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Abstract: Cache is an important component in computer architecture. It has great effects on the performance of systems. 

Nowadays, Least Recently Used (LRU) Algorithm is one of the most commonly used one because it is easy to implement and 

with a relatively good performance. However, in some particular cases, LRU is not a good choice. To provide references for 

the computer architecture designer, the study proposed a new algorithm named Fully Replacement Policy (FRP) and then 

analyzed various factors of effects on cache performance, carried out the simulation experiment of cache performance based on 

SimpleScalar toolset and SPEC2000 benchmark suite. The study compared the effects of Fully Replacement Policy with Least 

Recently Used (LRU) Algorithm when set size, block size, associativity and replacement methods are changed separately., By 

experimentally analyzing the results, it was found that FRP outperforms LRU in some particular situations. 
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1. Introduction 

Cache as shown in Figure 1 is a high speed and small 

memory, which is used to store running programs and data. 

Usually, cache of CPU has two levels: L-1 cache and L-2 

cache. Some high performance processors have L-3 cache. In 

light of recent changes in hardware landscape, we believe 

that in the future, multilevel caches are invariably going to be 

hybrid caches where 1) all/most levels are physically 

collocated 2) the levels differ substantially only with respect 

to performance and not storage density, and 3) all levels are 

persistent [1]. Normally, the more cache level or the more 

capacity, the better performance. It’s very necessary to grasp 

all kinds of effects on architecture. Software simulation 

should be a good choice because of the inevitable complexity 

of hardware implementation.  

In order to make room for the new entry on a cache miss, 

the cache may have to evict one of the existing entries. The 

heuristic that it uses to choose the entry to evict is called the 

replacement policy. Replacement policy, one of the key 

factors determining the effectiveness of a cache, becomes 

even more important with latest technological trends toward 

highly associative caches. The state-of-the-art processors 

employ various policies such as Random, Least Recently 

Used (LRU), First in First out (FIFO), indicating that there is 

no common wisdom about the best one. 

The development of software is much faster than that of 

hardware. And the improvement of stream buffer can help us 

develop computer hardware. Stream buffer is a kind of 

computer hardware which is between cache L1 and cache L2 

and it can, to some extent, reduce the miss rate of cache L1. 

Stream buffers pre-fetch cache lines when a cache miss 

exists, and places the data in the buffer. So stream buffers can 

efficiently decrease the cache pollution and reduce most 

cache misses in cache L1. When cache L1 miss happens, the 

computer will start to look for data in stream buffer. If it is a 

hit, the data would be transferred from stream buffer to cache 

L1 and then stream buffer would prefetch a new data from 

cache L2. If it is a miss, all the data in stream buffer will be 

replaced. 

This paper mainly describes the cache performance 

simulation in order to provide reference for architecture 

designing, especially for high performance architecture. 

Through the analysis of the experimental results, the study 

puts forward the relationship between the cache performance 

and some cache parameters. 
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Figure 1. Cache and memory. 

This paper is organized as follows. Section 2 is related 

work. Section 3 details the approach. Section 4 is evaluation 

methodology which contains information about how the 

study evaluates the above mentioned approach. Section 5 

introduces the environmental setups and benchmarks. Section 

6 shows the result of experiments and explains “why”. 

Section 7 concludes the report and expands on consideration 

for future research. 

2. Related Work 

Nowadays, one of the most common algorithms of cache 

replacement is LRU. In this algorithm, the frame which has 

not been used for the longest period of time would be replaced.  

Another popular algorithm is Random Replacement 

Policy, which means that when L1 cache miss happens, the 

frame that would be replaced is randomly chosen. 

Furthermore, First in First out (FIFO) is also commonly 

used. It replaces frames in cache L1 according to the entered 

sequence. 

To reduce capacity and compulsory misses, Norman P. 

Jouppi [2] proposed the idea of stream buffer. With several 

entries consisting tags, available bits, and data lines, stream 

buffer implements prefetch before a tag transition take place. 

However, the study did not implement stream buffer itself. 

The study tried a new replacement algorithm inspired by the 

principle of stream buffer.  

Waseem Ahmad and Enrico Ng [3] studied the best 

processor parameters by SimpleScalar. This research also 

included the branch prediction, D-cache sizes and the Branch 

Target Buffers (BTB) preferences. It also proposed some 

improved methods.  

