

American Journal of Embedded Systems and Applications
2013; 1(1): 1-12

Published online August 20, 2013 (http://www.sciencepublishinggroup.com/j/ajesa)

doi: 10.11648/j.ajesa.20130101.11

Examination of the possibilities for integrated testing of
embedded systems

Rimantas Seinauskas, Vytenis Seinauskas

Kaunas University of Technology, Kaunas, Lithuania

Email address:
Rimantas.seinauskas@ktu.lt(R. Seinauskas), Vytenis.seinauskas@ktu.lt(V. Seinauskas)

To cite this article:
Rimantas Seinauskas, Vytenis Seinauskas. Examination of the Possibilities for Integrated Testing of Embedded Systems. American

Journal of Embedded Systems and Applications. Vol. 1, No. 1, 2013, pp. 1-12. doi: 10.11648/j.ajesa.20130101.11

Abstract: Separate testing of hardware and software of embedded systems is insufficient. Communication between

hardware and software parts needs to be tested during the integrated testing. Discussions about this problem are practically

unavailable. Black-box criteria are used for hardware and software testing. This creates the conditions for formulating a

unified test generation task and a single template for the generation of tests, as well as enabling a comparison between the

criteria of test generation. Black-box criteria make it possible to start generating tests in the early design stages, once the

initial software prototype is established. The test object is described in a finite state machine form. The availability of state

variables enables the search for a compromise between test performance and quality in test generation. Experiments with two

benchmarks showed which criterion of the black box approach is the most suitable for hardware and software testing and that

the generation of integration tests according to two criteria is appropriate. The results are important for choosing a reasonable

approach to embedded system integration testing.

Keywords: Embedded Systems Testing, Hardware and Software Testing, General Testing Criteria

1. An introduction to the Current

Situation

Hardware and software testing has evolved

independently and used their own terminology. Therefore,

we first discuss the terminology associated with testing.

Next, a hardware device or software program will be

identified as a developed product. Validation is the process

that determines whether the product satisfies customers’

needs. Verification is the process that determines whether a

product meets its specification, which is designed

according to customer needs. Verification can be static and

dynamic. Dynamic verification provides tests for the

product and it's called product testing. Test generation

process creates a product test. The product test consists of

test cases that include product testing data and the expected

reaction to the data. Test cases are arranged in sequences, if

the expected output response depends on which test cases

have been submitted in the past. This indicates that the

tested product has an internal state, on which the product

output values are dependent.

Hardware behavior causes a variety of physical defects

resulting from manufacturing or maintenance processes.

The number of potential physical defects is practically

countless. The number of bugs in the program is also

practically endless. In summary, a physical defect of the

device and a software bug are both product defects. Circuit

fault models summarize the impact of various physical

defects. Mutation models summarize the impact of various

program bugs. In general, defect models are used to

simplify test generation. The number of defect models is

countable. Tests are generated on the basis of defect models.

Defect models must reflect the real impact of defects.

The quantity of product defect models can be quite large.

As a result, highly abstract models of the product are used

to generate tests. In this case, test generation is based on

test criteria. Test criteria only indirectly reflect defects. Test

criteria are chosen in such a way that increasing the

numerical criterion value increases the probability of

detecting more defects. The same test criteria can be used

to generate hardware and software tests.

Hardware testing aims to highlight the physical defects

which may have occurred during the manufacturing process

or the operation of the equipment due to its aging. Defects

can be very different, such as broken, short-circuit

connections, weak electrical parameters, and so on. Defect

models (faults) are used to simplify the examination of

2 Rimantas Seinauskas et al.: Examination of the Possibilities for Integrated Testing of Embedded Systems

defects. The most common is a stuck-at fault, which is

based on the assumption that a physical defect prevents the

toggle of signal values of some element inputs or outputs.

With the increasing integration and operating frequencies,

delay fault has become very important, which is based on

the assumption that physical defects increase the signal

delay. Long-standing use of the fault model confirms their

correlation with actual physical defects. Functional delay

faults that are based on black box input and output analysis

have become increasingly relevant in the case of very large

hardware compactness and speed of operation.

A hardware test consists of input vectors, which are

divided into sequences. Each test sequence checks one or

more faults. Test sequence detects a fault, if the sequence of

output values is different from the output values when the

circuit is adjusted according to the fault. Test generation

is seen as a search of test sequences that detect all faults.

Test generation is formulated as an optimization problem,

but there are no effective methods for solving the problem.

First of all, a very complex algorithm is required to

calculate the objective function. Also, the objective

function depends on a large amount of parameters and must

comply with many regulations and restrictions. The

solution search space is sufficiently massive. Decision is

complicated by a huge set of possible states, and to achieve

some states a long sequence of input vectors is required.

Defect testing process uses the output values of the

correct device model. Description in an algorithmic

language or circuit is considered to be a result of correct

design and is used as a device model. Design errors are

found during the validation of the design. Tests can be used

for the validation of hardware design. Similarly, software

errors are found during software testing. Basically,

hardware design validation and software testing solves the

same problem. These are the checks for design errors.

Device defect quantity is practically countless, but the

amount of hardware faults is very high but finite.

Meanwhile, the amounts of hardware and software design

errors are practically incalculable. Therefore, the

generations of tests for software testing and hardware

validation use various criteria to ensure detection of errors

and faults. However, testing and validation cannot

guarantee the detection of design errors. This situation

makes it possible to search for common and better test

quality criteria, and use these criteria to test the software, to

validate the hardware design and to test for hardware

defects.

The main problem faced by software testing and

hardware design validation is the determination of the

expected output values. In general, it is considered that the

expected output response is determined by the specification,

but in reality it is not always possible to do so. Comparison

of the actual output with the expected values is replaced by

verification of various properties of the output values, in

the hope that properties with abnormal values indicate bugs

in the program. This approach is also possible when

comparing outputs from two versions of software, in the

hope that versions implemented by different groups do not

contain the same errors.

