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Abstract: The normalized integrated concentration of pollutant has been obtained after solving temporaly diffusion equation 

using the method of separation variable considering the eddy diffusivities which measuring at night or at any time in high 

inversion layer in the stable condition. The dataset is observed from the “Project prairie Grass” (Barad 1958) which is 

measured using wind speed at 1.5m and downwind distance during the experiment at 50, 200 and 800 m in stable case for runs 

from 1 to 10. Comparison between the estimated and observed normalized integrated concentration at a different downwind 

distance for all runs at t = 30 minutes is calculated.  
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1. Introduction 

Diffusion is the tendency of molecules to spread out in order 

to occupy an available space. Gasses and molecules in a liquid 

have a tendency to diffuse from a more concentrated 

environment to a less concentrated environment. Passive 

transport is the diffusion of substances across a membrane. The 

rate of diffusion for different substances is affected by 

membrane permeability. For instance, water diffuses freely 

across cell membranes but other molecules cannot. They must 

be helped across the cell membrane through a process called 

facilitated diffusion. The diffusion equation is a partial 

differential equation which describes density fluctuations in a 

material undergoing diffusion mathematics, it is applicable in 

common to a subject relevant to the Markov process as well as 

in various other fields, such as the material sciences, information 

science, life science, social science, and so on. These subjects 

described by the diffusion equation are generally called Brown 

problems (Michael et al. 2011). The diffusion equation was 

solved in two-dimensions using Laplace transform technique 

was investigated by Essa et al. 2015. 

In the present, Two-dimensional advection-diffusion 

equations describing the dispersion from point source along 

temporally and spatially dependent flow domains was 

studied. A simple model for studying the diffusion of 

substances emitted in steady-state released of short duration 

assuming the presence of an infinite mixing layer was studied 

by Palazzi et al. (1982). 

In this work the normalized integrated concentration of 

pollutant has been getting after solving temporaly diffusion 

equation using method of separation taking the eddy 

diffusivities at night or at any time in high inversion layer in 

the stable condition. The dataset is observed from the 

“Project prairie Grass” (Barad 1958) which was measured 

using wind speed at 1.5m and downwind distance during the 

experiment at “50, 200 and 800 m in stable case for runs 

from 1 to 16. Comparison between the predicted and 

observed normalized integrated concentration at a different 

downwind distance for all runs at t= 30 minutes is calculated. 

One finds that all the predicted data are one to one with 

observed data and others lie inside a factor of two. 

2. Analytical Solution 

The time dependent diffusion equation in two dimensions 

has the form (Hanna and et al. 1982): 

���� � ��� ��� ����� 	 ��
 ��
 ���
�                )1(  

where C is the concentration of pollutants (g/m
3
), Ky and Kz 
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are the eddy diffusivities crosswind and vertical directions 

respectively. y and z are the Cartesian coordinates in 

crosswind, and vertical directions respectively. 

One simplified Eq. (1) in two steps dependent on diffusion 

equations which are calculated using separation of the 

variable method taking different eddy diffusivities in the 

stable case to evaluate the normalized integrated 

concentration of pollutant as follows: 

(a) The one-dimensional equation in the y-direction. 

Eq. (1) is simplified in the form: 

��(�,�)�� � ��� �k� ��(�,�)�� �                 (2) 

The boundary conditions for crosswind direction as above in 

the form: C(y, t) � δ(y) at t=0                       (3) 

��(�,�)�� � 0 at y=0,Ly                      (4) 

where “Ly “is a large distance. 

Differentiating Eq. (2) with respect to y, one gets: 

��(�,�)�� � k� ���(�,�)��� 	 k� � ��(�,�)��                   (5) 

The plume dispersion parameter  "��"  in the lateral 

directions using Eickman (1994) hypothesis that: 

����� � � !" → $ ∂σ� � $ � !"�'�' ∂x → σ� � � !" x       (6) 

where” �)" standard deviation of the lateral components of 

wind speed in stable condition (Panofsky et al. (1977)), as 

follows: 

� *∗ � 1.3 �1 − 001�                           (7) 

where “zi” is a mixing height. 

and 2"(3) average wind speed in stable condition taking L >0 

(L=55m) and β=5 as follows: 

U"(z) � U 6 78�9:9;9; �<=�9>?9;@ �78�9>:9;9; �<=�9>:9;@ �A                      (8) 

zo is a roughness height in urban area (m) (0.5-3m) 

z1 is the height of plume at 10m. 