AJ Klein Osowski et al. [4] compared the behavior of the 

SPEC 2000 benchmark programs when executing with 

different input data sets by looking at the fraction of total 

execution time spent in functions as measured by the 

profiling tool. They then proposed a method to reduce the 

execution times of the SPEC 2000 benchmarks in a 

quantitatively defensible way. 

YU Zhi-bin et al. [5] studied the software simulation 

technology of architecture. They comprehensively compared 

and analysed existing simulation technology of architecture 

in detail. 

Much of the compiler tools are simply ports of the GNU 

software development tools to the SimpleScalar architecture 

[6]. The ports were written by Todd Austin. The tool set is 

now supported by Doug Burger, who wrote the 

documentation for both releases 1.0 and 2.0. Contributions 

have also been made by Austin B T M et al. [7], Austin T [8], 

and Kalaitzidis K et al [9]. 

3. Method 

Inspired by stream buffer, the study proposed a new cache 

replacement algorithm - When a cache miss happens in L1, 

flush all the data in L1 cache. Due to the spatial locality, if a 

particular memory location is referenced at a particular time, 

then it is likely that nearby memory locations will be 

referenced in the near future. In this case it is common to 

attempt to guess the size and shape of the area around the 

current reference for which it is worthwhile to prepare faster 

access. For example, if data address n missed in L1 cache, it 

is highly possible that n+1 also missed in this cache. So 

replace all the data in cache L1 is effective. 

In our quest for replacement policy as close to optimal as 

possible, the study thoroughly explored the design space of 

existing replacement mechanisms using SimpleScalar toolset 

and SPEC CPU2000 benchmark suite, across wide range of 

cache sizes and organizations [10]. 

4. Evaluation Methodology 

To enhance the performance of cache L1, a new algorithm 

is proposed by the study. When a miss happens to L1 cache, 

all the blocks in cache L1 would be replaced. And the study 

makes the algorithm come true by modifying the code of 

Simplescalar. This section describes the simulators, our 

SPEC2000 benchmark suite, and the performance of the new 

algorithm designed by the study. 

4.1. Simulators 

To evaluate Fully Replacement Policy, the study employs 

sim-outorder simulator to generate experimental results. And 

the study also employs crafty, equake, gzip, swim, vortex and 

lucas benchmark to test the new algorithm. 

4.2. SPEC2000 Benchmark 

With the development of CPU, nowadays the study can see 
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that in senior server market different operating system use 

different CPU. In such a situation, the study employs SPEC 

CPU 2000 benchmark to test them. 

SPEC CPU 2000 is a suite of test programs made by SPEC 

committee. It can evaluate the performance of CPU by 

executing a lot of integer and floating point operation in 

servers. SPEC 2000 consists of two parts: CNIT2000 

(Integer test) shown in TABLE 1 [11] and CFP2000 (Floating 

point test) shown in TABLE 2. [12] 

In our test, the study employs gzip, crafty and vortex from 

CINT2000. The study also employs equake, lucas and swim 

from CPF2000 as benchmark. 

Table 1. CINT2000 Content. 

Benchmark Language Category 

164.gzip C Compression 

175.vpr C FPGA Circuit Placement and Routing 

176.gcc C C Programming Language Complier 

181.mcf C Combinatorial Optimization 

186.crafty C Game Playing: Chess 

197.parser C Word Processing 

252.eon C++ Computer Visualization 

253.perlbmk C PERL Programming Language 

254.gap C Group Theory, Interpreter 

255.vortex C Object-oriented Database 

256.bzip2 C Compression 

300.twolf C Place and Route Simulator 

4.3. Detailed Description of Methodology 

To test the effect of our new cache replacement 

methodology, the study employs contrast test. There are 

many variables concerning the performance of cache L1. The 

study in turn changes only one variable while keep others the 

same. For example, when the study tries to test the influence 

of block size, the study would only change the value of block 

size and keep set size, associativity and benchmark 

unchanged. 

Table 2. CFP2000 Content. 