Hardware and software designs are increasingly

converging. Hardware description languages like VHDL,

System C are very similar to software programming

languages. Test generation for hardware and software are

increasingly converging as well. Therefore, overall test

generation problem analysis is appropriate, in order to

exploit the best achievements that have been obtained to

improve hardware and software test generation separately.

The aim of this paper is to analyze hardware and

software testing and test generation processes, their

similarities and differences, to examine the possibilities of

using the same criteria and methods of test generation for

hardware and software, as well as the comparison between

test generation criteria.

The remaining article part is structured in such a way.

Next Section 2 is dedicated to a brief overview of the most

important trends in hardware and software testing.

Hardware and software engineering processes, similarities

and differences are described in Section 3. Uniform test

generation problem is formulated in Section 4. Black-box

test generation criteria and their comparison are presented

in sections 5 and 6. Section 7 concludes the article.

2. A Brief Overview of the Most

Important Trends in Hardware and

Software Testing

Embedded systems are becoming more widely used

everywhere, controlling various widespread devices, some

of which are critical in terms of security. Testing is the most

commonly used method for validation of embedded

systems. Effective testing techniques could be useful to

increase the dependability of these systems. However, the

development of such methods is a significant challenge.

Embedded systems consist of software and hardware

support layers. Layers can be tested separately. Hardware

support layer can be used for other applications and,

therefore, could have been tested extensively in the past.

Interaction between the layers can be an outstanding source

of defects. Embedded systems require especially high

quality testing if they have some of the features

implemented as hardware and some of the features

implemented as software. Determining the expected

reactions or the so-called "oracle problem" is a difficult

problem for testing, but can be extremely complicated in

embedded system testing [1].

First we will look at software test generation criteria.

Software testing is the process of program execution,

during which we need to make sure that the program code

performs as intended. Software testing can be classified

as black-box (functional) testing and white-box (structural)

testing. Black-box testing is used to ascertain the

American Journal of Embedded Systems and Applications 2013; 1(1): 1-12 3

circumstances under which the program does not work

according to specifications. When using this method, test

data is obtained without the use of knowledge about the

internal structure of the program. Typical black-box testing

methods include decision table testing, state transition table

testing, partitioning the data and the results in the

equivalent groups, and analysis of marginal values [2].

In general, black box testing is a relatively simple way to

create test cases, because the testers do not need to check

the program logic. If the specification is precise and

rigorous enough, black box testing can be a powerful tool

for revealing faults. However, black box testing is not

sufficient to fully test the program when its internal

structure is ignored. This can cause problems when a

program or component of the system is up to date, and its

corresponding specification has not been updated.

On the other hand, white-box testing allows testers to

examine the internal structure of the program in detail. This

means that the testers are allowed to view the source code

when creating test cases. White-box testing allows testers to

evaluate how well the program is tested for this purpose

using adequacy criteria. The test adequacy criterion is a

predicate, which is used to determine whether a program

has been tested "enough" [2]. The criteria are used to assess

whether all the software operators have been executed by

testing, whether there are any conditions untested

(branches), or if all possible operator sequences (paths)

have been tested. Overview [3] is an excellent description

of the software testing criteria.

Data flow testing is also a well-known white-box testing

method. Data flow path selection is based on the

application data flow counts to investigate the sequence of

events associated with the data object status change. There

are certainly whole families of data flow criteria, which are

subject to testing programs. Testers must choose test cases

that cover the selected criteria. White box testing can be

more powerful than black box testing and is useful to reveal

the hard-to-find errors.

Testers can choose different test criteria that meet their

needs. However, white-box testing can be more expensive

than black-box testing. White box testing requires testers to

understand the internal structure of the program being

tested, and completeness of the testing. Finally, black-box

testing and white box testing complement each other’s

strengths and reduce weaknesses.

Hardware testing used the stuck-at fault model for

decades. Lately, the growing complexity of devices and

their compactness highlighted the advantages of delay fault

model, which is based on the assumption that defects affect

signal propagation delay. Transition faults are based on the

assumption that the delay is caused in one point. Path delay

faults are based on the assumption that all points of the path

affect signal delay. It is intended to detect delays of the

longest paths [4].

Test case or, simply, the test consists of input data and

the reference or, simply, the expected output results.

Expected outputs from hardware tests are calculated using

the model of the device. Tests are also used for checking

the correctness of the hardware model. Verification of the

model and software testing are similar processes. Expected

output value calculation is based on the specification. Often

the specifications are not detailed enough to determine the

exact expected outputs. This complicates the creation of

software tests.

Increased complexity of projects, along with a very tight

market schedule creates very strict requirements for

embedded system designers. Parallel hardware and

software design replaces the traditional design methods and

more work is done by using a higher level of abstraction [5].

However, the testing of hardware and software parts of the

system are still considered to be two completely different

problems and very different methods are used to deal with

them. There has been some work [6, 7] in order to reduce

the gap between the two different domains, but the area is

not yet well established.

There are some similarities and differences between the

methods used for testing software and hardware. It is clear

that over time new software bugs do not occur if you do not

change the software. However, it is not true when using

hardware. Over time, equipment may be damaged, even

though the fault was not present at the time when the

hardware was manufactured and tested.

It should be noted that hardware and software testing are

bound by the common idea of paths analysis. Software

testing deals with control flow paths, but device testing

examines signal propagation paths. Even though the paths

are different in nature, it is possible to use a single criterion

for testing hardware and software.

Unified hardware and software testing criterion can only

be a black box criterion. Input and output analysis is widely

used in the industry. It reduces test data volume when

generating software tests [8], as well as when generating a

functional test of hardware [9, 10]. Input and output

analysis is an economic term that refers to the investigation

of individual sectors of the economy that affect the entire

economy. This type of economic analysis was originally

developed by Vasily Leontief, who later won the Nobel

Prize in Economic Sciences for his work on this model.

Input and output analysis allows analyzing the relationships

inside the economic system as a whole, rather than

individual components.

