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Abstract: As the soul of music, emotion information is widely used in music retrieval and recommendation systems because 

the pursuit of emotional experience is the main motivation for music listening. In the field of music emotion recognition, 

computer scientists investigated computation models to automatically detect the perceived emotion of music, but this method 

ignores the differences between listeners. To provide users with the most accurate music emotion information, this study 

investigated the effects of physiological features on personalized music emotion recognition (PMER) models, which can 

automatically identify an individual’s perceived emotion of music. Applying machine learning methods, we formed relations 

among audio features, physiological features, and music emotions. First, computational modeling analysis shows that 

physiological features extracted from electrocardiogram and electro-dermal activity signals can predict the perception of music 

emotion for some individuals. Second, we compared the performance of physiological feature-based perception and feeling 

models and observed substantial individual differences. In addition, we found that the performance of the perception model 

and the feeling model is related in predicting happy, relaxed, and sad emotions. Finally, by adding physiological features to the 

audio-based PMER model, the prediction effect of some individuals was improved. Our work investigated the relationship 

between physiological state and perceived emotion of music, constructed models with practical value, and provided a reference 

for the optimization of PMER systems. 
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1. Introduction 

Emotion information is one of the most important 

attributes individuals use for music information retrieval 

(MIR) [57], because the pursuit of emotional experience is 

the main motivation for individuals to listen to music [29]. 

Considering the vast library of existing music, a technology 

for automatically identifying music emotion is urgently 

needed to provide individuals with accurate music emotion 

information [74]. In the past two decades, computer scientists 

have expended considerable effort investigating computation 

models to detect the emotion of music [6]. From the early 

general music emotion recognition (MER) model [38, 55] to 

the recent personalized music emotion recognition (PMER) 

model [47, 77], the automatic recognition effect continues to 

improve, and the technology has attracted increasing 

academic attention from computer scientists, psychologists, 

musicologists, and so forth. 

The core of traditional MER research is to form the 

mapping relations between music features and perceived 

emotions [34]; notably, Xu et al first added individual factors 

as additional model inputs and improved the performance of 
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PMER models [77]. According to our review of the literature, 

an individual’s physiological state is rarely considered in 

PMER models, although it has been widely used to predict 

emotions evoked by music [59]. Therefore, this study 

investigated the effects of an individual’s physiological 

features on recognizing perceived emotions of music. 

Considering the practice for real-life use, electrocardiogram 

(ECG) and electro-dermal activity (EDA) signals, which can 

be collected by simple wearable devices [64], were used here. 

When the PMER model is optimized by adding physiological 

features, the accuracy of the music emotion information that 

users receive will increase. This may also facilitate the 

construction of personalized MIR and music 

recommendation systems. 

2. Literature Review 

2.1. Music Emotion Recognition 

MER is a research area that investigates computation 

models to detect the emotion expressed by listening to 

music [6]. MER solves the problem of music emotion 

information annotation by developing technology that 

automatically recognizes music emotion [74] and 

constitutes a process of using computers to (a) extract and 

analyze music features from original music, (b) use 

machine learning (ML) methods to construct the 

relationship (computation models) between music features 

and perceived emotions, and (c) recognize the emotional 

expression of the untagged music. Through these three 

processes, the music database can be organized and 

managed according to emotion [34]. Notably, early music 

psychology researchers have provided theoretical bases for 

MER research [15, 60], and the research on MER has made 

considerable progress in the past two decades because of 

the development of computer technology. With the 

availability and accessibility of MER toolkits, this 

technology has also been recently applied to psychological 

research [68, 77, 83]. 

The strong subjectivity of the ground-truth data, which 

reflects the perceived emotions of human beings, is one of 

the critical issues in MER research because different 

individuals listening to the same music may produce different 

emotion perceptions [14]. To solve this problem, in most 

MER studies, each musical segment is annotated by many 

subjects to obtain a relatively accurate emotional assessment 

[52]. However, this method ignores listeners’ individual 

differences; thus, the automatically recognized emotions may 

be inaccurate for different individuals. Psychological 

research has shown that the judgment of music emotion may 

be influenced by, for example, age [36], music education [42], 

absorption [20], trait empathy [32], and personality [31]. 

Therefore, individuality must be considered in MER systems. 

Yang et al. proposed the personalized MER (PMER) 

approach to study the role of individuality [75], and the 

results of the PMER models showed that the prediction 

accuracy for a user may be improved if the MER system is 

personalized for the user. Based on the work of [75], Xu et al. 

improved the prediction effect of PMER models by adding 

various individual features as model inputs [77]; the feature 

importance results illustrated that felt emotion (emotion 

evoked by music) plays an important role in the prediction of 

the perceived emotion of music, which provided a reference 

for this study (Section 2.2). 

In summary, PMER is derived from MER research and is 

receiving increasing academic attention from psychologists 

and computer scientists. From a theoretical perspective, 

PMER investigates the relationship among music features, 

individual factors, and individual perception of music 

emotion. Additionally, the use of MER technology can 

facilitate related psychological research. From an application 

perspective, a continuously optimized PMER model can 

provide users with music emotion information that is more 

accurate and has been widely used in MIR [11, 71] and music 

recommendation systems [10, 48]. Psychological research 

can also provide a crucial reference to improve PMER 

models. 

