

American Journal of Embedded Systems and Applications
2016; 4(1): 7-14

http://www.sciencepublishinggroup.com/j/ajesa

doi: 10.11648/j.ajesa.20160401.12

ISSN: 2376-6069 (Print); ISSN: 2376-6085 (Online)

Cache Optimization by Fully-Replacement Policy

Chuntao Du
1
, Xinsong Du

2, *

1Department of Computer Science and Technology, North China University of Technology, Beijing, China
2Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA

Email address:
duct@ncut.edu.cn (Chuntao Du), xinsongdu@ufl.edu (Xinsong Du)
*Corresponding author

To cite this article:
Chuntao Du, Xinsong Du. Cache Optimization by Fully-Replacement Policy. American Journal of Embedded Systems and Applications.

Vol. 4, No. 1, 2016, pp. 7-14. doi: 10.11648/j.ajesa.20160401.12

Received: October 20, 2016; Accepted: November 9, 2016; Published: December 5, 2016

Abstract: Cache is an important component in computer architecture. It has great effects on the performance of systems.

Nowadays, Least Recently Used (LRU) Algorithm is one of the most commonly used one because it is easy to implement and

with a relatively good performance. However, in some particular cases, LRU is not a good choice. To provide references for

the computer architecture designer, the study proposed a new algorithm named Fully Replacement Policy (FRP) and then

analyzed various factors of effects on cache performance, carried out the simulation experiment of cache performance based on

SimpleScalar toolset and SPEC2000 benchmark suite. The study compared the effects of Fully Replacement Policy with Least

Recently Used (LRU) Algorithm when set size, block size, associativity and replacement methods are changed separately., By

experimentally analyzing the results, it was found that FRP outperforms LRU in some particular situations.

Keywords: Cache memory, Replacement, Optimization, SimpleScaler, SPEC2000

1. Introduction

Cache as shown in Figure 1 is a high speed and small

memory, which is used to store running programs and data.

Usually, cache of CPU has two levels: L-1 cache and L-2

cache. Some high performance processors have L-3 cache. In

light of recent changes in hardware landscape, we believe

that in the future, multilevel caches are invariably going to be

hybrid caches where 1) all/most levels are physically

collocated 2) the levels differ substantially only with respect

to performance and not storage density, and 3) all levels are

persistent [1]. Normally, the more cache level or the more

capacity, the better performance. It’s very necessary to grasp

all kinds of effects on architecture. Software simulation

should be a good choice because of the inevitable complexity

of hardware implementation.

In order to make room for the new entry on a cache miss,

the cache may have to evict one of the existing entries. The

heuristic that it uses to choose the entry to evict is called the

replacement policy. Replacement policy, one of the key

factors determining the effectiveness of a cache, becomes

even more important with latest technological trends toward

highly associative caches. The state-of-the-art processors

employ various policies such as Random, Least Recently

Used (LRU), First in First out (FIFO), indicating that there is

no common wisdom about the best one.

The development of software is much faster than that of

hardware. And the improvement of stream buffer can help us

develop computer hardware. Stream buffer is a kind of

computer hardware which is between cache L1 and cache L2

and it can, to some extent, reduce the miss rate of cache L1.

Stream buffers pre-fetch cache lines when a cache miss

exists, and places the data in the buffer. So stream buffers can

efficiently decrease the cache pollution and reduce most

cache misses in cache L1. When cache L1 miss happens, the

computer will start to look for data in stream buffer. If it is a

hit, the data would be transferred from stream buffer to cache

L1 and then stream buffer would prefetch a new data from

cache L2. If it is a miss, all the data in stream buffer will be

replaced.

This paper mainly describes the cache performance

simulation in order to provide reference for architecture

designing, especially for high performance architecture.

Through the analysis of the experimental results, the study

puts forward the relationship between the cache performance

and some cache parameters.

8 Chuntao Du and Xinsong Du: Cache Optimization by Fully-Replacement Policy

Figure 1. Cache and memory.

This paper is organized as follows. Section 2 is related

work. Section 3 details the approach. Section 4 is evaluation

methodology which contains information about how the

study evaluates the above mentioned approach. Section 5

introduces the environmental setups and benchmarks. Section

6 shows the result of experiments and explains “why”.