CFP2000 Test Programs Language Description 

168.wupwise Fortran 77 Quantum Mechanics 

171.swim Fortran 77 Aerography Computation 

172.mgrid Fortran 77 Multigrid Solver 

173.applu Fortran 77 
Parabola/Ellipse Partial 

Differential Equation 

177.mesa C 3-D Graphic Library 

178.galgel Fortran 90 Hydromechanics Computation 

179.art C 
Image Recognition/Pivot 

Network 

183.equake C Seismic Wave Simulation 

187.facerec Fortran 90 
Image Processing: Facial 

Detection 

188.ammp C Chemical Computation 

189.lucas Fortran 90 Number Theory 

191.fma3d Fortran 90 Collision Simulation 

200.sixtrack Fortran 77 
High-Energy Atomic Physical 

Accelerator 

301.apsi Fortran 77 
 

4.4. Experiment Procedure 

First, set up two folders named simplesim-3.0 and 

simplesim-3.0R separately. The former one is the original 

simplescalar-3.0 while the latter one is the modified one. By 

doing this the study can conveniently compare FRP with 

LRU. 

Secondly, change the code of simplesim-3.0R so that the 

new algorithm can be implemented. In this simulation, the 

study edited “cache.c” document and added a new cache 

replacement algorithm to the system.  

Thirdly, open terminal in Ubuntu and compile 

simplescalar-3.0 and simplescalar-3.0R using config-alpha.  

Fourthly, download SPEC2000 Benchmark and place them 

in the same directory as simplesim-3.0.  

Fifth, keep only one variable changed each time and 

compare the result of FRP with LRU.  

Then, make some figures according to the results.  

Finally, draw a conclusion. 

5. Experiment Setup 

The L1 cache of the old system uses LRU to do the 

replacement while the new system employs FRP. The study 

employed gzip, crafty and vortex from CINT2000. Equake, 

lucas and swim from CPF2000 are used as benchmark as 

well. Then, The effect of FRA in different conditions is able 

to be tested. 

6. Results and Analysis 

The study tests miss rates in different benchmarks and 

compares miss rates in FRP and LRU. These six benchmarks 

can be divided into two groups: the floating point benchmark 

(including equake, swim and lucas) and the integer 

benchmark (including crafty, gzip and vortex). Equake is an 

application of seismic wave propagation simulation; swim is 

a shallow water modeling; lucas is an application for number 

theory or primality testing; crafty is an application for chess 

game playing; gzip is compression and vortex is an object-

oriented database. 

Firstly, the study does simulation on the floating point 

benchmark.  

For equake benchmark, when L1 cache block size remains 

32 bytes associativity remains 2-way mapping and set size 

increased gradually, the miss rate of L1 cache is tested. As 

shown in Figure 2 A, for 64 bytes set size, miss rate of LRU 

is 2.65% while that of FRP is 2.34, which is 0.31% lower. 

For 128 bytes set size, the miss rate of LRU is 1.21% while 

that of FRP is 1.28%, which is 0.07% higher. For the set size 

256, the miss rate of LRU is 0.33% while that of FRP is 

0.31%, which is 0.02% lower. For 512 bytes set size, the 

miss rate of LRU is 0.27% while that of FRP is 0.26, which 

is 0.01% lower. For 1024 bytes set size of, the miss rate of 

LRU is 0.25% while that of FRP is also 0.25%. 

For equake benchmark, when L1 cache set size remains 64 

bytes, associativity remains 2-way mapping and block size 

increases gradually, the miss rate of L1 cache is tested. As 

shown in figure 2 B, for 8 bytes block size, the miss rate of 

LRU is 13.04% while that of FRP is 13.87%, which is 0.83% 
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higher. For 16 bytes block size, the miss rate of LRU is 

5.15% while that of FRP is 5.45%, which is 0.30% higher. 

For 32 bytes block size, the miss rate of LRU is 2.65% while 

that of FRP is 2.55%, which is 0.10% lower. For 64 bytes 

block size, the miss rate of LRU is 1.94% while that of FRP 

is 2.04%, which is 0.10% higher. 

