¢µu}-3 T:����7���� + :����7���� + :����(tX + ¢��EF�u}-�3�u-E}-F�- J�uD�E��� + ��VB� T27����7���� + (t7����X − 2^7�,Z̅Z̅��� 	  (84) 

By means of simplification, it is to be noted that the first bracket on the right hand side of (84) can be simplified to read 

?¢µu}-3 T:����7���� + :����7���� + :����(tX = −��0 ����� + �{�7����7���� + ���7����0 + 2(t���7����� + (t����7���� + (t���7�����   (85) 

where, 

��0 = ¢µu}-3 � D�EF��	                                                                               (86) 

$r) 
��
 = ¢��EF�u}-�3�u-E}-F�- J�uD�E��� + ��VB�	                                                                   (87) 

In other word, we can recast (84) as 

7��}�,ZaZa�0� + ��7��}��0� = −��0 ����� + �{�7����7���� + ���7����0 + 2(t���7����� + (t��{7���� + (t���7����� 
+��
T27����7���� + (t7����X − 2^7�,Za̅Za��� 	                                                                  (88) 

7��}��0� �0� = 0,7��}�,Za�0� �0� + 7��}�,Za��� �0� = 0	                                                               (89) 

We can further simplify (88) to read 

7��}�,ZaZa�0� + ��7��}��0� = ·2��
 − ��0���� + �{�¸7����7���� + (t7����·��
 − ��0���¸ − 

��0 ����7����0 + 2(t���7����� + (t��{7����� − 	2^7�,ZaZa��� 	                                                  (90) 

Certain terms appearing in (90) can be simplified as follows: 

7����7���� = �0�
 ��
0�«- − �«-?�-� +	� �«-?�- + 0�«- + �
�«-?
�-�� syY�)̂ −� ���«-?
�-�+ �«-?�-� syY2�)̂ + 	� �
�«-?
�-�� syY3�)̂ �  

+�0��¥ �syY )̂ − �� �syY�  + ��)̂ + syY�  − ��)̂�� + 	i����	                                        (91) 

7����0 = �0 �¤�− �¤
 syY�)̂ + 0� syY2�)̂ − ­®p0�Za
 �	                                                       (92) 

7����� = �� �0�− 2syY�)̂ + ­®p��Za� �	                                                                  (93) 
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where, 

��¥ = � 0�«- − �«-?�- + ���«-?
�-��	                                                                 (94) 

We now substitute all the simplified terms into (90) and to ensure a uniformly valid solution in )̂, equate to zero the 

coefficient of syY�)̂	and get 

^ = ¨-��- ��¤�II�I²
 − �
·2��
 − ��0���� + �{�¸ � �«-?�- + 0�«- + �
�«-?
�-��� + i���	                (95) 

The remaining equation in (90) is re-arranged to give 

7��}�,ZaZa�0� + ��7��}��0� = �0£��¦ + ��±syY2�)̂ + ��´syY3�)̂ + ��{syY )̂ + ���syY�� +  �)̂ + ���syY�� −  �)̂§     (96) 

7��}��0� �0� = 0,7��}�,Za�0� �0� + 7��}�,Za��� �0� = 0	                                                        (97) 

where, 

��¦ = ��¤ � 0�«- − �«-?�-� − ¤�II�I²� 	                                                             (98) 

��± = −��¤ � ���«-?
�-�+ �«-?�-� − 0�II�I²� 	                                                        (99) 

��´ = �Iª
 � �«-?
�-� + �II�I²
                                                                   (100) 

��{ = ��¤��¥, ��� = ?�Iª�I¬� = ���	                                                         (101) 

The solution of (96) and (97) is 

7��}��0� �)̂� = ©�syY�)̂ + �0 ��I¯�- − �I¹­®p��Za0�- − �Iº­®p0�Za±�- + �-�­®p«Za�-?«- − �-I­®p��E«�Za«���E«� + �--­®p��?«�Za«���?«� �	           (102) 

©� = −�0 ��I¯�- − �I¹0�- − �Iº±�- + �-��-?«- − �-I«���E«�+ �--«���?«��	                                    (103) 

We now substitute into (77), multiply by Ym�z2Ym�3�5, and for K = z	�y»»�, \ = 3�, arrange to get 

7��0}�,ZaZa�0� + ¼�7��0}��0� = −��0 �:����7���� + :����T7���� + (tX� + ��
T27����7���� + (t7����X	           (104) 

7��0}��0� �0� = 0,7��0}�,Za�0� �0� = 0	                                                             (105) 

where, 

¼� = ��z� + 9��B�� + J�uD�EF�� + 9��BV� �1 + B���9��BV − z�� − 9 �Qu-
� + 9��B �1 − Q���� > 0, ∀	z, � (106) 

where, 

��0 = ¢� ½I���-u}-
3 , ��
 = ´¢u}-��EF�-�3 J�uD�EF�� + 9��BV�	                                              (107) 