Section 7 concludes the report and expands on consideration

for future research.

2. Related Work

Nowadays, one of the most common algorithms of cache

replacement is LRU. In this algorithm, the frame which has

not been used for the longest period of time would be replaced.

Another popular algorithm is Random Replacement

Policy, which means that when L1 cache miss happens, the

frame that would be replaced is randomly chosen.

Furthermore, First in First out (FIFO) is also commonly

used. It replaces frames in cache L1 according to the entered

sequence.

To reduce capacity and compulsory misses, Norman P.

Jouppi [2] proposed the idea of stream buffer. With several

entries consisting tags, available bits, and data lines, stream

buffer implements prefetch before a tag transition take place.

However, the study did not implement stream buffer itself.

The study tried a new replacement algorithm inspired by the

principle of stream buffer.

Waseem Ahmad and Enrico Ng [3] studied the best

processor parameters by SimpleScalar. This research also

included the branch prediction, D-cache sizes and the Branch

Target Buffers (BTB) preferences. It also proposed some

improved methods.

AJ Klein Osowski et al. [4] compared the behavior of the

SPEC 2000 benchmark programs when executing with

different input data sets by looking at the fraction of total

execution time spent in functions as measured by the

profiling tool. They then proposed a method to reduce the

execution times of the SPEC 2000 benchmarks in a

quantitatively defensible way.

YU Zhi-bin et al. [5] studied the software simulation

technology of architecture. They comprehensively compared

and analysed existing simulation technology of architecture

in detail.

Much of the compiler tools are simply ports of the GNU

software development tools to the SimpleScalar architecture

[6]. The ports were written by Todd Austin. The tool set is

now supported by Doug Burger, who wrote the

documentation for both releases 1.0 and 2.0. Contributions

have also been made by Austin B T M et al. [7], Austin T [8],

and Kalaitzidis K et al [9].

3. Method

Inspired by stream buffer, the study proposed a new cache

replacement algorithm - When a cache miss happens in L1,

flush all the data in L1 cache. Due to the spatial locality, if a

particular memory location is referenced at a particular time,

then it is likely that nearby memory locations will be

referenced in the near future. In this case it is common to

attempt to guess the size and shape of the area around the

current reference for which it is worthwhile to prepare faster

access. For example, if data address n missed in L1 cache, it

is highly possible that n+1 also missed in this cache. So

replace all the data in cache L1 is effective.

In our quest for replacement policy as close to optimal as

possible, the study thoroughly explored the design space of

existing replacement mechanisms using SimpleScalar toolset

and SPEC CPU2000 benchmark suite, across wide range of

cache sizes and organizations [10].

4. Evaluation Methodology

To enhance the performance of cache L1, a new algorithm

is proposed by the study. When a miss happens to L1 cache,

all the blocks in cache L1 would be replaced. And the study

makes the algorithm come true by modifying the code of

Simplescalar. This section describes the simulators, our

SPEC2000 benchmark suite, and the performance of the new

algorithm designed by the study.

4.1. Simulators

To evaluate Fully Replacement Policy, the study employs

sim-outorder simulator to generate experimental results. And

the study also employs crafty, equake, gzip, swim, vortex and

lucas benchmark to test the new algorithm.

4.2. SPEC2000 Benchmark

With the development of CPU, nowadays the study can see

Block No. Full Associative Cache Block No. Memory
0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8

9

10

Direct Mapped Cache 11

0 12

1 13

2 14

3 15

4 16

5 17

6 18

7 19

20

21

22

2-Way Associative Cache 23

0 24

1 25

2 26

3 27

4 28

5 29

6 30

7 31

Set0

Set1

Set2

Set3

 American Journal of Embedded Systems and Applications 2016; 4(1): 7-14 9

that in senior server market different operating system use

different CPU. In such a situation, the study employs SPEC

CPU 2000 benchmark to test them.

SPEC CPU 2000 is a suite of test programs made by SPEC

committee. It can evaluate the performance of CPU by

executing a lot of integer and floating point operation in

servers. SPEC 2000 consists of two parts: CNIT2000

(Integer test) shown in TABLE 1 [11] and CFP2000 (Floating

point test) shown in TABLE 2. [12]

In our test, the study employs gzip, crafty and vortex from

CINT2000. The study also employs equake, lucas and swim

from CPF2000 as benchmark.

