

American Journal of Embedded Systems and Applications
2014; 2(1): 1-5

Published online February 28, 2014 (http://www.sciencepublishinggroup.com/j/ajesa)

doi: 10.11648/j.ajesa.20140201.11

Enhance performance in implementing the security of
partially reconfigurable embedded systems

Tran Thanh
1, *

, Tran Hoang Vu
1
, Nguyen Duy Phuong

1
, Do Son Tung

1
, Cuong Nguyen-Van

1
,

Nguyen Van Cuong
2
, Pham Ngoc Nam

1

1School of Electronics and Telecommunications, Hanoi University of Science and Technology, Hanoi, Vietnam
2Faculty of Electronics and Telecommunications, Danang University of Science and Technology, Danang, Vietnam

Email address:
thanh.tran@hust.edu.vn (T. Thanh)

To cite this article:
Tran Thanh, Tran Hoang Vu, Nguyen Duy Phuong, Do Son Tung, Cuong Nguyen-Van, Nguyen Van Cuong, Pham Ngoc Nam. Enhance

Performance in Implementing the Security of Partially Reconfigurable Embedded Systems. American Journal of Embedded Systems and

Applications. Vol. 2, No. 1, 2014, pp. 1-5. doi: 10.11648/j.ajesa.20140201.11

Abstract: System Security means protecting confidentiality and integrity of input or output data to as well as the safety of

the system. To meet stated security requirements, designers will need to add some special functions into the system. However,

in several cases including high-throughput requirement, limited resource or trade-off between risks and costs, adding security

functions should be taken into comprehensive consideration. This paper presents a method to enhance safety and update

speed of the partially reconfigurable embedded systems based on FPGA is updated remotely via the Internet or from external

storage devices such as a Compact Flash (CF) memory card.

Keywords: Reconfigurable, Bitstream Security, Embedded System, Partial Reconfiguration

1. Introduction

Field Programmable Gate Array (FPGA) technology

provides the flexibility of on-site programming and

re-programming of a system without going through

re-fabrication with a modified design. Dynamic Partial

Reconfiguration (DPR) takes this flexibility one step

further, allowing the modification of an FPGA design by

loading a Partial Bitstream (PB), usually a BIT file. After a

Full Bitstream (FB) configures the FPGA, Reconfigurable

Modules (RM) can be loaded to modify Reconfigurable

Partitions (RP) in the FPGA without affecting the integrity

of the applications running on those parts of the device that

are not being reconfigured. In many cases it is useful to be

able to swap out one or several of these subcomponents

while the FPGA is still operating.

As shown in Fig. 1, functions are implemented in RP1,

RP2 and RP3 can be modified by loading one of RM1

(A1.bit, A2.bit, A3.bit), RM2 (B1.bit, B2.bit) and RM3

(C1.bit, C2.bit, C3.bit, C4.bit) respectively. The logic in the

FPGA design is divided into two different types:

reconfigurable logic and static logic. The gray area of the

FPGA represents the static logic; and the portion labeled

RP represents reconfigurable logic. The static logic remains

functioning and is completely unaffected by the loading of

a RM into the RP. The functions of the reconfigurable logic

can be replaced by the contents of the RMs (called also

partial bitstreams).

Figure 1. The model of partial reconfigurable system.

The partially reconfigurable systems based on offers

many advantages [1]. These include:

• Reducing the size of a system that uses the FPGA to

perform certain functions with the result that reduce

2 Tran Thanh et al.: Enhance Performance in Implementing the Security of Partially Reconfigurable Embedded Systems

cost and power consumption

• Providing flexibility in the selection of algorithms or

protocols available to an application

• Enabling new technologies in design security

• Improving the ability debugging on the FPGA

• Accelerating configurable computing

Besides the advantages of the flexibility of the partially

reconfigurable system are the possible risks to the system

as one of the modules may be malicious codes. In this paper,

we present a method to protect the system by check the

security and authenticity of the partial bitstream when they

are remote updated from untrusted network.