For equake benchmark, when the block size remains 32 

bytes, set size remains 64 bytes and associativity increases 

gradually, the miss rate of L1 cache is tested. As shown in 

Figure 2 C For 2-way mapping, the miss rate of LRU is 

2.65% while that of FRP is 2.55%, which is 0.10% lower. For 

4-way associativity, the miss rate of LRU is 0.40% while that 

of FRP is 2.55%, which is 2.15% higher. For 8-way 

associativity, the miss rate of LRU is 0.29% while that of 

FRP is 2.55%, which is 1.96% higher. For 16-way 

associativity, the miss rate of LRU is 0.26% while that of 

FRP is 2.55%. 

For lucas benchmark, when the block size remains 32 

bytes, associativity remains 2-way mapping and set size 

increases gradually, the miss rate of L1 cache is tested. As 

shown in Figure 2 D, for 64 bytes set size, the miss rate of 

LRU is 2.63% while that of FRP is 2.66%, which is 0.03% 

higher. For 128 bytes set size, the miss rate of LRU is 1.25% 

while that of FRP is 1.18%, which is 0.07% lower. For the set 

size of 256, the miss rate of LRU is 0.94% while that of FRP 

is 0.91%, which is 0.03% lower. For 512 bytes set size, the 

miss rate of LRU is 0.83% while that of FRP is 0.81%, which 

is 0.02% lower. For 1024 bytes set size, the miss rate of LRU 

is 0.77% while that of FRP is 0.76%, which is 0.01% lower. 

For the lucas benchmark, when the set size remains 64 

bytes, associativity remains 2-way mapping and block size 

increases gradually, the miss rate of L1 cache is tested. As 

shown in Figure 2 E, for 8 bytes block size, the miss rate of 

LRU is 6.89% while that of FRP is 6.90%, which is 0.01% 

higher. For 16 bytes block size, the miss rate of LRU is 

4.94% while that of FRP is 5.00%, which is 0.06% higher. 

For 32 bytes block size, the miss rate of LRU is 2.63% while 

that of FRP is 2.66%, which is 0.03% higher. For 64 bytes 

block size, the miss rate of LRU is 0.91% while that of FRP 

is 0.87%, which is 0.04% lower. 

For the lucas benchmark, when the set size remains 64 

bytes, block size remains 32 bytes and associativity increases 

gradually, the miss rate of L1 cache is tested. For 2-way 

mapping, the miss rate of LRU is 2.63% while that of FRP is 

2.66%, which is 0.03% higher. As shown in Figure 2 F, for 4-

way mapping, the miss rate of LRU is 1.31% while that of 

FRP is 2.66%, which is 1.35% higher. For 8-way mapping, the 

miss rate of LRU is 0.95% while that of FRP is 2.66%, which 

is 1.71% higher. For 16-way mapping, the miss rate of LRU is 

0.82% while that of FRP is 2.66%, which is 1.84% higher. 

For the swim benchmark, when the set size remains 32 

bytes, associativity remains 2-way mapping and block size 

increases gradually, the miss rate is tested. As shown in 

Figure 2 G, for 64 bytes block size bytes, the miss rate of 

LRU is 1.74% while that of FRP is 1.66%, which is 0.08% 

lower. For the block size of 128 bytes, the miss rate of LRU 

is 1.38% while that of FRP is 1.34%, which is 0.04% lower. 

For the block size of 256, the miss rate of LRU is 1.22% 

while that of FRP is 1.20%, which is 0.02% lower. For the 

512 bytes block size, the miss rate of LRU is 1.14% while 

that of FRP is 1.13%. For 1024 bytes block size, the miss rate 

of LRU is 1.10% while that of FRP is 1.09%, which is 0.01% 

lower. 

For swim benchmark, when set size remain 64 bytes, 

associativity remains 2-way mapping and block size 

increased gradually, the miss rate is tested. As shown in 

Figure 2 H, for 8 bytes block size, the miss rate of LRU is 

11.60% while that of FRP is 11.94%, which is 0.34% higher. 

For 16 bytes block size, the miss rate of LRU is 5.55% while 

that of FRP is 5.54%. For 32 bytes block size, the miss rate 

of LRU is 1.74% while that of FRP is 1.66%, which is 0.08 

lower. For 64 bytes block size, the miss rate of LRU is 1.28% 

while that of FRP is 1.33%, which is 0.05% higher. 