A similar idea is used to generate functional delay tests

for hardware, using a software prototype [11, 12]. The test

generation process is used to find as much input and output

connectivity as possible. An input is considered to be linked

to an output if the changed input values change the value of

the output. It is well associated with the detection of delays

when considering input binary value changes from zero to

one and vice versa.

Finite state machine or finite automaton is a

mathematical model used to create computer programs and

circuits with state. Algorithmic description language (of

circuit or program) is a finite automaton that has input,

output, and state variables. Automaton behavior is

4 Rimantas Seinauskas et al.: Examination of the Possibilities for Integrated Testing of Embedded Systems

expressed by calculating output and new state variable

values when given the input and the state variables. In

general, state variables are considered those variables that

affect the output or other state variables. State variables

must be set before the calculation. State variables change

old values, through functioning.

Hardware description languages like VHDL and System

C have clearly separated memory (state) variables.

Meanwhile, software programs often do not. A software

program is characterized by the fact that repeated program

execution always produces the same results. This shows

that the state variables are hidden inside an application. To

really test the following program, the state variables should

be treated similarly to the input variables. It is not an easy

job to separate software program state variables from

intermediate variables. The initial values of the

intermediate variables do not change the program output

and state variables. In this way, we should talk about the

preparation for testing of software applications through the

introduction of additional variables in the interface.

Otherwise, we would have to be satisfied with software

program testing, based solely on input and output variables.

At first glance it seems that it is irrational to rely on only

the input and output of a black box model, especially where

only a small amount of inputs and outputs is present. This

is the main source of skepticism. However, we must

remember that model state variables expand the set of

variables that affect the output. It also adds a set of

variables that reflect the results. Experimental studies have

confirmed [10] that black box models can be successfully

used for detection of hardware defects.

In order to obtain the desired values of state variables, it

may take several executions of software applications. In

this case, it comes to a series of test cases. Test sequences

are used for testing hardware and software. In this respect,

hardware and software testing is similar. It is therefore

possible to formulate a unified test generation task when

software program variables are transformed into binary

variables.

Deterministic test generation methods for hardware and

software testing have been developed several decades ago

and are constantly evolving. Hardware test generation

process is based on the selection of input variables such

that a modified variable value can be monitored on at least

one output. This is related to the activation of signal

propagation path. Similarly, software test generation

process selects the values of input variables that determine

the execution path of software program operators. Test

generation process for hardware and software is based on

the concept of the executive path. Conditions for the

enforcement of the path are created by selecting input

variable values. For this purpose it is necessary to address a

system of constraints [13], because path performance

conditions may require conflicting values of input variables.

This poses a major problem in finding the solution.

Satisfying solutions are widely used in solving the problem.

Computer science when solving the problem of satisfying

(often abbreviated as indicated in capital letters-SAT) must

determine whether the Boolean variables can be allocated

in such a way that the formula should be equal to the unit

value. Binary satisfaction is probably the most studied

combinatorial optimization/search problem. There have

been great efforts in attempting to provide an effective

practical solution to the problem. SAT is one of the key

problems in computer science with a theoretical and

practical significance and has a very efficient practical

implementation [14]. SAT solvers are widely used in the

hardware and software test generation.

Hardware and software for test generation uses various

search methods. It is very important to choose the

encryption solution that would be easy to manipulate the

search. In this way, the search can easily move from one

solution to another, which has the same set of properties.

Search methods like hill climbing, simulated annealing and

Evolutionary Algorithms are widely used. Various search

principles are well analyzed in the review [15]. At this time

there exists a widespread symbolic execution principle,

which assigns values of path variables, and which solves

the system of restricted expressions [16].

Despite considerable efforts to improve deterministic test

generation methods, in the meantime they are unable to

find solutions for large-scale hardware and software within

a reasonable period of time. Therefore, in practice random

search methods remain competitive. This is explained by

the need to find test sequences for large numbers of defects,

each defect can be detected in a number of test sequences

and, therefore, randomly generated test sequence detects

many defects. In addition, deterministic test generation

methods consume a lot of resources trying to find solutions,

which do not exist.

Design for the Testability (DFT) is widely used [17] in

order to simplify the test generation task. The root of the

problem stems from the fact that it is difficult or impossible

to determine the appropriate states using only input values.

Additional hardware is inserted into the device. This

additional equipment makes it easier to transition the

memory elements to the appropriate states. It may cause up

to 30 percent increase in the volume of hardware,

introducing an additional signal delay, but that is because it

is impossible to effectively solve the test generation task.

The same ideas are used in order to simplify software

test generation. Generally, the program may include a test

mode in which some of the variables in memory take on

values via an additional input variable. First of all, values

are given to the state variables that determine the

enforcement of control flow graph paths. Test generation is

complicated by the fact that state variable values depend on

the values of other state variables. In order to obtain the

desired values other values of state variables must be set

before. Usually this can be done in several steps, and this

fact leads to the need of an input sequence. The longer the

input sequence required, the more difficult the construction

American Journal of Embedded Systems and Applications 2013; 1(1): 1-12 5

or selection, as the search space increases dramatically.

Direct determination of the values of state variables

facilitates obtaining the desired values. However, this can

affect the quality of software objects collaboration testing.

Meanwhile objects cooperation testing is very important

because such errors are harder to find. It should also be

noted that the variables can take value combinations on test

mode that are not possible in the normal operating mode.

Tools of software testability analysis and improvement are

proposed in [18, 19].

During testing, test results are compared with the

expected results. Software Test Oracle is a software tool

that helps to determine whether the program has passed the

test. It is always necessary to assess the correctness of the

decision and the basis on which it was taken. Test Oracles

are based on the tested object properties [20] or on the

output results [21]. Test Oracles relying on the output

results for some data combinations have predictable outputs

and checks whether the received output value corresponds

to the expected one. Test Oracle cannot make a decision on

passing the test if a given combination of input data does

not have the expected results stored in Oracle. Ratio of the

quantity of the input data, when decision can be taken, with

all of the input data volume determines the quality of the

test oracle. Test Oracle can always decide on the expected

values when it uses the model of the object being tested.