The K�eddy diffusivity in the lateral directions 

K� � ���C�k� � � 0 D                                  (9) 

Substituting from equation (9) in equation (5) we get that:  
��(�,�)�� � ���C� ���(�,�)���                           (10) 

The solution of Eq. (10) is obtained in the form (Appendix 

A): 

C (y, t) � δ(y) eF�G �HI�@�√�KL� Mcos QGCRS�L yTU             (11) 

(b) One–dimensional equation in z direction. 

Eq. (1) is reduced in the form: 

��(0,�)�� � ��0 �k0 ��(0,�)�0 �                             (12) 

Differentiating Eq. (12) with respect to z, one gets 

��(0,�)�� � k0 ���(0,�)��� 	 k� 0 ��(0,�)��                    (13) 

The boundary conditions are as follows: 

1-The flux at ground surface and at mixing height as 

follows: 

���0 � 0 at z � 0, zW                              (14) 

2-The concentration becomes at “t=0”: 

C (z, 0) =δ (z) at t=0                         (15) 

The plume dispersion parameter "�
"  in the vertical 

directions using Eickman (1994) hypothesis that: 

σ0 � f0 �Y � Z!"[2K0t D                                (16) 

Akula Venkatram (2004) 

Where  ] � ^_̀a (b<c) � d , α � 1.3 ,  f0 � f�gh� Zf�>h�i�, , p=0.23 

q � ks l Γ �Cn� Γ �cn� BCpbq
>>?h and �tu∗ � 1.3 G1 − 33vL 

Where "�t  "wx ] Standard deviation of the vertical 

components of wind speed in stable condition (Panofsky et 

al. (1977)). 

The equation (16) become as follows: 

  

K0 � Gc.y*∗GcF 991(z)L�L�
C�!" �

K� 0 � GcF >91(z)LGc.y*∗GcF 991(z)L�L�!"�
{� 9{9 � GcF >91(z)L

Gc.y*∗GcF 991(z)L�L |}}
}}}
}~
                       (17) 

The solution of Eq. (13) is obtained in the form (Appendix 

B): 

C(z, t) �
δ(z) eF�>?�√?>�HK ��

F 78GcF 991(z)LlG>? >91(z)L(>.g_∗�) p
C

±�78GcF 991(z)LlG>? >91(z)L(>.g_∗�) p�< >� K �9��"�G>? 991(z)L(>.g_∗�)�
C |}}

}}}
}}~               (18) 

The general solution of equation (1) is obtained by 

multiplying (11) and (18) and divided on “Q”, in the form: 
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C
y, z, t� �
δ
y�δ
z�eF�MG����@�√��L�<�>?�√?>�HK �U

McosQGC�S�L yTU
F 78GcF 991
z�LlG>?

>91
z�L
>.g_∗�� pC
��78GcF 991
z�LlG>?

>91
z�L
>.g_∗�� p
�< >�	K	�9��"�G>? 991
z�L
>.g_∗���C |}}

}}}
}}}
}}}
~

          (19) 

3. Results and Discussion 

The used dataset was observed from the prairie Grass 

stable experiment (Doran et al. 1985) which was obtained 

from wind speed at 1.5m and downwind distance during the 

experiment at 50, 200 and 800 m, at near the surface at night 

or at any time in an elevated inversion layer in stable case for 

runs 1-10are represented in (Table1). Comparison between 

the predicted and observed normalized integrated 

concentration at a different downwind distance for the 

different runs at t=30 minutes is done taking Ly=100m. 

 

Figure 1. Comparison between the predicted and observed normalized integrated concentration for three downwind distances 50, 200 and 800m respectively.  