For swim benchmark, when set size remains 64 bytes, 

block size remains 32 bytes and associativity increases 

gradually, the miss rate is tested. As shown in Figure 2 I, 

when the associativity is 2-way mapping, the miss rate of 

LRU is 1.74% while that of FRP is 1.66%, which is 0.08% 

lower. When the associativity is 4-way mapping, the miss 

rate of LRU would be 1.34% while that of FRP would be 

1.66%, which is 0.32% higher. When the associativity is 8-

way mapping, the miss rate of LRU would be 1.19% while 

that of FRP is 1.66%, which is 0.47%. 

Secondly, the study does simulation on the integer 

benchmark.  

For crafty benchmark, when block size remains 32 bytes, 

associativity remains 2-way mapping and set size increases 

gradually, the miss rate is tested. As shown in Figure 2 J, 

when the set size is 64 bytes, the miss rate of LRU is 14.82% 

while that of FRP is also 14.82%. When the set size is 128 

bytes, the miss rate of LRU is 9.11% while that of FRP is 

9.13%, which is 0.02% higher. When the set size is 256 

bytes, the miss rate of LRU is 4.49% while that of FRP is 

4.50%, which is 0.01% higher. When the set size is 512 

bytes, the miss rate of LRU is 2.33% while that of FRP is 

2.29%, which is 0.04% lower. For 1024 bytes set size, the 

miss rate of LRU is 1.30% while that of FRP is 1.25%, which 

is 0.05% lower. 

For crafty benchmark, when set size remains 64 bytes, 

associativity remains 2-way mapping and block size 

increases gradually, the miss rate is tested. As shown in 

Figure 2 K, for 8 bytes block size, the miss rate of LRU is 

32.84% while that of FRP is 32.74%, which is 0.10% lower. 

For 16 bytes block size, the miss rate of LRU is 21.70% 

while that of FRP is 21.94%, which is 0.24% higher. For 32 

bytes block size, the miss rate of LRU is 14.82% while that 

of FRP is also 14.82%. For 64 bytes block size, the miss rate 

of LRU is 11.05% while that of FRP is 11.09%, which is 

0.04% higher. 

For crafty benchmark, when set size remains 64 bytes, 

block size remains 32 bytes and associativity increases 

gradually, the miss rate is tested. As shown in Figure 2 L, for 

2-way mapping, the miss rate of LRU is 14.82% while that of 

FRP is also 14.82%. For 4-way mapping, the miss rate of 
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LRU is 7.20% while that of FRP is 14.82%, which is 7.62% 

higher. For 8-way mapping, the miss rate of LRU is 2.85% 

while that of FRP is 14.82%, which is 11.97% higher. For 16-

way mapping, the miss rate of LRU is 1.25% while that of 

FRP is 14.85%, which is 13.60% higher. 

 

Figure 2. L1 cache miss rate of LRU and FRP in different conditions. 
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For gzip benchmark, when block size remains 32 bytes, 

associativity remains 2-way mapping, set size increases 

gradually, the miss rate is tested. As shown in Figure 2 M, for 

64 bytes set size, the miss rate of LRU is 5.90% while that of 

FRP is 5.83%, which is 0.07% lower. For 128 set size, the 

miss rate of LRU is 4.89% while that of FRP is 4.81%, which 

is 0.08% lower. For 256 set size, the miss rate of LRU is 

4.29% while that of FRP is 4.24%, which is 0.05% lower. For 

512 bytes block size, the miss rate of LRU is 3.59% while 

that of FRP is 3.56%, which is 0.03% lower. For 1024 bytes 

block size, the miss rate of LRU is 2.63% while that of FRP 

is 2.60%, which is 0.03% lower. 

For gzip benchmark, when set size remains 64 bytes, 

associativity remains 2-way mapping and block size 

increases gradually, the miss rate is tested. As shown in 

Figure 2 N, for 8 bytes block size, the miss rate of LRU is 

11.22% while that of FRP is 10.99%, which is 0.23% lower. 

For 16 bytes block size, the miss rate of LRU is 7.67% while 

that of FRP is 7.53%, which is 0.14% lower. For 32 bytes 

block size, the miss rate of LRU is 5.9% while that of FRP is 

5.83%, which is 0.07% lower. For 64 bytes block size, the 

miss rate of LRU is 4.88% while that of FRP is 4.80%, which 

is 0.08% lower. 