Table 1. CINT2000 Content.

Benchmark Language Category

164.gzip C Compression

175.vpr C FPGA Circuit Placement and Routing

176.gcc C C Programming Language Complier

181.mcf C Combinatorial Optimization

186.crafty C Game Playing: Chess

197.parser C Word Processing

252.eon C++ Computer Visualization

253.perlbmk C PERL Programming Language

254.gap C Group Theory, Interpreter

255.vortex C Object-oriented Database

256.bzip2 C Compression

300.twolf C Place and Route Simulator

4.3. Detailed Description of Methodology

To test the effect of our new cache replacement

methodology, the study employs contrast test. There are

many variables concerning the performance of cache L1. The

study in turn changes only one variable while keep others the

same. For example, when the study tries to test the influence

of block size, the study would only change the value of block

size and keep set size, associativity and benchmark

unchanged.

Table 2. CFP2000 Content.

CFP2000 Test Programs Language Description

168.wupwise Fortran 77 Quantum Mechanics

171.swim Fortran 77 Aerography Computation

172.mgrid Fortran 77 Multigrid Solver

173.applu Fortran 77
Parabola/Ellipse Partial

Differential Equation

177.mesa C 3-D Graphic Library

178.galgel Fortran 90 Hydromechanics Computation

179.art C
Image Recognition/Pivot

Network

183.equake C Seismic Wave Simulation

187.facerec Fortran 90
Image Processing: Facial

Detection

188.ammp C Chemical Computation

189.lucas Fortran 90 Number Theory

191.fma3d Fortran 90 Collision Simulation

200.sixtrack Fortran 77
High-Energy Atomic Physical

Accelerator

301.apsi Fortran 77

4.4. Experiment Procedure

First, set up two folders named simplesim-3.0 and

simplesim-3.0R separately. The former one is the original

simplescalar-3.0 while the latter one is the modified one. By

doing this the study can conveniently compare FRP with

LRU.

Secondly, change the code of simplesim-3.0R so that the

new algorithm can be implemented. In this simulation, the

study edited “cache.c” document and added a new cache

replacement algorithm to the system.

Thirdly, open terminal in Ubuntu and compile

simplescalar-3.0 and simplescalar-3.0R using config-alpha.

Fourthly, download SPEC2000 Benchmark and place them

in the same directory as simplesim-3.0.

Fifth, keep only one variable changed each time and

compare the result of FRP with LRU.

Then, make some figures according to the results.

Finally, draw a conclusion.

5. Experiment Setup

The L1 cache of the old system uses LRU to do the

replacement while the new system employs FRP. The study

employed gzip, crafty and vortex from CINT2000. Equake,

lucas and swim from CPF2000 are used as benchmark as

well. Then, The effect of FRA in different conditions is able

to be tested.

6. Results and Analysis

The study tests miss rates in different benchmarks and

compares miss rates in FRP and LRU. These six benchmarks

can be divided into two groups: the floating point benchmark

(including equake, swim and lucas) and the integer

benchmark (including crafty, gzip and vortex). Equake is an

application of seismic wave propagation simulation; swim is

a shallow water modeling; lucas is an application for number

theory or primality testing; crafty is an application for chess

game playing; gzip is compression and vortex is an object-

oriented database.

Firstly, the study does simulation on the floating point

benchmark.

For equake benchmark, when L1 cache block size remains

32 bytes associativity remains 2-way mapping and set size

increased gradually, the miss rate of L1 cache is tested. As

shown in Figure 2 A, for 64 bytes set size, miss rate of LRU

is 2.65% while that of FRP is 2.34, which is 0.31% lower.

For 128 bytes set size, the miss rate of LRU is 1.21% while

that of FRP is 1.28%, which is 0.07% higher. For the set size

256, the miss rate of LRU is 0.33% while that of FRP is

0.31%, which is 0.02% lower. For 512 bytes set size, the

miss rate of LRU is 0.27% while that of FRP is 0.26, which

is 0.01% lower. For 1024 bytes set size of, the miss rate of

LRU is 0.25% while that of FRP is also 0.25%.

