

American Journal of Information Science and Technology
2020; 4(3): 46-50

http://www.sciencepublishinggroup.com/j/ajist

doi: 10.11648/j.ajist.20200403.12

ISSN: 2640-057X (Print); ISSN: 2640-0588 (Online)

Research on Software Protection Technology Based on
Driver

Zhu Hao
1, *

, Kong Qiongying
2
, Xu Zexin

1
, Chen Jiwei

2
, Li Xian

1

1Qujing No. 1 Middle School, Qujing, China
2Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China

Email address:

*Corresponding author

To cite this article:
Zhu Hao, Kong Qiongying, Xu Zexin, Chen Jiwei, Li Xian. Research on Software Protection Technology Based on Driver. American Journal

of Information Science and Technology. Vol. 4, No. 3, 2020, pp. 46-50. doi: 10.11648/j.ajist.20200403.12

Received: May 13, 2020; Accepted: August 5, 2020; Published: August 18, 2020

Abstract: Recent years, with the rapid development of the Internet, the technology of software and hardware changes with each

passing day. In order to pursue the economic interest, many software systems which contains fatal flaws are always come into use

untimely. Although many software developers have involved a tremendous lot of work to make the life cycle of their software

systems long enough. However, the law is strong but the outlaws are ten times stronger. In order to be able to illegally use software

related charging functions, hackers improve their illegal cracking techniques. in the process of confronting software protection

technology As many software developers only focus on the implementation of software system functions, they overlooked the

software encryption protection and reverse cracking. Therefore, in the preliminary stage of studying software protection, researchers

developed some relatively useful professional software encryption protection program (Shell for short). However, with the

development of cracking techniques, even the strong shell ASProtect which uses powerful encryption algorithms such as Twofish,

TEA, Blowfish, and the combination of CRC (Cyclic Redundancy Check) and anti-debugging techniques can be removed by using

the free OllyDbg dynamic tracking shell after the disassembly code. Using the stack balance principle to find the shell before the

program execution entrance, then combining the powerful functions of LoadPE tool to import table, import address table and

relocation table. Presently, VMProtect and driver protection technology are two most important ways to protect software. However,

VMProtect will need large amount of code in order to build virtual machines which will act as decoders of bytecode - code generated

to protect software. For the same reason, efficiency of executing software protected by VMProtect is very low. This article will

introduce current state of software protection and give suggestions to limitation found in current application.

Keywords: Driver protection, Kernel Reboot, Encryption, SSDTHOOK

1. Introduction

Before software protection technology, we can only

protect software at level ring3 in the system by means of

encrypting Import Tables, IATs and Relocatables. Or

encrypt important DLL file so that hackers may have a hard

time reverse engineer encryption [6]. However, protected

data will be fully exposed to hackers as long as those

hackers use dynamic debuggers like OllyDbg to keep track

of encryption process that happened in the CPU. It is

proven that good encryption program like themida is still

vulnerable before adding in software protection [1]. Since

drivers are running at ring 0 level, which is the same level

as operating system. Thus, it is allowed to edit any data

from 4GB virtual memories [13]. We can protect and hide

important data of a software when we use driver program to

encrypt it. In the meantime, we can use GDTHOOK,

IDTKOOK, SSDTHOOK to increase clearance of software

and relocate key codes (decryption code for example) to

level ring0. As a result, debuggers that running at ring3

level like OllyDbg won’t work, hackers could only use

debuggers at ring0 level to do the hacking job [12].

However, debuggers at ring0 level like windbg are way

inferior than that in ring3 level. Moreover ring0 level

debuggers require more advanced skill level from hackers,

which in turn, increased difficulty of decryption greatly [2].

 American Journal of Information Science and Technology 2020; 4(3): 46-50 47

2. Current State of Driver Protection

Current main stream driver protection technologies are

SSDTHOOK, kernel reboot technology and APC protection.

Abnormality disposal system use APC function or abnormality

disposal function to protect important data [14]. World famous

TP (TenProtect) uses SSDTHOOK to hide important kernel

functions. It creates Deep Inline Hook from NtOpenProcess,

NtOpenThread, NtReadVirtualMemory,

NtWriteVirtualMemory, KiAttachProcess etc. it also generates

special threads in order to test kernel functions for abnormalities

and modifications constantly. However, kernel testing tools like

XueTr, Kernel Detective, PCHunter could still identify hooked

functions easily [5]. Then hackers can reverse engineer those

functions and break TP’s encryption. The difference between

SSDTHOOK and kernel reboot is that making a new copy of the

kernel to the memory then activate the HOOK process will

bypass tools like XueTr [11]. For the same reason, kernel reboot

technology is more effective in driver protection.

3. Process and Restrictions of Kernel

Rebooting

3.1. Cloning the Kernel

Code has to be stored in memories in order to be executed

by the CPU [8]. The first step of kernel rebooting is to copy

kernel files (if operating system uses 10-10-12, then page

kernel file is ntoskrnl.exe; if uses 2-9-9-23, then page kernel

file is ntkrnlpa.exe; if program uses window function, then

reloading win32k.sys is needed) to a newly allocated memory,

just like how operating system loads PE files [10]. Process

above is demonstrated below (take ntoskrnl.exe for example).