Table 1. Meteorological parameters and concentration measured during the prairie Grass stable experiment. 

Run U (m/s) H (m) U* (m/s) 

C/Q (10-4 sm-2) 

observed Estimated 

X=50m X=200m X=800m X=50m X=200m X=800m 

1 3.63 325 0.24 88 32 10 99 21 28 

2 3.63 325 0.11 170 141 27 166 132 64 

3 3.63 325 0.1 193 100 41 194 94 46 

4 3.63 325 0.29 61 21 7 51 9 50 

5 3.63 325 0.28 78 26 8 80 18 16 

6 1.42 135 0.14 112 39 - 110 42 12 

7 1.42 135 0.11 115 43 17 124 54 13 

8 1.42 135 0.23 79 32 12 82 26 5 

9 1.42 135 0.37 52 17 5 77 17 11 

10 1.42 135 0.17 154 83 32 165 35 34 

 
Figure 1 shows the comparison between the predicted and 

observed normalized integrated concentration at different 

downwind distances at 50, 200, and 800 m. This Figure 

shows that the predicted two models at 50 and 200m are one 

to one and other inside a factor of two with the observed data 

while the third predicated model at 800m are inside a factor 

of three. 

4. Statistical Method 

Now, the statistical method is presented by (Hanna 1989). 

The following standard statistical performance measures the 

agreement between model prediction (Cp=Cpred/Q) and 

observations (Co=Cobs/Q): 
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Fraction	Bias	
FB� � �C� − Cb��0.5�C� 	 Cb��	
Normalized	Mean	Square	Error	
NMSE� � �Cb − C��C

�CbC�� 	
Correlation	Coefficient	
COR)

� 1N� ��CbW − Cb� × �C�W − C��(σbσ�
 ¡
W¢c 	

Factor	of	Two	
FAC2) � 0.5 ≤ CbC� ≤ 2.0 

Where σp and σo are the standard deviations of Cp and Co 

respectively. Here the over bars indicate the average overall 

measurements.  

Table 2. Comparison between different models according to standard 

statistical performance measure. 

Models NMSE FB COR FAC2 

Estimated at x=50m .01 -0.04 0.98 1.06 

Estimated at x=200m 0.12 0.18 0.93 0.82 

Estimated at x=800m 0.81 -0.53 0.55 2.23 

From this table, one finds that the two predicted models at 

50 and 200m are inside the factor of two and the third model 

at 800m is inside a factor of three. Also the previous two 

present models are performance well for the observed data 

with respect to a normalized mean square error, fraction bias, 

and the correlation than the third present model.  

5. Conclusion 

Temporary diffusion equation is estimated by using 

separation variable method with eddy diffusivities measuring 

at near the surface at night or at any time in an elevated 

inversion layer in the stable condition to calculate normalized 

integrated concentration. The used dataset was observed from 

the “Project prairie Grass” (Barad 1958) which was obtained 

by wind speed at 1.5m and downwind distance during the 

experiment at 50, 200 and 800 m in stable case for runs 1-10. 

Comparison between the predicted and observed normalized 

integrated concentration at different downwind distances for 

the different runs at t= 30 minutes. The predicted data are one 

to one and other is inside a factor of two with observed data 

at 50 and 200m while the third predicated model at 800m is 

inside a factor of three. The statistical method shows that the 

two predicted models are inside a factor of two and the third 

predicted model is inside a factor of three. Also the previous 

two present models are performance well for the observed 

data with respect to a normalized mean square error, fraction 

bias, and the correlation than the third present model. Also 

the previous two predicted models are performance well for 

the observed data with respect to a normalized mean square 

error, fraction bias, and the correlation than the third 

predicted model. 

Appendix 

Appendix A 

Using separation of variable method in the form: C (y, t) 

=G (y) F (t) in Eq. (5), one gets that: 

§	
��	 �̈ 	
��	§	
��	¨	
��	 � ���C� G§�� 	
��	¨	
��	§	
��	¨	
��L � −λC            
A1� 
Dividing Eq. (A1) on G (y) F (t), one gets that: 

	 �̈ 	
��		¨	
��	 � ���C� G§�� 	
��	§	
��	L � −λC                    (A2) 

where λ is variable constant. 