For equake benchmark, when L1 cache set size remains 64

bytes, associativity remains 2-way mapping and block size

increases gradually, the miss rate of L1 cache is tested. As

shown in figure 2 B, for 8 bytes block size, the miss rate of

LRU is 13.04% while that of FRP is 13.87%, which is 0.83%

10 Chuntao Du and Xinsong Du: Cache Optimization by Fully-Replacement Policy

higher. For 16 bytes block size, the miss rate of LRU is

5.15% while that of FRP is 5.45%, which is 0.30% higher.

For 32 bytes block size, the miss rate of LRU is 2.65% while

that of FRP is 2.55%, which is 0.10% lower. For 64 bytes

block size, the miss rate of LRU is 1.94% while that of FRP

is 2.04%, which is 0.10% higher.

For equake benchmark, when the block size remains 32

bytes, set size remains 64 bytes and associativity increases

gradually, the miss rate of L1 cache is tested. As shown in

Figure 2 C For 2-way mapping, the miss rate of LRU is

2.65% while that of FRP is 2.55%, which is 0.10% lower. For

4-way associativity, the miss rate of LRU is 0.40% while that

of FRP is 2.55%, which is 2.15% higher. For 8-way

associativity, the miss rate of LRU is 0.29% while that of

FRP is 2.55%, which is 1.96% higher. For 16-way

associativity, the miss rate of LRU is 0.26% while that of

FRP is 2.55%.

For lucas benchmark, when the block size remains 32

bytes, associativity remains 2-way mapping and set size

increases gradually, the miss rate of L1 cache is tested. As

shown in Figure 2 D, for 64 bytes set size, the miss rate of

LRU is 2.63% while that of FRP is 2.66%, which is 0.03%

higher. For 128 bytes set size, the miss rate of LRU is 1.25%

while that of FRP is 1.18%, which is 0.07% lower. For the set

size of 256, the miss rate of LRU is 0.94% while that of FRP

is 0.91%, which is 0.03% lower. For 512 bytes set size, the

miss rate of LRU is 0.83% while that of FRP is 0.81%, which

is 0.02% lower. For 1024 bytes set size, the miss rate of LRU

is 0.77% while that of FRP is 0.76%, which is 0.01% lower.

For the lucas benchmark, when the set size remains 64

bytes, associativity remains 2-way mapping and block size

increases gradually, the miss rate of L1 cache is tested. As

shown in Figure 2 E, for 8 bytes block size, the miss rate of

LRU is 6.89% while that of FRP is 6.90%, which is 0.01%

higher. For 16 bytes block size, the miss rate of LRU is

4.94% while that of FRP is 5.00%, which is 0.06% higher.

For 32 bytes block size, the miss rate of LRU is 2.63% while

that of FRP is 2.66%, which is 0.03% higher. For 64 bytes

block size, the miss rate of LRU is 0.91% while that of FRP

is 0.87%, which is 0.04% lower.

For the lucas benchmark, when the set size remains 64

bytes, block size remains 32 bytes and associativity increases

gradually, the miss rate of L1 cache is tested. For 2-way

mapping, the miss rate of LRU is 2.63% while that of FRP is

2.66%, which is 0.03% higher. As shown in Figure 2 F, for 4-

way mapping, the miss rate of LRU is 1.31% while that of

FRP is 2.66%, which is 1.35% higher. For 8-way mapping, the

miss rate of LRU is 0.95% while that of FRP is 2.66%, which

is 1.71% higher. For 16-way mapping, the miss rate of LRU is

0.82% while that of FRP is 2.66%, which is 1.84% higher.

For the swim benchmark, when the set size remains 32

bytes, associativity remains 2-way mapping and block size

increases gradually, the miss rate is tested. As shown in

Figure 2 G, for 64 bytes block size bytes, the miss rate of

LRU is 1.74% while that of FRP is 1.66%, which is 0.08%

lower. For the block size of 128 bytes, the miss rate of LRU

is 1.38% while that of FRP is 1.34%, which is 0.04% lower.