Figure 1. Cloning the Kernel.

3.2. Repair Relocation Table

There are many global variables in ntoskrnl.exe (like

KeServiceDescriptorTable) and address of functions (like

KiAttachProcess). They are all directly accessible. Those

address in clones are the same as before, thus, system will

crash if we forget to repair those addresses [9]. Sometimes, it

will cause hardware failure.The whole process is shown

below.

Figure 2. Repair Relocation Table.

48 Zhu Hao et al.: Research on Software Protection Technology Based on Driver

Figure 3. Repair Address of System Service Table.

3.3. Repair KeService Descriptor Table Pointer Address of

System Service Table Address of Kernel Functions

Inside SSD

After repairing relocation table, when we use

API(Application Programming Interface) from ring3 to enter

ring0, KeServiceDescriptorTable pointer, address of system

service table and address of kernel functions inside SSDT

[15]. They all point to the original data as process chart

shown below.

3.4. Hook KiFastCallEntry Kernel Function

Now our new kernel has new KeServiceDescriptorTable

pointer (pNewSSDT). Data in new system service table are

pointed to kernel functions in our new kernel. As we know,

when using API from ring3 to enter ring0, KiFastCallEntry

function is still calling for functions in the old system service

table located in the old kernel [3]. So we need to Inline Hook

KiFastCallEntry funtion. KiFastCallEntry will allocate

pNewSSDT->ServiceTableBase new kernel functions from

new system service table when we designated that process. In

this way, kernel is reloaded as process chart shown below. We

use method of stack backtrace in order to determine addresses

that were hooked in KiFastCallEntry [4]. Fist we use

SSDTHOOK to hook a kernel function randomly. Take

NtOpenProcess function for example. After hookin g

NtOpenProcess, we will be entering function

MyNtOpenProcess (defined by ourselves) when using

OpenProcess at level ring3 to enter ring0. Functions

mentioned above is shown below (Key code shown below).

NTSTATUS MyNtOpenProcess (

__out PHANDLE ProcessHandle,

__in ACCESS_MASK DesiredAccess,

__in POBJECT_ATTRIBUTES ObjectAttributes,

 American Journal of Information Science and Technology 2020; 4(3): 46-50 49

__in_opt PCLIENT_ID ClientId

)

{

ULONG AddrReturnToKiFastCallEntry;

UCHAR *HookAddr=NULL;

int i=0;

__asm

{

pushad

mov eax,[ebp+0x04]

mov AddrReturnToKiFastCallEntry,eax

popad

}

HookAddr =(UCHAR *) AddrReturnToKiFastCallEntry;

for(i=0;i<100;i++)

{

if(*p==0x2b&&*(p+1)==0xe1&&*(p+2)==0xc1&&*(p+3)=

=0xe9&&*(p+4)==0x02)

{

addr_hookaddr=(ULONG)p;

break;

}

else

{

p--;

}

}

PageProtectOff();

KeServiceDescriptorTable.ServiceTableBase[122]

=(unsigned int) OriginalNtOpenProcessAddr;

PageProtectOn();

}

return ((NTOPENPROCESS)

OriginalNtOpenProcessAddr)(ProcessHandle,DesiredAccess,

ObjectAttributes,ClientId);

}

When we just enter MyNtOpenProcess function，[ebp+4]

address slot is occupied by AddrReturnToKiFastCallEntry,

which is the address returned to KiFastCallEntry after

function NtOpenProcess finishs processing [7]. Then, we use

AddrReturnToKiFastCallEntry to look back. Though pattern

matching, we can find locations to Hook (HookAddr) in

KiFastCallEntry. We pick position XX and XX in

KiFastCallEntry because storage Ebx, Eax and Edi are

written with addresses of kernel functions from original

system service table, index and address of original system

service table. We Hook KiFastCallEntry function here so that

we can find relating addresses of kernel functions in the new

kernel based on data stored in Ebx, Eax and Edi.

MyKiFastCallEntry code is shown below.

void MyKiFastCallEntry()

{

__asm

{

pushad

pushfd

push ebx

push eax

push edi

call GetAddress

mov [esp+0x14],eax

popad

sub esp,ecx

shr ecx,2

jmp AfterHookAddr

}

}

ULONG GetAddress(ULONG ServiceTableBase,ULONG

FuncIndex,ULONG OrigFuncAddress)

{

if

(ServiceTableBase==(ULONG)KeServiceDescriptorTable.Se

rviceTableBase)

{

if

(!strcmp((char*)PsGetCurrentProcess()+0x174,"cheatengi

ne-i38"))

{

return pNewSSDT->ServiceTableBase[FuncIndex];

}

}

return OrigFuncAddress;

}

After hooking KiFastCallEntry, we can find and use

functions located in new system service table based on

pNewSSDT, Ebx, Eax and Edi.

3.5. Limitations of Kernel Rebooting Protection

After rebooting the kernel, when we are SSDT

HOOKING kernel functions from new system service table,

hackers won’t detect our hooking process using tools like

XueTr, Kernel Detective, PCHunter etc. In this way, SSDT

HOOK is still effective in protecting software and drivers.