2.2. Perceived Emotion and Felt Emotion of Music 

The relationship between the perceived emotion (emotion 

expressed by music) and felt emotion (emotion aroused by 

music) of music has become a firmly established part of the 

research agenda of music psychologists. Gabrielsson found 

that felt emotion (e.g., “the music makes me feel sad”) is 

sometimes the same as (“the music is sad”) and sometimes 

different from (“the music is happy”) the perceived emotion, 

which reinvigorated the question of “internal locus of 

emotion” versus “external locus of emotion” within musical 

communication [14]; subsequently, many studies have 

investigated this relationship. For instance, Kallinen and 

Ravaja found that music seems to arouse emotions similar to 

the emotional quality perceived in music but that the 

relationship may change by emotional category (e.g., “fearful 

music was perceived as negative but felt as positive”) [31]. 

The work of Hunter et al. showed that feeling and perception 

ratings are highly correlated but that perception ratings were 

commonly higher [21]. Schubert concluded after conducting 

a review that the felt emotion rating is frequently rated 

statistically the same or lower than the corresponding 

perceived emotion rating [56]. Emotional contagion theory, 

which holds that humans have an internal “mimicry” of the 

perceived voice-like emotional expression of the music [26, 

27], was then considered one theoretical position for 

explaining the relationship between perceived emotion and 

felt emotion. To avoid this controversial topic, some studies 

have asked participants to assess the emotion of music 

without being explicit regarding “perceived” or “felt” 

emotion [68]. This method indirectly reflected the 

inseparability of perceived and felt emotion. 

The aforementioned inseparable relationship also provided 

a reference for the optimization of the PMER model. As 

aforementioned, Xu et al. found that using felt emotion rating 

as input could significantly improve the prediction 

performance of PMER models [77]. This finding is a 
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reminder that when predicting an individual’s perception of 

music emotion, the individual's emotional state should be 

considered. However, another problem arises, that is, no 

technology can detect individuals' emotional state in real 

time, and it is unrealistic for individuals to constantly 

evaluate and report on their feelings, especially in real life. 

However, physiological states can be detected, and many 

researchers have demonstrated that physiological state and 

emotional state are closely linked [59]. Therefore, this study 

regarded the felt emotion of music (emotional state) as a 

bridge and investigated the relationship between the 

physiological state and perceived emotion of music. 

2.3. Human Emotion Recognition Using Physiological 

Signals 

Human emotion recognition (HER) has attracted 

increasing academic attention in recent years and been 

widely used in many areas, for example, mental health 

monitoring [19], transportation safety enhancing [9], and 

social security [69]. Using physiological signals, the internal 

signals reflecting human physiological states, to predict 

emotions is an HER method [59]. Additionally, music is one 

of the stimuli often used to evoke emotions [17, 73]. Other 

studies have shown that felt emotion of music can be 

recognized by many physiological signals by using, for 

example, an electroencephalogram (EEG) [37], ECG [33], an 

electromyogram (EMG) [18], or skin conductivity (Zong, & 

Chetouani, 2009). Similar to the process of MER, HER based 

on physiological signals constitutes a process of (a) 

extracting and analyzing features from original physiological 

signals, (b) using traditional ML or deep learning methods to 

construct recognition models, and (c) predicting the emotion 

evoked by emotion stimulation [59]. We referred to the 

aforementioned method and investigated the relationship 

between physiological signals and perceived emotion of 

music. We assumed that physiological signals can predict or 

help predict the individual perception of music emotions, 

because many studies have proved that felt and perceived 

emotions are highly correlated (Section 2.2). 

In addition, considering the practice for real-life use, we 

use ECG and EDA as target signals because they can be 

collected by simple wearable devices without compromising 

comfort and privacy [64]. ECG is one of the most sensitive 

markers for emotional arousal. Heart rate (HR) and heart rate 

variability (HRV) extracted from ECG signals have been 

widely used for HER [44, 72]. Additionally, many studies 

have shown that music can produce specific physiological 

reactions of change in HR and HRV, which are associated 

with different emotions [43, 67]. Hsu et al. showed that using 

only an ECG signal can also predict the emotions evoked by 

music [22]. Similarly, EDA, which modulates the sweat 

amount from skin pores [66], is a sensitive marker for 

emotional arousal. Wu et al. (2010) proposed a method for 

recognizing human emotions based on only galvanic skin 

response (GSR; the same as EDA) signals, and many other 

studies have combined more signals. For instance, Monajati 

et al. employed fuzzy-adaptive resonance theory to 

automatically recognize human emotions by combining GSR, 

HR, and respiration rate [41]. Das et al. combined ECG and 

GSR signals to recognize emotions among happy, sad, and 

neutral [8]. Song et al. designed and built a multimodal 

physiological emotion database, which collected EEG, GSR, 

ECG, and respiration signals, to explore human emotions 

[62]. As for this study, we referred to the processing methods 

of ECG and EDA signals in other HER studies to investigate 

the effect of individual physiological state on perceived 

emotion of music. 

2.4. Theoretical Model of Music Emotion 

For MER, emotions should be defined and accessed 

quantitatively. In most MER studies, two types of naturalistic 

emotion models have usually been applied to emotion 

evaluation. One model is the discrete emotion model, which 

divides emotions into discrete categories [23]. This type of 

model has been widely used in music emotion classification 

(MEC) studies, a sub-domain of MER, whose goal is to 

obtain one or more emotion labels corresponding to a music 

segment [74]. Several discrete emotions were chosen as 

target emotions from discrete emotion models [13, 24], and 

music segments with these emotion labels were used as the 

ground truth for modeling. For example, in [7], angry, happy, 

sad, and peaceful were selected as target emotion classes, and 

participants were asked to annotate emotion classes for each 

music segment. The researchers then applied support vector 

machines (SVMs) to construct MEC models for each 

emotion class, which showed good performance on MER. 

Notably, multidimensional emotion space models, which use 

multiple dimensions to label emotions (e.g., valence and 

arousal) [53], are more frequently used in MER studies [74]. 