In this case, the model adequacy determines the quality of

the Test Oracle. The model must accurately reflect the test

object. The degree of difference determines the quality of

the Test Oracle, if different software implementation is

used as a model. The use of different programming

languages and solution methods increases the likelihood

that the program, which is being tested, and the model will

not have the same programming errors. Quality of Test

Oracle is problematic to assess if the model is founded on

the tested object [22]. It is important to assess the

confidence of the Test Oracle. Confidence on the decision

depends on the answer to these questions. Do we know the

expected values of all output variables or only a portion of

them? Do we know and have we measured the values of

state variables?

Test oracle, which is based on the test object properties,

checks the values of test object properties, which shall be

valid to all data. Failure to receive a normal test object

property value indicates a fault. In this case, the test oracle

quality depends on the number of defects that cause

properties of the tested object to be abnormal. Therefore,

assessment of the quality of a test oracle, which is based on

properties, is particularly difficult. Finite state machine

(FSM) testing principles used in testing hardware and

software [23], demonstrate the possibilities of using test

criteria based on state variables [24]. Status variables create

preconditions on the basis of test oracles, to check

properties that are more diverse and more accurate. The

ability to detect defects characterizes the quality of the test.

Test quality depends on testing criteria used in test

generation process, and also depends on the quality of the

test oracle. Influence of testing criteria towards test quality

is widely discussed in scientific publications. Influence of

test oracle towards test quality is discussed less often.

3. Hardware and Software Design and

Testing

Hardware and software design starts from the

specification. The requirements engineering phase is clearly

separated in the process of software development. During

this phase, the specification is prepared. A similar step is

performed in the hardware development process as well,

but less spoken about and is treated as self-evident and

well-known thing. Everything that is written in

requirements engineering, is suitable for the preparation of

a hardware specification. Specifications of software

engineering are more complex, more connected with

customers. Meanwhile, hardware engineering specifications

are more technical, more precisely defined.

Merged software and hardware engineering processes

show in Fig. 1 to demonstrate the commonalities and

differences between the processes. Specification is prepared

according to the customer needs in the requirements

engineering stage. It depicts two blocks shown in Figure 1

on the left side.

Device or program behavior is expressed by the

algorithm description language. This is the third block from

the left in Fig. 1. The programming language source code is

the result of the software design process. The source code

for hardware design language is a result of the hardware

design process. Usually, the source code of the device

design language is synthesized into a circuit. Circuit is

shown in the third block from the left upper part of Fig. 1,

while the lower part shows the programming language

source code. Methodology on how to get the source code is

very similar for the processes of software and hardware

design. With the increasing volume of projects, hardware

design took a lot of methods from the software design.

Source code and circuit inspection in accordance to

specifications and customer needs is demonstrated in Fig. 1.

In this way hardware and software design correctness is

verified. This means that checks are made to ensure the

software source code and hardware circuit design have no

errors. This is also called static testing. Inspections are

carried out by a team of verifiers. Similar static testing

techniques are used to search for hardware and software

design errors.

Software compiler converts the source code of the

program into computer commands. Hardware compiler

prepares the measures required for the production of the

device. All this is shown in Fig.1 on the right side.

It is considered that the software compiler does not make

mistakes and programming language code is always

properly transformed into computer commands, and there is

no need to check the correspondence between the source

and the computer program. Software testing checks

6 Rimantas Seinauskas et al.: Examination of the Possibilities for Integrated Testing of Embedded Systems

whether the compiled program meets specification and

customer requirements as shown in Fig 1 on the right side

in the bottom. Meanwhile, hardware defects during the

manufacturing process can alter the functioning of the

device. Therefore, hardware must be tested to determine

whether they are functioning in accordance with designed

circuit. Expected output values can be estimated on the

basis of circuit model, which may be a software prototype.

Therefore, thorough testing should be performed to

ensure the designed circuit is functioning correctly. Circuit

and software prototype compliance with the specification

and the customer wishes are not determinable solely with

inspection. Dynamic circuit software prototype testing can

highlight additional errors. Compliance of the circuit

prototype with the specification and customer requirements

can be tested by software testing methods. In general,

hardware test generation can use the specification to

determine the expected outputs. In case there is an oracle

problem, which is similar to the oracle problem in testing

of software.

Design of algorithmic language source code according to

the specification is not fully automatic. Designer errors in

the preparation of the device description in VHDL or

System C language, in their nature are similar to the errors

in preparing the source codes of programming languages

like C + + or Java. Hardware description languages have

specific characteristics associated with the use of signals

and event synchronization. Limited linguistic structures are

used because of the need to assess circuit synthesis

capabilities. However, testing for design errors in hardware

and software is very similar and hence the test quality

criteria may be the same. Manufactured device has yet to

be tested for physical damage associated with the

production process. Physical fault testing is not required for

the developed software

Figure 1. Hardware and software engineering processes

Hardware test generation is moving into ever higher

levels of abstraction and functional tests can be generated

for a software prototype of the device. Tests generated from

the software prototype can be used to test the design errors

and physical faults. In general, without giving details of

what is being tested, we assume that the defects are tested.

Defects include design errors and manufacturing faults.

Criteria for a good reflection of defects are essential for the

generation of tests.

Description of the behavior on the basis of design

(VHDL, System C) or programming (C, Java) languages,

corresponds to a finite state machine. Description has input,

output, and status (memory) variables. Interactive program

execution results depend on the values of state variables,

which were calculated at the time of the previous program

execution. Program status and output variables are

calculated using the input and the initial values of state

variables. Prior to that, calculated values of state variables

are used as the initial state variable values. This is

consistent with the behavior of a finite-state machine.

Input and output variables are usually clearly defined.

All the others are intermediate or status variables. The

change of intermediate variables before the calculation

does not affect the calculation results. Change of state

variable values before the calculation can change the values

of the output variables or state variables. Extraction of state

variables is useful in order to facilitate the test generation

and improve test quality. State variables separation from

intermediate variables is not a trivial thing. This requires a

good understanding of the use of the object tested. The

presence of state variables indicate that defect testing must

use a series of test cases.