For the block size of 256, the miss rate of LRU is 1.22%

while that of FRP is 1.20%, which is 0.02% lower. For the

512 bytes block size, the miss rate of LRU is 1.14% while

that of FRP is 1.13%. For 1024 bytes block size, the miss rate

of LRU is 1.10% while that of FRP is 1.09%, which is 0.01%

lower.

For swim benchmark, when set size remain 64 bytes,

associativity remains 2-way mapping and block size

increased gradually, the miss rate is tested. As shown in

Figure 2 H, for 8 bytes block size, the miss rate of LRU is

11.60% while that of FRP is 11.94%, which is 0.34% higher.

For 16 bytes block size, the miss rate of LRU is 5.55% while

that of FRP is 5.54%. For 32 bytes block size, the miss rate

of LRU is 1.74% while that of FRP is 1.66%, which is 0.08

lower. For 64 bytes block size, the miss rate of LRU is 1.28%

while that of FRP is 1.33%, which is 0.05% higher.

For swim benchmark, when set size remains 64 bytes,

block size remains 32 bytes and associativity increases

gradually, the miss rate is tested. As shown in Figure 2 I,

when the associativity is 2-way mapping, the miss rate of

LRU is 1.74% while that of FRP is 1.66%, which is 0.08%

lower. When the associativity is 4-way mapping, the miss

rate of LRU would be 1.34% while that of FRP would be

1.66%, which is 0.32% higher. When the associativity is 8-

way mapping, the miss rate of LRU would be 1.19% while

that of FRP is 1.66%, which is 0.47%.

Secondly, the study does simulation on the integer

benchmark.

For crafty benchmark, when block size remains 32 bytes,

associativity remains 2-way mapping and set size increases

gradually, the miss rate is tested. As shown in Figure 2 J,

when the set size is 64 bytes, the miss rate of LRU is 14.82%

while that of FRP is also 14.82%. When the set size is 128

bytes, the miss rate of LRU is 9.11% while that of FRP is

9.13%, which is 0.02% higher. When the set size is 256

bytes, the miss rate of LRU is 4.49% while that of FRP is

4.50%, which is 0.01% higher. When the set size is 512

bytes, the miss rate of LRU is 2.33% while that of FRP is

2.29%, which is 0.04% lower. For 1024 bytes set size, the

miss rate of LRU is 1.30% while that of FRP is 1.25%, which

is 0.05% lower.

For crafty benchmark, when set size remains 64 bytes,

associativity remains 2-way mapping and block size

increases gradually, the miss rate is tested. As shown in

Figure 2 K, for 8 bytes block size, the miss rate of LRU is

32.84% while that of FRP is 32.74%, which is 0.10% lower.

For 16 bytes block size, the miss rate of LRU is 21.70%

while that of FRP is 21.94%, which is 0.24% higher. For 32

bytes block size, the miss rate of LRU is 14.82% while that

of FRP is also 14.82%. For 64 bytes block size, the miss rate

of LRU is 11.05% while that of FRP is 11.09%, which is

0.04% higher.

For crafty benchmark, when set size remains 64 bytes,

block size remains 32 bytes and associativity increases

gradually, the miss rate is tested. As shown in Figure 2 L, for

2-way mapping, the miss rate of LRU is 14.82% while that of

FRP is also 14.82%. For 4-way mapping, the miss rate of

 American Journal of Embedded Systems and Applications 2016; 4(1): 7-14 11

LRU is 7.20% while that of FRP is 14.82%, which is 7.62%

higher. For 8-way mapping, the miss rate of LRU is 2.85%

while that of FRP is 14.82%, which is 11.97% higher. For 16-

way mapping, the miss rate of LRU is 1.25% while that of

FRP is 14.85%, which is 13.60% higher.

Figure 2. L1 cache miss rate of LRU and FRP in different conditions.

12 Chuntao Du and Xinsong Du: Cache Optimization by Fully-Replacement Policy

For gzip benchmark, when block size remains 32 bytes,

associativity remains 2-way mapping, set size increases

gradually, the miss rate is tested. As shown in Figure 2 M, for

64 bytes set size, the miss rate of LRU is 5.90% while that of

FRP is 5.83%, which is 0.07% lower. For 128 set size, the

miss rate of LRU is 4.89% while that of FRP is 4.81%, which

is 0.08% lower. For 256 set size, the miss rate of LRU is

4.29% while that of FRP is 4.24%, which is 0.05% lower. For

512 bytes block size, the miss rate of LRU is 3.59% while

that of FRP is 3.56%, which is 0.03% lower. For 1024 bytes

block size, the miss rate of LRU is 2.63% while that of FRP

is 2.60%, which is 0.03% lower.