Additionally, these studies have usually required that the 

participants annotate dimension values in the dimensional 

models (e.g., arousal and valence values in the VA model) 

directly while listening to music [25]. However, most MER 

studies have ignored an important controversy: whether 

musical and naturalistic emotions map onto one another in a 

1-1 fashion (Allen, Walsh, & Zangwill, 2013). Many 

researchers posited that music emotion was not “naturalistic” 

[35, 78], whereas others believed in considerable overlap 

between musical and naturalistic emotions [54, 79]. 

Considering the aforementioned situation, we had three 

reasons for using four representative emotions—happy, 

relaxed, sad, and angry—to conduct the evaluation. First, 

considering the “naturalistic” emotion models, they cover the 

four parts of the 2D model of emotion [63] and are related to 

basic emotions [29]. Second, regarding the “musical” 

emotion models, they are related to the dimensions in the 

9-factorial model of music-induced emotions proposed by 

[79]. Third, recognition models based on these four emotions 

may be directly applied in real life, which is not possible with 

dimensional models (e.g., arousal and valence). For example, 

in a MIR system, appropriate user information is “this is a 

relaxing song,” but “this is a low-arousal song” may be 

inappropriate. 
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Figure 1. Relationship among music feature, physiological feature, 

perceived emotion, and felt emotion. 

2.5. The Present Study 

According to our review of the literature (Figure 1), we 

found that (A) music features have been widely used to 

predict perceived emotion of music in MER studies; (B) 

features extracted from physiological signals generated when 

individuals listen to music can predict the felt emotion of 

music; and (C) the perceived emotion and felt emotion of 

music are highly correlated. Additionally, the goal of this 

study is to investigate (D) the effect of physiological state on 

the perceived emotion of music. From a theoretical 

perspective, we wanted to explore whether the physiological 

arousal caused by music can affect or predict the “objective” 

part of music emotion. Using ML methods, we investigated 

the relationship between them from a computational 

perspective. In addition, our work is of practical value. 

Physiological signals that can be collected through wearable 

devices (ECG and EDA in this study) were considered to 

improve the predictive effect of the PMER model, which can 

increase the accuracy of the music emotion information 

provided to users in real life. This can also provide a 

reference for personalized MIR and music recommendation 

systems. 

Considering the aforementioned goals, our three research 

questions are as follows. First, humans have an internal 

“mimicry” of the perceived voice-like emotional expression 

of the music [26], which is one of the reasons why music 

evokes emotion. Additionally, emotional arousal is often 

accompanied by physiological arousal. Conversely, 

physiological arousal may also identify the perceived 

emotion of music. Therefore, we assumed that physiological 

signals generated when listening to music can directly predict 

the perceived emotion of music (Hypothesis 1). Second, most 

studies have investigated the relationship between 

physiological arousal and emotional arousal [59] but rarely 

that of perceived emotion and physiological state. The 

relationship between the physiological state and felt emotion 

may be closer; thus, we assumed that when only 

physiological features were used as the model input, 

recognition models of felt emotion (feeling models) would 

perform better than perception models (Hypothesis 2). Third, 

we attempted to improve the prediction effect of the PMER 

models, and the physiological state may provide more 

information for models. Therefore, we assumed that the 

PMER models based on music features would perform better 

after adding physiological features (Hypothesis 3). 

3. Methods 

To construct the PMER models, we first performed a 

listening task for each participant, to collect the ground-truth 

data (perceived and felt emotions of music) and physiological 

data (Section 3.1). The processing of audio and physiological 

signals was then conducted to extract model inputs, 

respectively, in Sections 3.2 and 3.3. Finally, the ML methods 

used for modeling were introduced in Section 3.4. 

3.1. Experimental Design 

For stimuli, sixty famous popular songs were collected 

from Chinese albums. Because the length of the segment for 

popular music is usually 25–30 seconds in MER studies [71], 

the collected excerpts were first trimmed to 25 seconds. Next, 

the trimmed excerpts were converted to a uniform format: 

22,050 Hz, 16 bits, and mono channel PCM WAV (see [75]). 

These 60 processed music excerpts were used as 

experimental stimuli and for subsequent music feature 

extraction. 

Referring to the method of [51], we constructed separate 

PMER models for each individual. Therefore, we needed 

each participant to complete the emotional annotation 

experiment of all the music experts. After assessing the 

behavioral and physiological data, this study finally obtained 

ten complete datasets. On average, the final ten participants 

(five females, five males) were aged 23.40 years (SD = 2.32) 

and were all undergraduate or graduate students recruited 

from their campus. In addition, none of them had received 

professional music training, and all of them often listened to 

music. 

In the experiments, each participant listened to all the 

excerpts, and each excerpt was heard by ten unique 

participants. After a brief description of the experiment, 

participants received a listening order that was independently 

randomized to minimize the influence of presentation order. 

Each excerpt was preceded by 30 seconds of silence and 

followed by self-report questionnaires. Additionally, the 

participants were asked to concentrate on the music and 

listen to the music with their eyes closed. Kallinen and 

Ravaja advocated that the subjective measurements must be 

performed first because they may dilute faster than the more 

objective evaluation of the perceived emotion [31]. 

Additionally, the felt emotion may have included 

physiological responses that decrease as a function of time. 

Therefore, in the self-report phase, participants were first 

asked to evaluate the emotions that the music aroused in 

them while listening (i.e., emotion felt; “Did you feel happy 

when you listened to the music?”) on a scale from 1 (not at 

all) to 5 (very much). After the subjective measures, the 

participants were asked to evaluate the perception of the 

emotions expressed by the music (i.e., emotion perceived; 

“Do you think the music express a happy emotion?”), also 
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evaluated on a scale from 1 (not at all) to 5 (very much). 