Hardware variables that are associated with the input and

output pins can be treated as binary vectors. Status

variables are also associated with binary vectors. Circuit

synthesis tool decides how much and what triggers will be

used. Some synthesis tools require explicitly defined

American Journal of Embedded Systems and Applications 2013; 1(1): 1-12 7

triggers in the source code. More abstract synthesis tools

automatically insert triggers. The same test generation tools

can be used to generate hardware and software tests if the

input, output and state variables of source are associated

with the binary vectors.

4. The Overall Test Generation Task

Hardware test operates with binary values of inputs,

outputs, and triggers. Values of input, triggers states and

output values are given as binary vectors. Input stimuli are

marked with vector P = <p1,p2,...,pn>, triggers status is

indicated by a vector B = < b1, b2, ...,bv>, and output

values are indicated by a vector R = < r1,r2, ..., rm>.

Functionality of the circuit is described as a finite state

machine and for that purpose initial state B
P

need to be

distinguished from state B
R
, which is obtained after filling

the input vector P with initial values and sync signal.

Functionality of the circuit is expressed as a response to

stimuli and the initial state in a single cycle, and R,B
R
 = f

(P,B
P
).

In general, there may be 2 raised to the power n different

input vectors. A sorted set of input vectors are labeled as

input vector sequence s =<P
1
, P

2
, ...,P

h
>. The sequence may

have the same input vector more than once. The sequence s

of input vectors can be of any length, h > 1. S is the set of

all possible input vector sequences, where s ∈ S. A test T is

the set of input vector sequences, where T ∈ Ϭ (S), that is,

any subset of the set S. Input vector sequence s detects

some defects and a set of defects is marked as D (s).

Different input vector sequences can detect the same and

different defects. Input vector sequences of T test detects

the set of defects D (T) =U D (s), where s ∈ T. We assume

that the test T does not have redundant input vector

sequences. Defect set D (T) does not change, after

discarding redundant input vector sequence from the test.

The quantity of elements of the set is indicated by means of

vertical lines before and after the set, for instance - | D (s) |.

During test generation T
max

 test is elected, which detects the

maximum number of defects D (T
max

) = max | D (T) |,

where T ∈ Ϭ (S). The test length is also important. We

can define the length of the input vector sequence as L (s)

and T test length as L (T) = Σ L (s), where s ∈ T. The

maximum amount of defects can be detected by more than

one test. The test with a minimum length min L (T), where

D (T) = D (T
max

) is to be selected.

A general and unified test generation task is formulated.

Circuit faults correspond to defects when testing hardware.

Program bugs correspond to defects, when the software is

being tested. We see that the test generation tasks of

hardware and software in their nature are very similar.

The task is based on binary vectors, and more faithfully

represents hardware testing. Software testing faces a wide

variety of variable types. Each program variable can be

associated with the columns of a binary vector as shown in

Fig. 2.

Figure 2. Interconnecting of program variables with the input and output vectors.

Vector P columns are transformed into the values of the

program input variables, the values of the program's results

are recorded in the corresponding columns of the R vector.

Before the execution of the program, columns of the initial

state vector B
P
 are transformed into the values of the

program state variables. After program execution, program

status variables are transformed to the appropriate columns

of the B
R
 vector. Before the next program execution B

R

8 Rimantas Seinauskas et al.: Examination of the Possibilities for Integrated Testing of Embedded Systems

vector values are recorded in the vector B
P
. External

program status variables monitoring and management is

possible in this case.

Test generation for programs requires conversion of

variables to the binary vectors template. Program input,

output and state variables must be associated with the

binary vectors columns (bits). For this purpose, a

specialized function is created, which relates the values of

the variables with binary input and output vectors.

Specialized procedures allow the wrapping of the program

into the binary vector template. A specialized procedure is

created for each type of program variable. Binary bit

quantity, which is required for a linking depends on the size

of possible variable values. The number of bits that are

associated with a variable determines the amount of options

analyzed in test generation. In this case, the search scope

can be managed for a test generation task, and it can be

used to find a compromise between test quality and test

generation time.

Search volume of test generation task depends on how

much and what state variables have been identified. Test

quality can also be managed, in this way. What will happen

if some state variables are hidden? Hidden state variables

affect the correlation between test quality and testing

criteria. Test quality is measured by the quantity of defects

detected. Compliance of the testing criteria with test quality

is strong, if the test that detects more defects has a greater

testing criterion value. A weakness of the correlation

between test qualities and testing criteria is demonstrated, if

a test that detects more defects is characterized by the same

or even smaller testing criterion value. The more state

variables have been highlighted the more strongly test

criteria reflects on the quality of the test. This feature has

been observed in experiments with the testing criteria. Thus,

discovery of state variables could be used for a more

accurate calculation of the test criterion.

The status variables that have been revealed can also be

used for direct recording of values. Direct recording of state

variables simplify the test generation task. The possibility

of a direct recording of state variable values requires

complementing a circuit or a software program. Circuit

instrumentation is associated with additional equipment.

This issue is examined in detail in DFT (design for

testability) themes. Additional recording of variable values

are used in the process of debugging programs or

improving testability. Software Testability improvement

efforts are similar to the hardware DFT techniques.

Additional recording of variable values requires amending

and supplementing the program interface. Supplementing

only works on the testing mode, which is added into the

program.

Extraction of state variables is an additional, not routine,

but creative work, in order to adapt a software program for

test generation. Program adaptation for testing requires

additional time and labor costs. The cost pays off if the

result allows us to find more bugs.

Formulated test generation task has no effective solution

methods. The search space is huge and evaluation of

optimized functions requires large computing resources. We

ought therefore to limit the search scope to simplify the

calculation of optimized function with the use of random

search-based solution methods. Deterministic search

techniques are very effective for small-scale tasks. In other

cases, we have to use methods based on random search.