The first term on the right hand side of (104) can be simplified as 

−��0 �:����7���� + :����T7���� + (tX� = −��0 ����� + �{�7����7���� + ���7����0 + 2(t7����� + (t����7���� + (t���7����� 
Thus, equation (101) takes the form 

7��0}�,ZaZa�0� + ¼�7��0}��0� = −��0 ����� +�{�7����7���� + ���7����0 + 2(t7����� + (t����7���� + (t���7����� + ��
 �27����7���� + (t7�����	  
(108) 

In passing, we note that the term 7����7���� appearing in (108) is as already simplified in (91). We further simplify (108) to 

read 
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7��0}�,ZaZa�0� + ¼�7��0}��0� = �·2��
 − ��0���� +�{�¸7����7���� + (t7����·��
 − ��0���¸ − ��0 ����7����0 + 2(t7����� + (t��{7������ (109) 

Yet, a final simplification of (110) is 

7��0}�,ZaZa�0� + ¼�7��0}��0� = �0£��¤ + ��¥syY�)̂ + ��¦syY2�)̂ + ��±syY3�)̂ + ��´syY )̂ + �0{syY�� +  �)̂ + �0�syY�� −  �)̂§   (110) 

7��0}��0� �0� = 0,7��0}�,Za�0� �0� = 0	                                                                  (111) 

where, 

��¤ = ��¤ � 0�«- − �«-?�-� − ¤�II�-²� 	                                                             (112) 

��¥ = � �«-?�- + 0�«- + �
�«-?
�-�− �¤
 � + i����	                                                       (112) 

��¦ = −��¤ � ���«-?
�-�+ �«-?�-� − 0�II�-²� 	                                                        (113) 

��± = �Iª
 � �«-?
�-� + �II�-²
 , ��´ = ��¤��¥	                                                   (114) 

�0{ = �0� = ?�Iª�I¬� 	                                                                          (115) 

Solving (111) and (112), gives 

7��0}��0� �)̂� = ©0syY¼)̂ + �0 ��-ª¾- + �-¬­®p�Za¾-?�- + �-¯­®p��Za¾-?
�- + �-¹­®p0�Za¾-?´�- + �-º­®p«Za¾-?«- + �²�­®p��E«�Za¾-?��E«�- + �²I­®p��?«�Za¾-?��?«�- �     (116) 

©0 = −�0 ��-ª¾- + �-¬¾-?�- + �-¯¾-?
�- + �-¹¾-?´�- + �-º¾-?«- + �²�¾-?��E«�- + �²I¾-?��?«�-�	                          (117) 

At this level of perturbation, we write 

�b�²�c�²�� = �b-����²�
c-����²� � Ym�z2Ym��5 + �b-�²���²�

c-�²���²� � Ym�z2Ym�35	                                                   (118) 

Thus, generally, the entire deformation, in terms of displacement and the associated Airy stress function, is 

�bc� = 6 �b-�I�c-�I�� Ym�z2Ym��5 + 6� �bI�-�cI�-�� Ym�z2syY25 + 60 ��b-����²�
c-����²� � Ym�z2Ym��5 + �b-�²���²�

c-�²���²� � Ym�z2Ym�3�5� + ⋯ (119) 

5. Dynamic Buckling Load 

To determine the dynamic buckling load 9<, we shall use 

the displacement components that are strictly in the shape of 

imperfection. Thus, from (119), we have 

7 = 67����Ym�z2Ym��5 + 607��}��0� Ym�z2Ym��5 + ⋯ (120) 

As observed by [14, 15], the condition for dynamic 

buckling load is 

¿�¿bÀ = 0                                     (121) 

where 7
 is the maximum displacement obtained from (120). 

Since (120) is a function of space and time, the conditions for 

maximum displacement are 

,b,U = 0, ,b,W = 0, �1 + 6�^ + ⋯ � ,b,Za = 0       (122) 

From the first and second terms of (120), we obtain the values 2
 and 5
 of	2 and 5 respectively at maximum displacement as 

2
 = 3�u , 5
 = 3�}                         (123) 

On evaluating (120) at maximum values of x and y, we get 

7 = 67���� + 607��}��0� +⋯                   (124) 

Let )̂
 be the value of )̂ at maximum displacement and let 

us expand it asymptotically as 

)̂
 = )̂{ + 6�)̂� +	60)̂0 +⋯	                 (125) 

On expanding the last term of (122), we get 

�1 + 6�^ +⋯ � �6 �7��}�,Za��� �)̂{� + �6�)̂� +	60)̂0 +⋯�7��}�,ZaZa��� �)̂{� + �6�)̂� +	60)̂0 +⋯��7��}�,ZaZaZa��� �)̂{� + ⋯� +
60 �7��}�,Za�0� �)̂{� + �6�)̂� +	60)̂0 +⋯�7��}�,ZaZa�0� �)̂{�� + ⋯ � = 0 (126) 
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where (126) is evaluated at )̂ = )̂{. On equating coefficients 

of powers of 6, we get 

i�6�:	7��}�,Za��� �)̂{� = 0                       (127) 

i�60�:	)̂�7��}�,ZaZa��� �)̂{� + ^7��}�,Za��� �)̂{� = 0       (128) 

r)s. 