Physiological data were collected synchronously in the 

listening task. Participants used their left hand to provide 

emotion ratings while their right hand was connected to the 

Biopac MP160 data acquisition system for measurement of 

physiological responses. Using wireless receivers, the 

participants wore ECG100C and EDA100C amplifiers, 

simulating wearable devices, to collect physiological signals. 

ECG signals were recorded at 2000Hz by attaching 

electrodes, connected to the ECG100C amplifier, to the right 

wrist, and right and left ankles. EDA signals were collected 

by attaching two TSD203 Ag–AgCl electrodes to the distal 

phalanges of the index and middle fingers of the right hand 

[12], using Velcro straps. Additionally, EDA signals were 

resampled at 31.25Hz. Physiological data would be subjected 

to feature analysis to extract features that may be associated 

with emotions (Section 3.3). 

3.2. Audio Signal Processing 

Audio signal processing is a vital part of MER studies and 

can extract effective information from original music 

excerpts as input for later models [74]. In this study, we first 

applied librosa [40], a Python package for audio and music 

signal processing, to extract low-level audio features. 

Fourteen types of features were considered: mel-frequency 

cepstrum coefficients, root mean square energy, spectral 

centroid, spectral bandwidth, spectral contrast, spectral 

flatness, spectral roll-off frequency, short-time Fourier 

transform of chromagram, constant-Q transform of 

chromagram, chroma energy normalized (CENS), tonal 

centroid features (tonnetz), zero crossing rate, beat, and 

tempo. These features have demonstrated good performance 

in MER studies [50, 61, 75]. 

After feature extraction, each excerpt was represented in a 

subspace of high dimensionality. Therefore, feature reduction 

was then conducted to reduce the storage and computational 

space [68]. In this study, we used principal components 

analysis to reduce the dimensionality of the data. By forming 

a linear combination set of the new features that retain the 

variation of the original features in some fashion, the 

multidimensional data were mapped into a low-dimensional 

subspace [76]. As a result, 54 new features, explaining 95% 

of the variation, were retained and utilized as basic inputs of 

our final PMER models. 

3.3. Physiological Signal Processing 

Signal preprocessing was conducted to remove 

interference signals before feature extraction. Filtering was 

first performed by using AcqKnowledge 5.0 software [1], and 

the following high-pass (HP) and/or low-pass (LP) filters 

were applied to the original physiological data: ECG (LP = 

35Hz; HP = 0.5Hz), and EDA (LP = 1Hz). Second, baseline 

correction was conducted by subtracting the equivalent signal 

obtained in the final 20 seconds of the silence that preceded 

the excerpt. Third, hot deck imputation was applied to handle 

outliers caused by the participant’s movement or breathing 

[2]. The preprocessed physiological signals were then used 

for feature extraction. 

3.3.1. ECG Feature Extraction 

Twenty-four features were extracted from the time-domain, 

frequency-domain, and nonlinear analyses of ECG signals for 

each excerpt [22, 65]. In the time-domain analysis, 11 

features were calculated as follows: 

(1) The standard deviation of R-R time intervals (RR 

intervals; ECG_SDNN): 

���_���� = 	∑ (�
 − ��)�/��
��           (1) 

where �
 is the ith RR interval, �� is the average of the RR 

intervals, and � is the number of the RR intervals; 

(2) The root mean square of differences between adjacent 

RR intervals (ECG_RMSSD): 

���_����� = �∑ (�
 − �
��)�/(� − 1)�
��     (2) 

(3) The percentage of successive RR intervals that differ 

more than 50 ms (ECG_pNN50): 

���_���50 = 	� !�"(|"
$� − "
| > 50&')/(� − 1)  (3) 

where "
  is the time when the ith R-wave appears, and 

� !�"(… ) means calculate the quantity in brackets; 

(4) The standard deviation of differences between adjacent 

RR intervals (ECG_SDSD): 

���_���� = 	∑ ()*�)*+,�-./_)01123)3
���

�
��      (4) 

(5) The number of R-waves within one epoch divided by 1 

min (ECG_BPM); 

(6) The median value of RR intervals (ECG_MED_RRI); 

(7) The interquartile range of RR intervals 

(ECG_IQR_RRI); 

(8) The mean absolute deviation of RR intervals 

(ECG_MAD_RRI): 

���_�4�_��5 = �
�∑ |�
 − ��|�
��        (5) 

(9) The mean of the difference between adjacent RR 

intervals (ECG_DIFF_RRI): 

���_�566_��5 = �
���∑ |�
 − �
��|�
��      (6) 

(10) The coefficient of variation of RR intervals 

(ECG_CV_RRI): 

���_�7_��5 = �
)�	∑ (�
 − ��)�/��
��        (7) 

(11) The difference between the maximum and the 

minimum RR interval (ECG_RANGE). 

In the frequency-domain analysis, we used the fast Fourier 

transform (FFT)-based method to calculate the power 

spectral density (PSD) of the resampled RR intervals [22]. 