In [2], the authors presented an implementation of

bitstream encryption and authentication using AES-CBC

encryption algorithm and SHA-256 authentication

algorithm to compare with the authentication and

encryption method AES-GCM. In [3], the authors

separately implemented encryption algorithms including

IDEA, DES, 3DES, Blowfish, AES, RC4, MD5, SHA-1

and SHA-256 on a Microblaze based embedded systems,

with different architectures (MBlaze-A, MBlaze-B,

MBlaze-C, MBlaze-D, MBlaze-E) depending on the

combination of internal resources.

The main contribution of this paper is that we design a

hardware AES-256 encryptor and a SHA-512 authenticator

for optimal use of system resources while still meeting the

performance requirements. Details of the AES (Advanced

Encryption Standard) and SHA (Secure Hash Algorithm)

algorithms are described in [4], [5].

The rest of the paper is organized as follows: Section 2

describes how to build a security system. Section 3 shows

results of simulation and experiment. Finally, conclusions

are given in Section 4.

2. Building System

2.1. General Diagram of the System

General diagram of the system is given in Fig. 2.

Figure 2. General diagram of the system.

2.1.1. The System Consists of the Blocks

• MicroBlaze soft-core processor controls blocks in the

system and communicates with the Server through the

Ethernet.

• AXI Master block controls the data transfer between

DDRAM and the AES-256, SHA-512, ICAP blocks.

• Ethernet block receives and puts data from the server

into the DDRAM.

• SHA-512 block executes authentication of the partial

bitstream files.

• AES-256 block executes decryption of the encrypted

partial bitstream files.

• ICAP is a control block for partial reconfiguration.

2.1.2. The System Operates as Follows

• With a new partial bitstream, Server will send a

message to the User system.

• The MicroBlaze receives the message and sets the

necessary registers in the Ethernet block to receive the

bitstream.

• Thanks to the DMA block, data stream will come

directly from the Ethernet block to the DDRAM

without passing through the MicroBlaze. The

MicroBlaze plays the role of the controller and sets the

required parameters in the data-transfer process.

• After the data-transfer process, the MicroBlaze sets

necessary parameters for SHA-512 and AES-256 to

start operating. The input data of these blocks is loaded

from the DDRAM through FIFO by the control of AXI

Master.

• The MicroBlaze will compare output value of the

SHA-512 authenticator to the message authentication

code that received from the server. If the results are the

same, the MicroBlaze will write the chipSelect signal to

allow ICAP operating, and the process of

reconfiguration will begin.

2.2. Building Functional Hardware Blocks

The function blocks are built using Xilinx XPS (Xilinx

Platform Studio) version 14.1 software, and the hardware

flatform is Virtex-6 FPGA.

2.2.1. AXI Ethernet Core

The main component of the data-transfer block is a

LogiCORE™ IP AXI Ethernet core [6], Fig. 3. This core is

supported by Xilinx. It implements a tri-mode

(10/100/1000 Mb/s) Ethernet MAC, and provides a control

interface to internal registers using a 32-bit AXI4-Lite

interface subset. This AXI4-Lite slave interface supports

single beat read and write data transfers. The transmit and

receive data interface is through the AXI4-Stream interface.

This core is based on the Xilinx hard silicon Ethernet

MAC in Virtex-6 devices and provides a soft Ethernet

MAC option for supported devices.

American Journal of Embedded Systems and Applications 2014; 2(1): 1-5 3

2.2.2. AXI DMA Core

Figure 3. Typical MicroBlaze processor system.

AXI DMA (Advanced eXtensible Interface Direct

Memory Access) core is a soft Xilinx Intellectual Property

(IP) core for use with the Xilinx® Embedded Development

Kit (EDK) and the CORE Generator™ tools [7]. The AXI

DMA engine provides high-bandwidth direct memory

access between memory and AXI4-Stream-typetarget

peripherals. Its optional scatter gather capabilities also

off-load data movement tasks from the Central Processing

Unit (CPU). Initialization, status, and management registers

are accessed through an AXI4-Lite slave interface, which is

suitable for the Xilinx MicroBlaze™ microprocessor.