For gzip benchmark, when block size remains 32 bytes, set 

size remains 64 bytes and associativity increases gradually, 

the miss rate is tested. As shown in Figure 2 O, for 2-way 

mapping, the miss rate of LRU is 5.90% while that of FRP is 

5.83%, which is 0.07% lower. For 4-way mapping, the miss 

rate of LRU is 4.85% while that of FRP is 5.83%, which is 

0.98% higher. For 8-way mapping, the miss rate of LRU is 

4.26% while that of FRP is 5.83%, which is 1.57% higher. 

For 16-way mapping, the miss rate of LRU is 3.6% while 

that of FRP is 5.83%, which is 2.23% higher. 

For vortex benchmark, when block size remains 32 bytes, 

associativity remains 2-way mapping and set size increases 

gradually, the miss rate is tested. As shown in Figure 2 P, for 

64 bytes set size, the miss rate of LRU is 6.86% while that of 

FRP is 6.76%, which is 0.10% lower. For 128 bytes set size, 

the miss rate of LRU is 4.43% while that of FRP is 4.41%, 

which is 0.02% lower. For 256 bytes set size, the miss rate of 

LRU is 2.79% while that of FRP is 2.76%, which is 0.03% 

lower. For 512 bytes set size, the miss rate of LRU is 1.94% 

while that of FRP is 1.92%, which is 0.02% lower. For 1024 

bytes set size, the miss rate of LRU is 1.54% while that of 

FRP is 1.53%, which is 0.01% lower. 

For vortex benchmark, when set size remains 64 bytes, 

associativity remains 2-way mapping and block size 

increases gradually, the miss rate is tested. For 8 bytes block 

size, the miss rate of LRU is 24.33% while that of FRP is 

24.20%, which is 0.13% lower. As shown in Figure 2 Q, for 

16 bytes block size, the miss rate of LRU is 12.21% while 

that of FRP is 12.05%, which is 0.16% lower. For 32 bytes 

block size, the miss rate of LRU is 6.86% while that of FRP 

is 6.76%, which is 0.10% lower. For 64 bytes block size, the 

miss rate of LRU is 4.00% while that of FRP is 3.97%, which 

is 0.03% lower. 

For vortex benchmark, when set size remains 64 bytes, 

block size remains 32 bytes and associativity increases 

gradually, the miss rate is tested. As shown in Figure 2 R, for 

2-way mapping, the miss rate of LRU is 6.86% while that of 

FRP is 6.76%, which is 0.10% lower. For 4-way mapping, 

the miss rate of LRU is 3.71% while that of FRP is 6.76%, 

which is 3.05% higher. For 8-way mapping, the miss rate of 

LRU is 2.29% while that of FRP is 6.76%, which is 4.47% 

higher. For 16-way mapping, the miss rate of LRU is 1.62% 

while that of FRP is 6.76%, which is 5.14% higher. 

Based on the above benchmark tests, miss rate are shown 

in these figures when L1 set size is changed from 64 to 1024, 

the L1 block size is changed from 8 bytes to 64 bytes and the 

L1 associativity is changed from 2-way to 16-way. The 

selected results and relative parameters are shown as Figure 

1-Figure4. 

 

Figure 3. L1 Cache miss rate improvement when using FRP comparing to LRU. 
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Figure 4. The relationship between associativity and L1 cache miss rate when using FRP. 

 

Figure 5. The relationship between associativity and L1 cache miss rate when using LRU. 

 

Figure 6. The improvement of L1 cache miss rate when using FRP in the condition of 64 bytes set size, 32 bytes block size and 2-way mapping associativity. 
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7. Conclusion 

According to Figure 1, it is obviously that when the L1 

cache has a block size of 32 byte and with a 2-way 

associativity, Fully Replacement Policy works better than 

LRU most of the time, especially when the setsize is small. 

Besides, when using Fully Replacement Policy, miss rate has 

nothing to do with the associativity of L1 cache while miss 

rate decreases as the increase of associativity when using 

LRU, which means that the less the associativity is, the better 

to use Fully Replacement Policy than LRU. According to 

Figure 4, FRP works better than LRU for most benchmarks 

when the setsize is 64, blocksize is 32 and associativity is 2. 
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