5. The Test Sequence Quality Criteria

Considerable computing resources and analysis of the

internal circuit and program structure is required to

determine how many circuit faults or program bugs the

input vector sequence detects. A lot of effort is always

given to simplify the evaluation criteria, which can be

easily calculated but reflect the quality of the input vector

sequence. Popular black box evaluation criteria are

associated with the input stimulus and response to stimuli.

In general we will analyze function F, which executes the

program to be tested. Vector P and B
P
 can be combined

into a single input vector C = P||B
P
 = < c1, c2, ..., cn+v>. The

vector R and B
R
 can be connected to the output vector D =

R||B
R
 = < d1, d2, ..., dn+v>. The values in the output vector D

is a function F response to the input vector C, which means

D = F (C). Let us accept that the state vector B
P1

 always has

fixed values, usually zero. According to the first vector P
1

and state vector B
P1

 (C
1
 = P

1
 | | B

P1
) vector D

1
 = R

1
 | | B

R1
 is

calculated. State B
R1

 vector values are overwritten in state

vector B
P2

 (B
P2

 : = B
R1

) and C
2
 = P

2
 | | B

R1
 . In general, B

Pt

= B
Rt-1

 . Vector sequence s = <P
1
 , P

2
 , ..., P

t
 , ..., P

h
 >,

uniquely determines the input vector <C
1
 , C

2
 , ...,

C
t
 , ...,C

h
 > and output vector <D

1
 , D

2
 , ..., D

t
 , ...,D

h
 >.

Input and output binary vector sequences determine the

changes in the values of adjacent vectors. Each pair of

values (ci
t
 , dj

t
) of the input and output vectors C

t
 and D

t

has four options for changes: (ci
t-1

 = 0, ci
t
 = 1, dj

t-1
 = 0, dj

t
 =

1); (ci
t-1

 = 1, ci
t
 = 0, dj

t-1
 = 1, dj

t
 = 0); (ci

t-1
 = 0, ci

t
 = 1, dj

t-1
 =

1, dj
t
 = 0); (ci

t-1
 = 1, ci

t
 = 0, dj

t-1
 = 0, dj

t
 = 1);. The maximum

amount of changes is equal to 4 * (n + v) * (m + v). The

sequence s of input vectors determine the quantity G (s) of

changes to the input and output pairs, and the whole T test

determines the quantity G (T) =U G (s), where s ∈ T.

Calculation of G (s) and G (T) to generate a test is much

simpler and allows to consider more input vector sequences,

but simplified evaluation criteria may not be sufficiently

closely correlated with the circuit faults or program bugs.

Experimental studies of circuit delay faults have confirmed

that [9]. Therefore, this simple method of assessment of

changes (criteria of changes - C) has been revised. Input

and output entanglement is measured to obtain the tensile

strength correlation with circuit delay defects. Only the

input and output pairs, where reversal of the change in the

input will change the output value are considered. Input

value is replaced by the opposite value to cancel the change.

Let's say that ci
t
 value of pair (ci

t
, dj

t
) is changed to the

American Journal of Embedded Systems and Applications 2013; 1(1): 1-12 9

opposite, where ci
t
 ≠ ci

t-1
 . Input i and output j are linked

with each other, if the dj
t
 value changes in the opposite

direction after the calculation of D
t
 = F (C

t
) with substituted

ci
t
 value. Related changes criteria (RC) calculate changes

only between the inputs and outputs that are related to each

other. This significantly increases the volume of G (s)

calculations, but experimental studies [9] showed that the

input vector sequence selected by related changes criteria

(RC), finds more circuit delay faults. Test criteria, that do

not require extensive calculations, but reflect a quality that

is reflected in audited circuit faults or errors in the program

are more valuable.

Verification of control flow paths are one of the strongest

criteria used in testing software. A higher probability of

finding bugs is observed when more program control flow

paths executed by testing. Quantity control flow path

depends on the number of conditions tested in the program.

Each condition can be fulfilled or not fulfilled. According

to the criteria for the execution of branches, each condition

must be fulfilled at least once or defaulted during testing.

Control flow path is associated with a number of conditions

that can be met or not. These conditions, when combined

and evaluated with all possible combinations, form a

criterion. Number of such combinations is equal to 2 raised

to the degree of the amount of possible conditions. This

criterion will be called as a criterion for the combinations

of conditions (CC).

ATPG uses a wide variety of hardware testing criteria.

We will examine only those that can be adapted to software

testing. Black-box criteria discussed above fulfill this

condition.

Comparison of tests calculated on the basis of such

criteria as the changes (C), related changes (RC), and

combinations of conditions (CC) is interesting, and it is

carried out in the next section. Assumptions to use the same

methods to generate tests are formed only after discovering

common criteria for hardware and software testing. This

would contribute to an integrated test solution for

embedded systems because some of their functions can be

implemented as hardware, the other as software.

6. Experimental Comparison of Test

Generation Criteria

The two largest, B14 and B15 functions of ITC'99

benchmarks were chosen to compare test generation criteria.

These circuits are synthesized, have descriptions of Verilog

and VHDL and have software prototypes written in C

programming language. B14 has only one running process,

and B15 has three parallel functioning processes. Circuit

B14 has 277 values in the input vector and 299 values in

the output vector. Length of the input vector is equal to 485

and the length of the output vector is equal to 519 in the

b15 circuit. Circuit B14 can have the maximum amount of

changes, which is equal to 4 ** 277 * 299 = 331292.

Circuit B15 can have a maximum change in volume, which

is equal to 4 * 485 * 519 = 1,006,860.