Equation (A2) is solved as follows: F� 	
t) 	 λ�CF	
t) � 0                       (A3) 

G�� 	
y) 	 C���� λ�CG	
y) � 0	                      (A4� 
Integrating Eq. (A3� with respect to t from 0 to t, one gets 

that: 

F	
t) � c'	eF�¬��
                        (A5) 

The solution of Eq. (A4) in the  from: 

G	
y) � cccos QG√C��� λ�L yT 	 cCsin QG√C��� λ�L yT     (A6) 

The general solution of C (y, t) is in the from: 

C	
y, t) � 	AeF�®�cos QG√C�¯� °�L yT 	 Bsin QG√C�¯� °�L yT  (A7) 

where  A=c0c1 and B= c0c2 

Substituting from (3) in (A7), one gets that: A � δ(y)                                 (A8) 

Substituting from (4) in (A7), one gets that: B � 0                                  (A9) 

Substituting from (A9) in (A7), one gets that: 

C	
y, t) �	� δ(y)	cos QG√C��� λ�L yT            (A10) 

Substituting from (4) in (A10), one gets that: 

G� 	
y) � −δ(y) √C��� λ Msin QG√C��� λ�	L L�TU       (A11) 

G√C�¯� °L L� � 2µ → °� � C�¯�S�√C�           (A12) 

Substituting from (A12), (A8) and (A9� in equation (A7�, 
one gets that: 
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C	
y, t) � δ(y)eF�Q �HI�@�√�KT� Mcos QGCRS�L yTU	             (A13) 

Appendix B 

Using separation of variable method in the form:  

C (z, t) =M (z) N (t)                 (A14) 

And Dividing Eq. (A14) on M (z) N (t)), one can get that:  

 	� 
���		 	
��	 � k0 ¶··	
0�	¶	
0�	 + k� 0 ¶·	
0�	�	¶	
0�	 � −λC	            (A15) 

Where “λ” is variable constant. 

Equation (A15) is solved as follows: N	� 
t) � −λ0CN	
t)                       (A16) 

M··(z) 	 �̧ 9¸9 M·(z) 	 ¬�¸9 M(z) � 0	              (A17) 

The solution of Esq.’s (A16) and (A17), one gets that: 

N	
t) � AeF¬9��                            (A18) 

M··(z) 	 �̧ 9¸9 M·(z) 	 ¬9�¸9 M	
z ) =0        (A19) 

Substation from (14) in (A18), one gets that:  

A= δ (z)                              (A20) 

Substation from (A20) in equation (A18), one gets that: 

N	
t) � δ(z)	¹F®º��                    (A21) 

Where δ (z) is Dirac delta function in the form  δ(z) � cC� ∑ ¹v¼
½¼¢F½ 	(Hazewinkel and et al. (2001)), 

Substation from (12) in (A20).one gets that:  

λ0 � ¾cF8√FcCR�                             (A22) 

Integration Eq. (A19) with respect to "z" from 0 to z, one 

gets: 

M
z) �
F 78GcF 991(z)LlG>? >91(z)L(>.g_∗�) p

C
±�78GcF 991(z)LlG>? >91(z)L(>.g_∗�) p�< >�	K	�9��"�G>? 991
z�L
>.g_∗�)�

C |}}
}}}
~
		   (A23) 

Substation from Eq. (A21), (A23) in Eq. (A14), one gets 

that:  

C(z, t) �
δ(z)	eF�>?�√?>�HK ��

F 78GcF 991(z)LlG>? >91(z)L(>.g_∗�) p
C

±�78GcF 991(z)LlG>? >91(z)L(>.g_∗�) p�< >�	K	�9��"�G>? 991
z�L
>.g_∗�)�
C |}}

}}}
}}~			     (A24) 
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