The PSD analysis could be used to calculate the power of 
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specific frequency ranges and the peak frequencies for three 

different frequency bands: very-low-frequency range (VLF; 

0.0033–0.04 Hz), low-frequency range (LF; 0.04–0.15 Hz), 

and high-frequency range (HF; 0.15–0.4 Hz). In addition to 

the power calculated in the VLF, LF, and HF bands (1, 

ECG_VLF; 2, ECG_LF; 3, ECG_HF), another seven features 

were calculated as follows: 

(4) The total power in the full frequency range (ECG_TP): 

���_89 = ���_7:6 + ���_:6 + ���_<6    (8) 

(5) The ratio of power calculated within the LF band to 

that calculated within the HF band (ECG_LF/HF); 

(6) LF power normalized to the sum of the LF and HF 

power (ECG_LFnorm): 

���_:6�=>? = ���_:6/(���_89 − ���_7:6)  (9) 

(7) HF power normalized to the sum of the LF and HF 

power (ECG_HFnorm): 

���_<6�=>? = ���_<6/(���_89 − ���_7:6)   (10) 

(8) VLF power expressed as percentage of the total power 

(ECG_pVLF): 

���_�7:6 = (���_7:6/���_89) × 100    (11) 

(9) LF power expressed as percentage of the total power 

(ECG_pLF): 

���_�:6 = (���_:6/���_89) × 100    (12) 

(10) HF power expressed as percentage of the total power 

(ECG_pHF): 

���_�<6 = (���_<6/���_89) × 100     (13) 

In the nonlinear analysis, we only considered Poincaré plot 

analysis, which measured the quantitative beat-to-beat 

correlation between adjacent RR intervals [82]. Additionally, 

three features were calculated as follows: 

(1) The standard deviation of the instantaneous 

beat-to-beat RR interval variability (ECG_SD1): 

���_��� = �0.5('"B("
$� − 2"
$� + "
))�  (14) 

where "
 is the time when the ith R-wave appears, and 

'"B(… ) means calculate the standard deviation in brackets; 

(2) The standard deviation of the continuous long-term 

beat-to-beat RR interval variability (ECG_SD2): 

���_��� =
�2('"B("
$� − "
))� − 0.5('"B("
$� − 2"
$� + "
))�  (15) 

(3) The ratio of ECG_SD1 to ECG_SD2 (ECG_SD12). 

3.3.2. EDA Feature Extraction 

Referring to the methods of [64] and [70], 12 statistical 

features and three skin conductance level (SCL)-related 

features were extracted from the original EDA signals for 

each excerpt as follows: 

(1) The average value of EDA signals (EDA_MEAN); 

(2) The standard deviation of EDA signals (EDA_STD); 

(3) The maximum and (4) minimum values of EDA signals 

(EDA_MAX, and EDA_MIN); 

(5) The average value of the first-order difference of EDA 

signals (EDA_1D_MEAN): 

��4_1�_��4� = 	 �
����∑ (D
$� − D
)���
��       (16) 

where D
 is the value of the ith resampled EDA signal; 

(6) The standard deviation of the first-order difference of 

EDA signals (EDA_1D_STD): 

��4_1�_�8� =
	 �

���∑ [(D
$� − D
) − ��4_1�_��4�]����
��    (17) 

(7) The maximum and (8) minimum value of the 

first-order difference of EDA signals (EDA_1D_MAX， and 

EDA_1D_MIN); 

(9) The average value of the second-order difference of 

EDA signals (EDA_2D_MEAN): 

��4_2�_��4� = �
���	∑ (D
$� − 2D
$� + D
)���
��   (18) 

(10) The standard deviation of the second-order difference 

of EDA signals (EDA_2D_STD): 

��4_2�_�8� =
	 �

��G∑ [(D
$� − 2D
$� + D
) − ��4_2�_��4�]����
��   (19) 

(11) The maximum and (12) minimum values of the 

second-order difference of EDA signals (EDA_2D_MAX, and 

EDA_2D_MIN). 

Skin electricity can be separated into two parts: tonic, 

which corresponds to the slowly changing SCL, and phasic, 

which corresponds to rapid skin electrical fluctuations. 

Therefore, the first-order polynomial can be used to fit the 

skin electrical signal as follows: 

HI=�
J = K(HI=�
J + HLMNO
J) + P       (20) 

where HI=�
J and HLMNO
J represent the values of the tonic 

and phasic parts, respectively. Additionally, the first-order 

fitting coefficients, k and b, were used as SCL-related features 

(EDA_SCL_COEFK, and EDA_SCL_COEFB). The average 

value of SCL (EDA_SCL_MEAN) was also extracted: 

��4_��:_��4� = �
Q 	∑ HI=�
JRQ���      (21) 

In summary, 39 physiological features were extracted from 

ECG and EDA signals for each music excerpt (Table 1). 

These features were utilized as inputs in our recognition 

models. 

3.4. Machine Learning Methods 

During the construction of the PMER models, the ML 

method links the variables. A multitude of ML methods is 
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available for supervised problems (i.e., classification and 

regression). Additionally, this study formulated PMER as a 

regression problem, to predict a real value from some 

observed features [58]. We considered three ML methods to 

train regressors. First, we used multiple linear regression 

(MLR) as a baseline algorithm because of its relatively low 

computational complexity and its effectiveness [61, 74]. 

Second, SVM has been found superior to the existing ML 

methods [75]. Therefore, we adopted support vector 

regression (SVR), an extension of SVM to regression 

problems, to construct PMER models as a reference. Third, 

random forest regression (RFR), a widely used ML method 

in MER studies [3, 34], was also adopted for modeling. 

Additionally, scikit-learn [49], a Python module integrating a 

wide range of ML algorithms for medium-scale supervised 

and unsupervised problems, was applied for model 

construction and training. More details on the ML methods 

are presented along with the results in Section 4. 

 

Figure 2. Distribution of perceived and felt emotion ratings for each music excerpt. 