The AXI DMA IP core provides high-bandwidth direct

memory access between the AXI4 memory mapped and

AXI4-Stream IP interfaces. AXI Master MM2S used to

read data from memory and AXI Slave S2MM used to

write data into memory from the blocks as shown in Fig. 3.

2.2.3. AXI Master Core

AXI Master [8] core is added to system by using Creat

and Import Peripheral Wizard tool in the Xilinx XPS

version 14.1. This core provides a bidirectional interface

between a User IP core and the AXI4 interface standard. It

also provides a data-transfer interface between peripheral

blocks and DDRAM through a FIFO.

However, it is difficult to control the data read and write

process of both hardware and software in single FIFO. Our

solution made using two FIFOs includes the first FIFO

controlled to write by software and to read by hardware,

and the second FIFO controlled in the opposite direction, as

shown in Fig. 4.

Figure 4. The system with two FIFOs.

2.2.4. SHA-512 Core

The SHA-512 core takes care the authentication of the

partial bistream file. It was built by FSMD model [9] with

two blocks, as shown in Fig. 5. Controller block is

SHA_512_Controller, and Datapath block is

SHA_512_Function.

Figure 5. FSMD model.

SHA_512_Controller handles received status signals

from the SHA_512_Function and controls the

communication process with DDRAM through FIFOs.

SHA_512_Function performs the functions of the

SHA-512 algorithm. It consists of three small blocks: a

4-bit counter, an 8-bit counter and a ROM memory to store

constants and intermediate functions.

2.2.5. AES-256 core

The AES-256 core is also built in the FSMD model,

which consists of two major blocks. AES_256_Controller

block plays the role of state FSM controller and

AES_256_Function block plays the role of data block

(datapath).

The AES_256_Controller receives status signals as input

signals then decides to give the control signals for the

AES_256_Function. It also controls the data exchange from

the FIFO through read and write signals.

The AES_256_Function consists of four small blocks

taking four different functions. Such blocks include Inverse

SubBytes, Inverse ShiftRows, AddRoundKey and Inverse

MixColumn. It also generates a KeyExpand block to

perform the AddRoundKey in the cycle.

We designed cores of the SHA-512 authenticator and

AES-256 decryptor by making them into the User IP core

from VHDL source code and integrating them into the

system using the Xilinx XPS tool.

3. Prototype System and Analysis of

Results

3.1. The Prototype System

The prototype system is shown in Fig. 6. It consists of a

PC and a Xilinx Virtex-6 FPGA ML605 evaluation board

connected via Ethernet and UART interface. The PC plays

the role of a Server, which is in charge of managing data as

partial bitstream files and User profiles. The Xilinx

Virtex-6 FPGA ML605 evaluation board acts as a device

with modules which can be partially reconfigured.

4 Tran Thanh et al.: Enhance Performance in Implementing the Security of Partially Reconfigurable Embedded Systems

Figure 6. The prototype system.

3.2. The Simulation Results

Before implementing of security algorithms to hardware,

we used the simulation tool of Xilinx Integrated Software

Environment (ISE) to check accuracy of the proposed

methodology. Results are described as follows.

Received Message Authentation Code (MAC) of the

partial bitstream file, Led.bit, through the SHA-512

authenticator is “4f681e0bd53cda4b5a2041cc8a06f2eab

de44fb16c951fbd5b87702f07aeab611565b19c47fde305871

77ebb852e3971bbd8d3fd30da18d71037dfbd98420429”. It

is equal to the MAC done on the server, as shown in Fig. 7.

Fig. 8 shows the simulation result from the

implementation of the AES-256 decryptor. We used a

256-bit key, K = 08090A0B0D0E0F1012131415171819

1A1C1D1E1F21222324262728292B2C2D2E, and

encryted data is C = “080 E9517EB1677719ACF7280860

40AE3...”. Received plaintext is M = “069A007FC

76A459F98BAF917FEDF9521...”. This result is similar to

the original data into an encryptor on the server.

Figure 7. The simulation results of the SHA-512.

Figure 8. The simulation result of the AES-256.