Table 1. Test sequences selected according to the criteria of benchmarks examined

Circuits

Criterion of changes (C) Criterion of related changes (RC) Criterion of combinations of conditions (CC)

Amount of

sequences

Amount of

changes

Amount of

sequences

Amount of

changes

Amount of

sequences

Amount of combinations of

conditions

B14 5385 151380 3675 24508 3174 14565

B15 11490 322288 3045 19899 5287 23052

B14 4986 147806 6994 36372 2661 7444

B15 9189 322240 15014 60780 5638 25919

B14 2816 135703 2731 14928 7410 32768

B15 6781 302043 3083 21260 13160 49630

Random input sequences of 20 vectors were generated for

the experiments with circuit B14. Random input sequences

of 50 vectors were generated for the experiments with

circuit B15. Experiments were carried out with 10 million

input sequences, out of which we selected those that

increase the summary value for the criteria. For circuit B14,

5385 input vector sequences were selected, while on circuit

B15 11,490 input vector sequences were selected according

to the criteria for change (C). These sequences indicated

151 380 and 322 288 changes accordingly. This is shown in

Table 1, where 2 and 3 rows and columns intersect. Table 1

has highlighted diagonal where amounts of marked changes

are written, as well as the amount of input sequences,

which were selected on the basis of criterion of related

changes - RC (intersection of 4 and 5 rows and columns).

The software prototype circuit B14 has 15 conditions and

32 768 possible combinations. The selected input

sequences (7410) examined all possible combinations of

conditions. Meanwhile, the software prototype circuit b15

has 9 conditions for process P0, 14 conditions for the

process P1 and 4 conditions on the process P2. Total

software prototype has 27 checked conditions. The selected

10 Rimantas Seinauskas et al.: Examination of the Possibilities for Integrated Testing of Embedded Systems

input sequences (13,160) covered only 49,630

combinations of conditions. This is shown in Table 1

diagonally (the intersection of 6 and 7 rows and columns).

The maximum total quantity of the selected input

sequences of the two circuits was obtained using the RC

criteria. Input sequences selected against one criterion were

further selected with respect to the other two criteria in

order to compare the criteria with each other. The results

obtained are shown in Table 1. The first two rows of Table

1 show how many input vector sequences remain after

further selection against the RC (column 4), and after

selection against CC (column 6). Number of related

changes and the quantity of combinations of conditions are

shown next. Similarly, the remaining amount of input

sequences that remain after further selection based on the

other two criteria is shown in the following lines in pairs.

Analysis of the results of Table 1 show that repeated

selection of input sequences based on the other two test

criteria significantly reduce the criterion values as

compared with the original selection. This means that the

criteria are not similar. Decrease in value of the test

criterion (percentage) after the repeated selection on the

basis of a different criterion was calculated to compare the

test criteria. The summarized results are presented in Table

2, where the input sequences selected on the basis of a

single criterion that also meet other criteria are shown as a

percentage in each row.

Table 2. Summarized results of the compared criteria.

Criterion of

changes (C)

Criterion of related

changes (RC)

Criterion of combinations

of conditions (CC)
Average

Criterion of changes (C) 100% 45,71% 45,65% 45,68%

Criterion of related changes (RC) 99,24% 100% 40,49% 69,87%

Criterion of combinations of conditions (CC) 92,42% 37,25% 100% 64,84%

Table 2, second row, second cell shows that the value of

the criterion of changes after repeated selection on the basis

of the same criteria remain unchanged, that is, of one

hundred percent. After repeated selection, the value of the

criterion RC is reduced to 45.71 per cent as compared with

the value obtained by the direct selection of criteria related

changes (second row, third cell). Similarly, after repeated

selection, the numerical value of CC is reduced to 45.65 per

cent when compared with the value obtained using the

direct selection of the criterion of combinations of

conditions. The last column shows the average percentage

by which testing criteria values were reduced. We see that

most other criteria (69.87%) fulfilled the criteria of related

changes.

The experimental results indicate that it is appropriate to

use different criteria to generate tests for hardware and

software. Experimental studies have shown [10] that tests

calculated on the basis of the criterion of related changes

detect transition delay faults of circuits well and that this

criterion can be successfully used for hardware test

generation. Input sequences selected with respect to the

changes criterion, detect less delay faults, but this sequence

executes more combinations for the conditions than the

input sequence selected on the basis of the RC criteria.

Criterion combinations of conditions, covers control flow

branches and path criteria that are most popular for

software test generation. None of the investigated criteria

are universal. Criterion of related changes is best suited for

this role.

Test generation based on the RC criterion cannot

guarantee the detection of all defects of a circuit. Similarly,

test generation based on the criterion CC cannot guarantee

the detection of all bugs in a program. Input sequences

obtained combining the input sequences selected on the

basis of RC and CC criteria can detect more defects of the

circuit and bugs of the program. However, in this case the

amount of input sequences selected nearly doubled. It

follows from Table I. This test is versatile and suitable for

testing the functions that can be realized as hardware or

software. Consistent selection of the input sequence that

satisfies either RC or CC criterion reduces the amount of

selected input sequences. Additional experiments showed

that the levels of selected sequences decreased from 14,404

to 9,114 on the circuit B14, and from 28,174 to 19,453 for

the circuit b15.

Examination of the two benchmarks is analogous to a

case study approach. The results and comments can aid in

making preliminary decisions and choosing comprehensive

research directions.

7. Conclusions

Two case studies have shown that the most universal

black-box test generation criteria that best reflect other

criteria is the criterion of changes. Coherent selection of

input vector sequences against several criteria permits the

reduction of test length without sacrificing the quality of

the test. This is appropriate for the generation of tests for

embedded systems.

Unified task to generate tests for hardware and software

is formulated. For this purpose, a model (structure of the

American Journal of Embedded Systems and Applications 2013; 1(1): 1-12 11

description) of tested object is proposed. The model has the

form of finite-state machine that has input output and state

variables associated with the binary vectors. This enables

the same methods to be used to generate tests for hardware

and software. The experience accumulated in different

areas such as hardware and software testing can be used to

solve a unified task of test generation, in this case.

Monitoring and management of state variables enables

the flexibility to choose, and thus decide on the

effectiveness of test generation process. Higher amount of

highlighted state variables allows an increase of the quality

of testing criteria to increase the testability of the tested

object.