From (127), we get, using (48) 

��Ym��)̂{ = 0, ∴ 	 )̂{ = 3�. 

where we have used the least nontrivial value of )̂{ . From 

(128), we get 

)̂� = 0                                    (129) 

On evaluating (124) at )̂
  using (125) and (129) and 

designating by 7
, the value of maximum displacement, we 

get 

7
 = 67�����)̂{� + 607��}��0� �)̂{� + ⋯ = 2�6 + 
¨²Á²0�- �1 + 
�-
0 ��-���E­®p«Za���-?«- + �-I��?­®p��E«�Za��«���E«� ��	                   (130) 

We shall however write (130) simply as 

7
 = Â�6 + Â060 +⋯                                                                               (131) 

where, 

Â� = 2�, Â0 = 
¨²0�- �1 + 
�-
0 ��-���E­®p«Za���-?«- + �-I��?­®p��E«�Za��«���E«� ��                                                 (132)

The work in [16] had earlier noted that the invocation of 

(121) should be preceded by a reversal of the series (131) in 

the form 

6 = »�7
 + »07
0 +⋯                   (133) 

By substituting in (132) for 7
  from (133) and equating 

the coefficients of powers of 6, we get 

»� = �ÃI , »0 = ?Ã²ÃIÄ 	                            (134) 

The maximization (121) is now initiated through (134) to 

get the value of 7
 at dynamic buckling, namely 7¿, as 

7¿ = Å ÃI²0Ã²	                                 (135) 

To determine the equation for obtaining the dynamic 

buckling load 9<, we evaluate (134) at dynamic buckling to 

get 

6 = �0Å ÃI0Ã²	                                 (136) 

On simplifying (136), we get 

��z� + ��B�� + Æ� z=1 + B�
� + ��BVÇ �1 + B�� � ��BV −z��z� + ��B��� − 9< ÆOz�2 + ��B �1 − O2�Ç�

0 �H
 

= 0√� 9<(t6 �Qu-
� + ��B �1 − Q���√É	                                                                        (137) 

where, 

É = �1 + 
�-
0 ��-���E­®p«Za���-?«- + �-I��?­®p��E«�Za��«���E«� ��	                                                                (138) 

and R depends on 9< through � and  . In an earlier paper [17], the static buckling load 9Ê and classical buckling load 9Ã  of 

the same structure were respectively given by 

��z� + ��B�� + Æ� z=1 + B�
� + ��BVÇ �1 + B�� � ��BV −z��z� + ��B��� − 9Ê ÆOz�2 + ��B �1 − O2�Ç�

0 �H
 

= 0√0� 9Ê�(t6� �Qu-
� + ��B �1 − Q���>*�*¦                                                                    (139) 

(for *�, *¦	as there defined) 

and 

9Ã = ��EË�-E ½-�I�ÌÍ��I�Ì�-�ÌÍ�I���-�-E��?�-�Ë 	                                                                             (140) 
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where, 

Î = B�� and for z = 1	                                                                                 (141) 

Using (136) and (138), we can relate the dynamic buckling load 9< and static buckling 9Ê to get 

�	Tu-E}-FX-EJ��½I���-E}-F����EF�-� �-�Í��-
T�-��-�X-�?�ÏJ��-- E}-F��?�-��

�u-E}-F�-EJ��½I���-E}-F����EF�-� �-�Í��-
T�-��-�X-�?�ÐJ��-- E}-F��?�-�� 	�

0 �H = √¥0 ��Ï�Ð�Å ÑÒIÒ¯	                               (142) 

6. Analysis of Results 

The results obtained for any mode m (m odd), namely 

(136), (138) and (141) are implicit in nature and provide 

very useful and simple formulae for determining the 

dynamic buckling load of the structure that is pressurized 

by a step load. As equation (141) clearly shows, the results 

are such that we can relate the dynamic buckling load 9< to 

its static equivalent 9Ê and that relationship is independent 

of the imperfection parameter 6 . The mathematical 

implication is that a knowledge of one of these two 

buckling loads automatically leads to determining the other 

buckling load without the labour of repeating the arduous 

procedure all over for different imperfections. The results 

are however asymptotic and so, are guided by the relative 

smallness of the magnitude of the imperfection magnitude 

in relation to unity. 

7. Conclusion 

By using perturbation and asymptotic procedures in this 

paper, we have been able to analytically determine the 

dynamic buckling load of an imperfect finite toroidal shell 

segment that was pressurized by a step load. The inherent 

stress–free, time–independent but continuously differentiable 

imperfection was expanded in a Fourier series and, in the 

final analysis, an implicit formula for determining the 

dynamic buckling load was obtained. A significant 

contribution is that it is possible to relate the dynamic 

buckling load to its static equivalent and that relationship is 

independent of the imperfection. Thus, if any of these two 

buckling loads is known, then, we can automatically evaluate 

the other buckling load without the labour of repeating the 

arduous procedure all over for different imperfection 

parameters. 
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