4. Results 

4.1. Relationship Between Perceived and Felt Emotions of 

Music 

As the first step of data exploration, we investigated the 

correlations between perceived and felt emotions. Figure 2 

shows the mean ratings for perceived and felt emotions of 

each excerpt. We observed that perceived emotion ratings 

were positively correlated with felt emotion ratings (Happy: 

r(59) = 0.95, p < 0.01; Relaxed: r(59) = 0.93, p < 0.01; Sad: 

r(59) = 0.96, p < 0.01; Angry: r(59) = 0.90, p < 0.01). This 

result is similar to that of other studies [21, 31], which 

reflects the inseparability of perceived and felt emotions. 

In addition, we found that perception ratings of negative 

emotions were higher than feeling ratings. Perceived sad 

ratings (M = 2.34, SD = 1.03) were significantly higher than 

felt sad ratings (M = 1.90, SD = 0.75), t = 8.93, p < 0.01, d = 

0.50. Additionally, perceived angry ratings (M = 1.46, SD = 

0.68) were significantly higher than felt sad ratings (M = 1.28, 

SD = 0.37), t = 3.65, p < 0.01, d = 0.33. By contrast, we 

observed that perceived relaxed ratings (M = 2.62, SD = 0.87) 

were significantly lower than felt relaxed ratings (M = 2.72, 

SD = 0.75), t = 2.34, p < 0.05, d = 0.12, which is the opposite 

of the result in [21], that is, perception ratings were 

commonly higher. One possible explanation is that the 

participants may feel relaxed in a quiet experimental 

environment. Combined with their relaxed state, felt relaxed 

ratings may be evaluated as higher. This hypothesis was 

indirectly confirmed by the feelings reported after the 

experiment, that is, most of the participants felt “relaxed,” 

“comfortable,” and “a little bit sleepy” during the listening 

task. 

In summary, the results show that the perceived and felt 

emotions of music were highly correlated, although there 

were some differences. These findings provide a vital basis 

for our subsequent analysis. 
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4.2. Recognition Models of Perceived Emotions Using 

Physiological Features 

In this section, we built the physiological features-based 

recognition models of perceived emotions and attempted to 

verify Hypothesis 1. We used physiological features as inputs, 

perceived emotion ratings as the ground truth, and three ML 

methods (MLR, SVR, and RFR) to construct recognition 

models (also called regressors). For each participant, we built 

four types of personalized recognition models separately to 

predict the perception of happy, relaxed, sad, and angry. For 

each type of model, three models using different ML 

algorithms were constructed. Therefore, twelve personalized 

recognition models were built for each participant. In this 

manner, we investigated the predictive effect of physiological 

features on perceived emotions, compared the effect of the 

different ML algorithms, and analyzed the differences when 

predicting different emotions. 

To maximize ML, all the physiological inputs were scaled 

to a value between 0 and 1 for each feature [68]. The 

ground-truth values were also scaled to a range between 0 

and 1. After data preprocessing, we applied scikit-learn to 

train regressors for each individual, respectively. Additionally, 

a grid parameter search was applied to find the best 

parameters for each regressor [75]. The performances of our 

models were then evaluated by the tenfold cross-validation 

technique, which uses 10% of the data as the testing data and 

uses the remaining instances as training data to train the 

regressor. Additionally, the prediction accuracy of a regressor 

was evaluated in terms of the correlation (r) between the 

actual and predicted scores [16]. 

Table 1. Mean correlation of recognition models of different participants. 

 Happy Relaxed Sad Angry 

MLR -0.04 0.01 0.02 0.03 

SVR 0.14 0.07 0.10 0.01 

RFR 0.17 0.22 0.17 0.15 

Table 1 shows the average performance of each 

recognition model for different emotions. In general, 

physiological features can predict the perceived emotion 

ratings of happy (r = 0.17), relaxed (r = 0.22), sad (r = 0.17), 

and angry (r = 0.15), but the predictive effect is poor. This 

result indicates that there is a weak connection between 

perceived emotion and physiological features and proves 

Hypothesis 1. Notably, models using the RFR method 

performed significantly better than models using the SVR 

and MLR methods (Happy: χ2
 = 26.54, p < 0.01; Relaxed: χ2

 

= 18.96, p < 0.01; Sad: χ2
 = 11.06, p < 0.01; Angry: χ2

 = 

8.667, p < 0.05). The poor performance of the MLR method 

reflects that the physiological features do not have a purely 

linear relationship with the perceived emotions of music. 

Additionally, the RFR method, which creates an ensemble of 

decision trees to predict the perceived emotions, may be 

more suitable for explaining the relationship between the 

variables. In addition, we observed that when predicting 

different emotion ratings, there is no significant difference in 

model prediction results (χ2
 = 3.48, p = 0.32), although the 

average correlation is the highest when predicting perceived 

relaxed ratings. This shows that the physiological features 

considered in this study do not have a significant gap in 

predicting different perceived emotions. 

 

Figure 3. Prediction accuracy of each recognition model for each participant. Each compact boxplot indicates the prediction accuracy of each model by 

showing the correlations (r) in different cross-validation folds. The black line in the middle of each box indicates the median. 
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However, the aforementioned findings are not consistent 

with those of every individual. Figure 3 shows the prediction 

accuracy (r) of each recognition model for each participant. 