For gzip benchmark, when set size remains 64 bytes,

associativity remains 2-way mapping and block size

increases gradually, the miss rate is tested. As shown in

Figure 2 N, for 8 bytes block size, the miss rate of LRU is

11.22% while that of FRP is 10.99%, which is 0.23% lower.

For 16 bytes block size, the miss rate of LRU is 7.67% while

that of FRP is 7.53%, which is 0.14% lower. For 32 bytes

block size, the miss rate of LRU is 5.9% while that of FRP is

5.83%, which is 0.07% lower. For 64 bytes block size, the

miss rate of LRU is 4.88% while that of FRP is 4.80%, which

is 0.08% lower.

For gzip benchmark, when block size remains 32 bytes, set

size remains 64 bytes and associativity increases gradually,

the miss rate is tested. As shown in Figure 2 O, for 2-way

mapping, the miss rate of LRU is 5.90% while that of FRP is

5.83%, which is 0.07% lower. For 4-way mapping, the miss

rate of LRU is 4.85% while that of FRP is 5.83%, which is

0.98% higher. For 8-way mapping, the miss rate of LRU is

4.26% while that of FRP is 5.83%, which is 1.57% higher.

For 16-way mapping, the miss rate of LRU is 3.6% while

that of FRP is 5.83%, which is 2.23% higher.

For vortex benchmark, when block size remains 32 bytes,

associativity remains 2-way mapping and set size increases

gradually, the miss rate is tested. As shown in Figure 2 P, for

64 bytes set size, the miss rate of LRU is 6.86% while that of

FRP is 6.76%, which is 0.10% lower. For 128 bytes set size,

the miss rate of LRU is 4.43% while that of FRP is 4.41%,

which is 0.02% lower. For 256 bytes set size, the miss rate of

LRU is 2.79% while that of FRP is 2.76%, which is 0.03%

lower. For 512 bytes set size, the miss rate of LRU is 1.94%

while that of FRP is 1.92%, which is 0.02% lower. For 1024

bytes set size, the miss rate of LRU is 1.54% while that of

FRP is 1.53%, which is 0.01% lower.

For vortex benchmark, when set size remains 64 bytes,

associativity remains 2-way mapping and block size

increases gradually, the miss rate is tested. For 8 bytes block

size, the miss rate of LRU is 24.33% while that of FRP is

24.20%, which is 0.13% lower. As shown in Figure 2 Q, for

16 bytes block size, the miss rate of LRU is 12.21% while

that of FRP is 12.05%, which is 0.16% lower. For 32 bytes

block size, the miss rate of LRU is 6.86% while that of FRP

is 6.76%, which is 0.10% lower. For 64 bytes block size, the

miss rate of LRU is 4.00% while that of FRP is 3.97%, which

is 0.03% lower.

For vortex benchmark, when set size remains 64 bytes,

block size remains 32 bytes and associativity increases

gradually, the miss rate is tested. As shown in Figure 2 R, for

2-way mapping, the miss rate of LRU is 6.86% while that of

FRP is 6.76%, which is 0.10% lower. For 4-way mapping,

the miss rate of LRU is 3.71% while that of FRP is 6.76%,

which is 3.05% higher. For 8-way mapping, the miss rate of

LRU is 2.29% while that of FRP is 6.76%, which is 4.47%

higher. For 16-way mapping, the miss rate of LRU is 1.62%

while that of FRP is 6.76%, which is 5.14% higher.

Based on the above benchmark tests, miss rate are shown

in these figures when L1 set size is changed from 64 to 1024,

the L1 block size is changed from 8 bytes to 64 bytes and the

L1 associativity is changed from 2-way to 16-way. The

selected results and relative parameters are shown as Figure

1-Figure4.

Figure 3. L1 Cache miss rate improvement when using FRP comparing to LRU.