Software programs wrapped into a binary vector

template makes use of the same test generation methods

and criteria for hardware and software. The way of binding

variable values and columns of binary vectors influences

the extent of the search for test generation.

Hardware and software engineering process analysis

showed that the performance and the problems are very

similar. Different engineering domains can benefit from

each other's strengths.

Three test generation criteria were investigated. One of

the criteria is for general purposes, the other for delay fault

testing, and the third for software testing. General-purpose

criteria matched the other two specialized criteria in terms

of quality. The criterion for delay fault testing has been the

closest to uniform criteria for hardware and software testing.

However, it did not deny the desirability of generating tests

based on two criteria when the tested function can be

implemented as hardware or software.

Black-box criteria make it possible to start generating

tests in the early design stages, once the initial software

prototype is established. The results are important for a

reasonable choice of test generation criteria and attitudes

towards embedded systems testing. The results can be used

in finding a compromise between test quality and the test

length. This requires detailed further study.

References

[1] K. H. Pries, J. M. Quigley, Testing Complex and Embedded
Systems. CRC Press, Taylor Francis Group, 2011, p. 314

[2] G. J. Myers, C. Sandler, T. Badgett, The art of software testing.
3rd ed. John Wiley & Sons, 2011, p.256

[3] H. Zhu, P. Hall, J. May, “Software unit test coverage and
adequacy,” ACM Computing Surveys (CSUR), 1997, Vol. 29
Issue 4, pp. 366-427, DOI: 10.1145/267580.267590

[4] H. Wunderlich, Models in hardware testing. Springer, 2010,
p. 257

[5] B. Broekman, E. Notenboom, Testing embedded software.
Addison Wesley, p. 368

[6] A. Fin, F. Fummi, M. Martignano, M. Signoretto,” SystemC:
A homogenous environment to test embedded systems,”
Ninth International Symposium on Hardware/Software

Codesign (CODES), 2001.pp. 17-22,
DOI:10.1109/HSC.2001.924644

[7] F. Xin, I. G. Harris,” Test generation for hardware-software
co-validation using non-linear programming,” Seventh High-
Level Design Validation and Test Workshop, 2002, pp.
175-180, DOI:10.1109/HLDVT.2002.1224449

[8] P. J. Schroeder, B. Korel,” Black-box test reduction using
input-output analysis,” ACM SIGSOFT international
symposium on Software testing and analysis, 2000, pp. 173 –
177.

[9] H. Y. Ong, Z. Zamli,” Development of interaction test suite
generation strategy with input-output mapping supports,”
Scientific Research and Essays Vol. 6(16), 2011, pp.
3418-3430, DOI: 10.5897/SRE11.427

[10] E. Bareisa, V. Jusas, K. Motiejunas, R. Seinauskas.
Functional digital systems testing. Technologija, 2006, p.
281.

[11] E. Bareisa, V. Jusas, K. Motiejunas, R. Seinauskas,”
Functional delay test generation based on software
prototype,” Microelectronics Reliability, Vol. 49, iss. 12,
2009, pp. 1578-1585, DOI: 10.1016/j.microrel.2009.06.050

[12] E. Bareisa, V. Jusas, L. Motiejunas, R. Seinauskas,”
Generating functional delay fault tests for non-scan circuits,”
Information technology and control, Vol. 39 Iss. 2, 2010, pp.
100-107

[13] T. Frühwirth,” Theory and practice of constraint handling
rules,” The Journal of Logic Programming,”Volume 37,
Issues 1–3, 1998, pp. 95–138,
DOI:10.1016/S0743-1066(98)10005-5

[14] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S.
Malik,” Chaff: Engineering an Efficient SAT Solver,” In:
Proceeding of the 38th Design Automation Conference ,
2001, pp. 530-535

[15] P. McMinn,” Search-based software test data generation: a
survey,” Software Testing, Verification & Reliability, .
Volume 14 Issue 2, 2004, pp. 105 – 156,
DOI:10.1002/stvr.v14:2

[16] J. King,” Symbolic execution and program testing,”
Communications of the ACM, Vol. 19, issue 7, 1976, pp.
385-394

[17] L. Wang, C. W. Wu, X. Wen, VLSI Test Principles and
Architectures, Design for Testability. Academic Press, 2006,
p. 808

[18] F. Jianping, L. Bin, L. Minyan,” A Framework for Embedded
Software Testability Measurement,” Information and
Automation Communications in Computer and Information
Science, Volume 86, 2011, pp. 105-111

[19] S. Kansomkeat, W. Rivepiboon,” An analysis technique to
increase testability of object-oriented components,” Software
testing, verification and reliability, Volume 18, Issue 4,
2008, pp.193-219, 193–219 DOI: 10.1002/stvr.387

[20] T. Yu, A. Sung, W. Srisa-an, G. Rothermel,” Using property
based oracles when testing embedded system applications,”
In Proceedings of the Fourth International Conference on
Software Testing, Verification and Validation, 2011, pp.
100-109

12 Rimantas Seinauskas et al.: Examination of the Possibilities for Integrated Testing of Embedded Systems

[21] C. Artho, D. Drusinksy, A. Goldberg, and others,
“ Experiments with test case generation and runtime
analysis,” In Proceedings of 10th international conference on
Advances in theory and practice, 2003, pp. 87–108

[22] J. Corbett, M. Dwyer, J. Hatcliff,” Bandera: extracting
finite-state models from java source code,” In Proceedings of
the 22nd international conference on Software engineering,
2000, pp. 439–448

[23] J. Huo, A. Petrenko,” Transition covering tests for systems
with queues,” Software testing, verification and reliability,
Volume 19, Issue 1, 2009, Pages: 55–83, DOI:
10.1002/stvr.396

[24] A. Simao, A. Petrenko, N. Yevtushenko,” On reducing test
length for FSMs with extra states,” Software testing,
verification and reliability, Volume 22, Issue 6, 2012, Pages:
435–454, DOI: 10.1002/stvr.452