We observed that the model prediction effects of some 

individuals, such as the RFR-based recognition models of 

participant 2 (Happy: M(r) = 0.42, SD = 0.26; Relaxed: M(r) = 

0.26, SD = 0.25; Sad: M(r) = 0.41, SD = 0.35; Angry: M(r) = 

0.28, SD = 0.28) and participant 10 (Happy: M(r) = 0.18, SD = 

0.35; Relaxed: M(r) = 0.48, SD = 0.20; Sad: M(r) = 0.34, SD = 

0.28; Angry: M(r) = 0.35, SD = 0.42), which are much better 

than those of other participants (Happy: χ2
 = 16.91, p = 0.05; 

Relaxed: χ2
 = 22.08, p < 0.01; Sad: χ2

 = 15.34, p = 0.08; 

Angry: χ2
 = 9.17, p = 0.42). Additionally, some participants' 

recognition models are almost ineffective, such as participant 3 

(Happy: M(r) = -0.03, SD = 0.26; Relaxed: M(r) = 0.09, SD = 

0.23; Sad: M(r) = -0.02, SD = 0.42; Angry: M(r) = 0.07, SD = 

0.32). These results are a reminder that when using only 

physiological features to construct MER models, individual 

differences affect the model effect. 

Analyzing what traits caused the aforementioned differences 

may become an important further research direction. However, 

individuality is too subtle to be captured by each individual 

factor [75], and it is difficult to analyze the impact of all 

individual factors. Additionally, by using only individual data 

to build a personalized recognition model, it is possible to 

avoid the deviations caused by differences in some individual 

features. For instance, personality differences may affect the 

assessment of music emotions [31], but personality differences 

can be disregarded when constructing a model using only 

individual data, because differences are directly reflected in the 

ground-truth values (perceived emotion ratings in this study). 

This reason is also one of the reasons why personalized models 

have been widely promoted and applied in recent years [4, 47]. 

In addition, from a practical perspective, the use of 

physiological features alone cannot effectively recognize the 

perceived emotions of some individuals. Therefore, in the 

subsequent modeling, we used physiological features as an 

additional input to the PMER model based on audio features 

and compared the changes in model recognition effects 

(Section 4.4). 

 

Figure 4. Mean prediction accuracy for each participant when using physiological features to predict perceived and felt emotions. 

4.3. Comparison of Physiological Features-Based 

Perception and Feeling Models 

We then attempted to verify Hypothesis 2 by comparing 

the prediction effects of physiological features-based 

perception and feeling models. We used physiological 

features as inputs—perceived and felt emotion ratings as 

ground truth, respectively—to construct recognition models. 

In addition, because RFR performed best in Section 4.2 and 

was widely applied in HER studies [72], we only used the 

RFR method in the subsequent modeling. Similarly, for each 

participant, we built eight types of personalized recognition 

models separately to predict the felt and perceived emotion 

ratings (happy, relaxed, sad, and angry). The performances of 

our models were also evaluated by a tenfold cross-validation 

technique, and the mean correlation (r) between actual and 

predicted scores is presented in Figure 4. 

The result shows that the performance of the perception 

model and the feeling model is related in predicting happy, 

relaxed, and sad emotions (Happy: r(9) = 0.78, p < 0.01; 

Relaxed: r(9) = 0.65, p < 0.05; Sad: r(9) = 0.79, p < 0.01). 

This discovery once again illustrates the close connection 

between felt emotion and perceived emotion of music. Next, 

by comparing the prediction effects of perception and 

feeling models, we found that generally, physiological 

features did not perform significantly better in predicting 

felt emotions (Happy: Z = 1.58, p = 0.11; Relaxed: Z = 0.56, 

p = 0.58; Sad: Z = 1.07, p = 0.29; Angry: Z = 1.17, p = 

0.24), which does not support Hypothesis 2. Additionally, 

we observed substantial individual differences in prediction 

accuracy and in the difference between the accuracy of the 

perception and feeling models; in particular, the latter may 

imply two different internal mechanisms. When the 

individual's perception model performed better, felt emotion 

might be caused by the internal “mimicry” of the perceived 

emotion [26]. Therefore, the physiological features 

performed better in predicting perceived emotions. 

Conversely, when the individual's feeling model performed 

better, felt emotion might be caused by visual imagery [46], 

episodic memory [5], or other reasons [28]. Additionally, 

physiological arousal was associated with emotional arousal, 
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which indirectly influenced the perceived emotions. As a 

result, the physiological features performed better in 

predicting felt emotions for these individuals. Of course, the 

aforementioned guess requires further verification. 

 

Figure 5. Comparison of models using audio features only and models using audio and physiological features. (a) overall distribution of the prediction 

accuracy (r) of all the participants. The black line in the middle of each box indicates the median; “×” indicates the mean value. (b) mean prediction accuracy 

(r) for each participant. 

4.4. Effects of Physiological Features on PMER Models 

According to the result in Sections 4.2 and 4.3, we used 

physiological features to improve the performance of PMER 

models based on audio features and attempted to verify 

Hypothesis 3. First, we used audio features as input and 

perceived emotion ratings as the ground truth and applied 

RFR to construct basic PMER models for each individual. 

Tenfold cross-validation was also used to evaluate the 

performance of our models. Additionally, the basic PMER 

models achieved a mean correlation value of 0.35 for 

perceived happy ratings, 0.40 for perceived relaxed ratings, 

0.36 for perceived sad ratings, and 0.33 for perceived angry 

ratings. Next, we added physiological features as additional 

inputs to the aforementioned PMER models. The result 

shows that the model effect was not significantly improved 

(Figure 5a; Happy: Z = -0.76, p = 0.45; Relaxed: Z = -0.05, p 

= 0.96; Sad: Z = -0.36, p = 0.72; Angry: Z = -1.48, p = 0.14), 

and this does not support Hypothesis 3. 