Although kernel rebooting could save us from kernel

detecting tools, it is still vulnerable against pattern

matching. Because files in new kernel contain patterns that

could reveal identities, we will be calling such patterns as

“kernel fingerprints” in the rest. Patterns like PE symbol,

kernel functions will allow hackers to use byte-search to

search memories. If PE fingerprints are found in a memory

(0X4D 5A), other kernel fingerprints like NTOpenProcess

are found or extra processes done by kernel function were

found, hackers would acquire strong evidence that the

kernel was rebooted. Apparently, hackers can reverse

engineer KiFastCallEntry function and figure out the

differences after software protection program was executed.

Then they could find out where KiFastCallEntry was

hooked, all they have to do is to unhook KiFastCallEntry

and all protections are decrypted. There are way too many

fingerprints in new kernel files; in that case, we need to find

a way to hide those fingerprints as much as possible to

prevent hackers from finding real identities of those files.

Hackers can’t break the encryption when they failed to find

fingerprints using pattern matching technique. So we need

50 Zhu Hao et al.: Research on Software Protection Technology Based on Driver

to encrypt kernel fingerprints before kernel rebooting (for

example, xor fingerprints). Using this method, when new

kernel is expanded to the memory, files inside the kernel

won’t show fingerprints. Rather, they look like ordinary

data blocks that have been encrypted. When we need to

execute functions from new kernel, we can then simply

decrypt the new kernel and run software encrypting

program then to protect the code.

4. Summary

4.1. Limitations of Kernel Rebooting Protection

Although the drive protection scheme mentioned in the

essay can provide an effective protection for the software

system, yet the skills require to accomplish by the software

developers, and the programming techniques have a relative

barriers to entry. So, if the developers want to use the system

mentioned by the author to pretect the software, it requires to

understand the working principles and processes of windows

kernel code, which makes the software developement harder

and extending the period of developing.

4.2. Limitations of Kernel Rebooting Protection

Due to the limitation of the energy and ability, the author

hasn’t done the experimental demonstration of the

software-driven protection scheme. so the author expect to

accomplish it as soon as possible, by the way those who

interested in the demonstration are welcomed.

4.3. Limitations of Kernel Rebooting Protection

The intellectual property of the software has been severely

infringed for a long time. Reverse software crack has damaged

the profit of developers seriously. It is hoped that crackers will

reduce the persecution on the intellectual property through the

research of this paper and this research can inspire those who

are interested in the skills of software driver.

References

[1] Li Ruofeng. Research on Network Intrusion Detection
Technology Based on Windows Driver Filtering [D]. China
University of Mining and Technology, 2019.

[2] Meng Chenyu, Shi Yuan, Wang Jiawei, Zhou Jie,Kang
Xiaofeng. Windows kernel-level protection system [J].
Software, 2016, 37 (03): 16-20+26.

[3] Duan Zhixiu. Study Of Software IP Protection [D]. LanZhou
University, 2019.

[4] Chen Xiaoting. Study of Whether To Forbid Reverse Engineer
Software Is Legal——Thoughts Derived From AWS Customer
Agreement Regarding Dos and Don’ts [J]. Science Publication,
2019, 27 (03): 59-64.

[5] Xu Feng. Design and implementation of security monitoring
software in Windows x64 system environment [D]. Beijing
University of Posts and telecommunications, 2019.

[6] Dong Jianye. Anti Reverse Engineering In Software Industries
[A]. China Institute of Communications Communications
Technology Safety Board. 2010 Collections Of Articles
Regarding Communication Safety [C]. China Institute of
Communications Communications Technology Safety Board:
China Institute of Communications, 2010: 5.

[7] Yi Xiangchen. Security software process protection and
reinforcement technology based on Windows system [D].
Tianjin University, 2018.

[8] Ma HongLi. Study Of Software Protection Based On Windows
Kernel [D]. Huazhong University of Science and Technology,
2012.

[9] Ni Tao. Safety Test On Kernel Drivers Based On Windows
Kernel [J]. Informations And Communications, 2017 (01):
183-184.

[10] Meng ChenYu, Shi Yuan, Wang JiaWei, Zhou Jie, Kang
XiaoFeng. Protection System Of Windows Kernel [J].
Software, 2016, 37 (03): 16-20+26.

[11] Zhao Xiaohua, Zhao Shusheng. User behavior collection
solution based on Windows Kernel [J]. Software engineering,
2018, 21 (07): 28-31.

[12] Wu Jian. Research on 64-bit Windows operating system kernel
monitoring [D]. Xiangtan University, 2016.

[13] C. Basile, D. Canavese, L. Regano, P. Falcarin, B. De Sutter. A
Meta-model for Software Protections and Reverse Engineering
Attacks [J]. The Journal of Systems & Software, 2018.

[14] Principle Of Reverse Engineering [M]. Posts & Telecom Press,
(Korean) Licheng Yuan, 2014.

[15] Detailed Analysis Of Windows Kernel [J]. Publishing House of
Electronics Industry, Mao DeCao, 2009.