 American Journal of Embedded Systems and Applications 2016; 4(1): 7-14 13

Figure 4. The relationship between associativity and L1 cache miss rate when using FRP.

Figure 5. The relationship between associativity and L1 cache miss rate when using LRU.

Figure 6. The improvement of L1 cache miss rate when using FRP in the condition of 64 bytes set size, 32 bytes block size and 2-way mapping associativity.

14 Chuntao Du and Xinsong Du: Cache Optimization by Fully-Replacement Policy

7. Conclusion

According to Figure 1, it is obviously that when the L1

cache has a block size of 32 byte and with a 2-way

associativity, Fully Replacement Policy works better than

LRU most of the time, especially when the setsize is small.

Besides, when using Fully Replacement Policy, miss rate has

nothing to do with the associativity of L1 cache while miss

rate decreases as the increase of associativity when using

LRU, which means that the less the associativity is, the better

to use Fully Replacement Policy than LRU. According to

Figure 4, FRP works better than LRU for most benchmarks

when the setsize is 64, blocksize is 32 and associativity is 2.

Acknowledgements

This research is supported by the key projects of education

and teaching reform in North China University of

Technology in 2016 (Grant Number: XN093-002), Google

supports the Industry-University Cooperation professional

comprehensive reform project of the Department of higher

education of the Ministry of Education in 2016, Project of the

2016 National Institute of computer basic education (Grant

Number: 2016042), and the subproject of Microsoft supports

the Industry-University Cooperation professional

comprehensive reform project of the Department of higher

education of the Ministry of Education in 2015.

References

[1] Appuswamy R, Moolenbroek D C V, Tanenbaum A S. Cache,
cache everywhere, flushing all hits down the sink: On
exclusivity in multilevel, hybrid caches [J]. 2013: 1-14.

[2] Jouppi, Norman P. “Improving Direct-Mapped Cache
Performance by the Addition of a SmallFully-Associative
Cache and Prefetch Buffers.” In Computer Architecture, 1990.
Proceedings., 17th Annual International Symposium on, 364–

73. IEEE, 1990. Geoffrey E. Hinton, and Ruslan R.
Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science 313.5786 (2006): 504~507.

[3] Waseem Ahmad, Enrico Ng. "A Quantitative/Qualitative
Study for Optimal Parameter Selection of a Superscalar
Processor using SimpleScalar". Computer Sciences Technical
Report, 2004.

[4] A. J Klein Osowski, J. Flynn, N. Meares, and D. J. Lilja.
Adapting the SPEC2000 benchmark suite for simulation-
based computer architecture research. In Workshop on
Workload Characterization, 2000.

[5] Yu Zhi-Bin, Jin Hai, Zou Nan-Hai. "Computer architecture
software-based simulation". Journal of Software, 2008, 19(4),
pp. 1051-1068.

[6] Doug Burger, Todd M. Austin, The SimpleScalar tool set,
version 2.0, ACM SIGARCH Computer Architecture News,
v.25 n.3, p.13-25, June 1997 [doi>10.1145/268806.268810].

[7] Austin B T M, Burger D, Franklin M, et al. Skadron, "The
SimpleScalar Architectural Research Tool Set,"
http://www.cs.wisc.edu/~mscalar/ simplescalar. html,
retrieved April 24[J]. 2010.

[8] Austin T, Larson E, Dan E. Simplescalar: “An Infrastructure
for Computer System Modeling” [J]. Computer, 2002, 35(2):
59-67.

[9] Kalaitzidis K, Dimitriou G, Stamoulis G, et al. Performance
and power simulation of a functional-unit-network processor
with simplescalar and wattch[C]// The, Panhellenic
Conference. 2015: 71-76.

[10] J. Cantin, and M. Hill, "Cache Performance for SPEC CPU
2000 Benchmarks"
http://www.cs.wisc.edu/multifacet/miso/spec2000 cache-data/

[11] S. Sair and M. Charney. Memory behavior of the SPEC2000
benchmark suite. Technical report, IBM, 2000.

[12] D. Citron, "MisSPECulation: Partial and Misleading Use of
SPEC CPU2000 in Computer Architecture Conferences",
Proc. of International Symposium on Computer Architecture,
pp. 52-61, 2003.