Thus, on the whole, physiological features cannot effectively 

improve the effect of the PMER model, which may cause 

difficulties in further applications. In addition, considering the 

individuality, Figure 5b depicts the predictive effect (r) of each 

PMER model. We observed substantial individual differences in 

the improvement rate of the current model (adding physiological 

features) compared with the basic model. For example, the 

improvement rate of the PMER models of participant 5 reached 

64.49% for happy, which was significantly better than that of 

other participants. This is a reminder that physiological features 

can help predict the perceived emotion of music for certain 

individuals, and the characteristics of these individuals requires 

further investigation. 

To better understand which features played a major role, 

we then explained the model by examining the information 

gain of features. Because the final PMER models were built 

by RFR, they can be interpreted by calculating feature 

importance [51]. In Figures 6a–d, we observed that for the 

final models, the feature importance values of the audio 

features accounted for 74.36% of happy, 75.93% of relaxed, 

75.19% of sad, and74.57% of angry. Thus, in general, audio 

features dominate the prediction of perceived emotions, 

which is similar to the results of [77]. Individual differences 

were also observed. For instance, Figures 6e and 6f show the 

distribution of feature importance values for the happy 

emotion recognition models of participants 6 and 8, 

respectively. We observed that audio features accounted for 
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77.29% of participant 6 and 69.88% of participant 8, and the 

same physiological features showed different feature 

importance (e.g., EDA_SCL_COEFB is crucial to participant 

8 but not to participant 6). 

 

Figure 6. Distribution of feature importance of each feature for the final PMER models. Boxplots are sorted by median, and only the top 30 features were 

included for visibility with the trend of the remaining features being approximately the same. a–d, the overall distribution of feature importance values for each 

feature across all participants. e–f, the distribution of feature importance values for the happy emotion recognition models of participants 6 and 8. 
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5. Conclusion 

In this article, the effects of physiological features on 

PMER models were investigated by (a) constructing 

recognition models of perceived emotions using 

physiological features only, (b) comparing the performance 

of physiological features-based perception and feeling 

models, and (c) adding physiological features as additional 

inputs to audio features-based PMER models. Substantial 

individual differences were observed in all the three steps, 

which verified the advocacy of other studies [75, 77], that is, 

MER studies should consider individuality. From a 

theoretical perspective, by applying ML methods, this study 

formed relations among audio features, physiological 

features, and perception of music emotions, which 

investigated their relationship by using computational 

modeling [68]. From an application perspective, we 

attempted to optimize the PMER models by adding 

physiological features, which can provide individuals with 

music emotion information that is more accurate. This may 

also improve the traditional MER system and indirectly 

contribute to the MIR [11] and music recommendation 

systems [48]. 

We first directly investigated the relationship between 

physiological features and perceived emotions by using only 

physiological features to construct perceived emotion 

recognition models. The results show that physiological 

features can slightly predict perceived emotions, and the 

prediction effect of different individuals is different. 

However, the relationship between physiological features and 

perceived emotion has no causal explanation. We speculated 

that musical stimuli first evoke individual emotions, affecting 

the assessment of perceived emotions. Therefore, we then 

compared the difference in the results of predicting perceived 

and felt emotions, respectively, through physiological 

features. If the aforementioned assumptions are true, the 

performance of feeling models should be improved. However, 

the results show that some individuals’ feeling models 

performed better than the perception models, and others did 

not. The aforementioned difference might be related to the 

mechanism by which music evokes emotions. One of the 

mechanisms in the BRECVEMA framework [27]; Juslin et al. 

indicates that individuals have an internal “mimicry” of the 

perceived emotion of music (Contagion) [26, 30]. In this case, 

the individual's physiological state might be more effective in 

predicting perceived emotions. Conversely, for individuals 

whose emotions are evoked by other mechanisms, the 

perception models may perform better. Notably, the 

aforementioned speculation requires further verification. 

Considering real-life applications, we then added 

physiological features as additional model inputs to the 

PMER models based on audio features for exploration. The 

results show that the model effect of some individuals was 

significantly improved; thus, the models have obtained more 

information from physiological features. However, the model 

effect of other individuals declined, which is a reminder that 

the increase of redundant information may reduce the model 

effect. Notably, music features, external clues directly 

collected by the human auditory system, are usually used as 

the only input for MER research [74]. However, additional 

input of individual features can also improve the effect of the 

PMER model [77]. Starting from causality, this study 

attempted to optimize the model effect by adding 

physiological features, to increase the accuracy of the music 

emotion information provided to individuals. However, we 

found that the physiological feature is a double-edged sword 

and is only effective for certain individuals. Therefore, in 

subsequent applications, we must pre-test each individual to 

determine whether to input physiological features into the 

individual's PMER model. 

This study has several notable limitations. First, the sample 

size of this study is relatively small and may be insufficient 

robust to support the general results. In further research, we can 

collect more samples to strengthen the reliability of the general 

results. Notably, it is difficult for participants to annotate a large 

number of music excerpts while collecting physiological data, 

and the quality may decline because of fatigue or sudden 

movements [68]. Thus, a better approach for collecting 

annotation is necessary. Second, only traditional ML methods 

were considered in this study. If a sufficiently large dataset is 

obtained, more flexible methods, such as deep neural networks 

[45] and recurrent neural networks [39], can be applied to pursue 

model effects. Finally, this study used computational modeling 

methods to investigate the relationship between variables, which 

may be less effective in explaining samples than traditional 

statistical analysis. Psychological research using ML methods 

tends to focus on prediction to explore trends and laws from data 

to achieve the generalization of results [81]. Therefore, in the 

process of data analysis, trade-offs must continue to be made 

between (a) constructing a theoretically supported, simple, and 

interpretable model with limited repeatability and (b) 

constructing a model with strong predictive power but an 

insufficient understanding of the internal mechanism of the 

current data. 
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