3.3. The Experimental Results

Fig. 9 shows a visualization of the results of partial

reconfiguration for FPGA by the simple LED SWITCH on

Xilinx Virtex-6 FPGA ML605 board with encrypted file,

Led.bit, stored on the server.

Figure 9. Partial Reconfiguration of the LED SWITCH Module.

3.4. Evaluating of Results

The experimental and simulation results showed that

adding security and authentication function to the system

design is absolutely realizable. Based on the results of the

Table 1, we can see that the hardware resources be used for

the AES-256 and SHA-512 only account for 5% of the

system resources. This is a good result to consider security

implementation in the partially reconfigurable embedded

systems.

By virtue of using the AXI Master with two FIFOs, the

performance of the AES-256 decryptor and SHA-512

authenticator improves approximately four times, as shown

in Table 2. This result is significant for the continuous

increase in the FPGA size.

Table 1. Hardware utilization of SHA-512 and AES-256.

Resources IP Core Used Available (%)

Register
SHA-512 2246 301440 ~1%

AES-256 3096 301440 ~1%

LUTs
SHA-512 2299 15720 ~1%

AES-256 3751 15720 ~1%

Slices
SHA-512 843 37680 ~2%

AES-256 1293 37680 ~3%

Table 2. Performance of SHA-512 and AES-256.

IP Core
Throughput(Mbps)

Without AXI Master Within AXI Master

SHA-512 738 Mbps 3099 Mbps

AES-256 1264 Mbps 4929 Mbps

4. Conclusions

In this paper, with the proposed method, all the partial

bitstream files to ensure always be encrypted and

authenticated when loading into the system. Adding the

AES-256 decryptor and the SHA-512 authenticator makes

the system more secure, and does not increase system

resources significantly.

American Journal of Embedded Systems and Applications 2014, 2(1): 1-5 5

The proposed model for DPR systems offers improved

security and convenient reuse of external third-party IP cores.

It also protects the IP Digital Rights Management as well as

system security and integrity in embedded design

environment with multi-party participants.

References

[1] Xilinx Inc., “Partial Reconfiguration User Guide,” User
guide UG702 (v14.5), 2013. [Online]. Available:
http://www.xilinx.com/support/documentation/sw_manuals/
xilinx14_5/ug702.pdf.

[2] Y. Hori, A. Satoh, H. Sakane, and K. Toda, “Bitstream
Protection in Dynamic Partial Reconfiguration Systems
Using Authenticated Encryption,” IEICE transactions on
Information and Systems, Vol.E96-D, No. 11, pp. 2333–2343,
November 2013.

[3] I.Gonzalez and F.J. Gomez-Arribas, “Ciphering algorithms in
MicroBlaze-based embedded systems,” in IEEE Proceedings
- Computers and Digital Techniques, 2006, pp. 87–92.

[4] NIST., “Announcing the Advanced Encryption Standard

(AES),” National Institute of Standards and Technology,
2001. [Online]. Available:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf .

[5] NIST., “Secure Hash Standard (SHS),” National Institute of
Standards and Technology, 2012. [Online]. Available:
csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf .

[6] Xilinx Inc., “LogiCORE IP AXI Ethernet (v3.01a),” Product
Specification, 2012. [Online].
Available:xilinx.com/support/documentation/ip_documentat
ion/axi_ethernet/v3_01_a/ds759_axi_ethernet.pdf.

[7] Xilinx Inc., “LogiCORE IP AXI DMA (v5.00.a),” Product
Specification, 2011. [Online].
Available:xilinx.com/support/documentation/ip_documentat
ion/axi_dma/v5_00_a/pg021_axi_dma.pdf.

[8] Xilinx Inc., “Xilinx DS844 LogiCORE IP AXI Master Burst
(v1.00.a),” Product Specification, 2011. [Online]. Available:
http://www.xilinx.com/support/documentation/ip_document
ation/axi_master_burst/v1.00a/ds844_axi_master_burst.pdf.

[9] N. Kavvadias, V. Giannakopoulou, and K. Masselos,
"FSMD-Based Hardware Accelerators for FPGAs," In
Embedded System - Theory and Design Methodology.
InTech, 2012, pp. 143–166.

