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Abstract: Separate testing of hardware and software of embedded systems is insufficient. Communication between 

hardware and software parts needs to be tested during the integrated testing. Discussions about this problem are practically 

unavailable. Black-box criteria are used for hardware and software testing. This creates the conditions for formulating a 

unified test generation task and a single template for the generation of tests, as well as enabling a comparison between the 

criteria of test generation. Black-box criteria make it possible to start generating tests in the early design stages, once the 

initial software prototype is established. The test object is described in a finite state machine form. The availability of state 

variables enables the search for a compromise between test performance and quality in test generation. Experiments with two 

benchmarks showed which criterion of the black box approach is the most suitable for hardware and software testing and that 

the generation of integration tests according to two criteria is appropriate. The results are important for choosing a reasonable 

approach to embedded system integration testing.  
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1. An introduction to the Current 

Situation 

Hardware and software testing has evolved 

independently and used their own terminology.  Therefore, 

we first discuss the terminology associated with testing.  

Next, a hardware device or software program will be 

identified as a developed product. Validation is the process 

that determines whether the product satisfies customers’ 

needs. Verification is the process that determines whether a 

product meets its specification, which is designed 

according to customer needs. Verification can be static and 

dynamic. Dynamic verification provides tests for the 

product and it's called product testing. Test generation 

process creates a product test. The product test consists of 

test cases that include product testing data and the expected 

reaction to the data. Test cases are arranged in sequences, if 

the expected output response depends on which test cases 

have been submitted in the past. This indicates that the 

tested product has an internal state, on which the product 

output values are dependent. 

Hardware behavior causes a variety of physical defects 

resulting from manufacturing or maintenance processes. 

The number of potential physical defects is practically 

countless.  The number of bugs in the program is also 

practically endless. In summary, a physical defect of the 

device and a software bug are both product defects. Circuit 

fault models summarize the impact of various physical 

defects. Mutation models summarize the impact of various 

program bugs.  In general, defect models are used to 

simplify test generation. The number of defect models is 

countable. Tests are generated on the basis of defect models. 

Defect models must reflect the real impact of defects. 

The quantity of product defect models can be quite large. 

As a result, highly abstract models of the product are used 

to generate tests. In this case, test generation is based on 

test criteria. Test criteria only indirectly reflect defects. Test 

criteria are chosen in such a way that increasing the 

numerical criterion value increases the probability of 

detecting more defects. The same test criteria can be used 

to generate hardware and software tests. 

Hardware testing aims to highlight the physical defects 

which may have occurred during the manufacturing process 

or the operation of the equipment due to its aging. Defects 

can be very different, such as broken, short-circuit 

connections, weak electrical parameters, and so on. Defect 

models (faults) are used to simplify the examination of 
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defects. The most common is a stuck-at fault, which is 

based on the assumption that a physical defect prevents the 

toggle of signal values of some element inputs or outputs. 

With the increasing integration and operating frequencies, 

delay fault has become very important, which is based on 

the assumption that physical defects increase the signal 

delay. Long-standing use of the fault model confirms their 

correlation with actual physical defects. Functional delay 

faults that are based on black box input and output analysis 

have become increasingly relevant in the case of very large 

hardware compactness and speed of operation. 

A hardware test consists of input vectors, which are 

divided into sequences. Each test sequence checks one or 

more faults. Test sequence detects a fault, if the sequence of 

output values is different from the output values when the 

circuit is adjusted according to the fault.  Test generation 

is seen as a search of test sequences that detect all faults. 

Test generation is formulated as an optimization problem, 

but there are no effective methods for solving the problem. 

First of all, a very complex algorithm is required to 

calculate the objective function. Also, the objective 

function depends on a large amount of parameters and must 

comply with many regulations and restrictions. The 

solution search space is sufficiently massive. Decision is 

complicated by a huge set of possible states, and to achieve 

some states a long sequence of input vectors is required.  

Defect testing process uses the output values of the 

correct device model. Description in an algorithmic 

language or circuit is considered to be a result of correct 

design and is used as a device model. Design errors are 

found during the validation of the design. Tests can be used 

for the validation of hardware design. Similarly, software 

errors are found during software testing. Basically, 

hardware design validation and software testing solves the 

same problem. These are the checks for design errors.  

Device defect quantity is practically countless, but the 

amount of hardware faults is very high but finite. 

Meanwhile, the amounts of hardware and software design 

errors are practically incalculable. Therefore, the 

generations of tests for software testing and hardware 

validation use various criteria to ensure detection of errors 

and faults. However, testing and validation cannot 

guarantee the detection of design errors. This situation 

makes it possible to search for common and better test 

quality criteria, and use these criteria to test the software, to 

validate the hardware design and to test for hardware 

defects. 

The main problem faced by software testing and 

hardware design validation is the determination of the 

expected output values. In general, it is considered that the 

expected output response is determined by the specification, 

but in reality it is not always possible to do so. Comparison 

of the actual output with the expected values is replaced by 

verification of various properties of the output values, in 

the hope that properties with abnormal values indicate bugs 

in the program. This approach is also possible when 

comparing outputs from two versions of software, in the 

hope that versions implemented by different groups do not 

contain the same errors. 

Hardware and software designs are increasingly 

converging. Hardware description languages like VHDL, 

System C are very similar to software programming 

languages. Test generation for hardware and software are 

increasingly converging as well. Therefore, overall test 

generation problem analysis is appropriate, in order to 

exploit the best achievements that have been obtained to 

improve hardware and software test generation separately. 

The aim of this paper is to analyze hardware and 

software testing and test generation processes, their 

similarities and differences, to examine the possibilities of 

using the same criteria and methods of test generation for 

hardware and software, as well as the comparison between 

test generation criteria. 

The remaining article part is structured in such a way. 

Next Section 2 is dedicated to a brief overview of the most 

important trends in hardware and software testing. 

Hardware and software engineering processes, similarities 

and differences are described in Section 3. Uniform test 

generation problem is formulated in Section 4. Black-box 

test generation criteria and their comparison are presented 

in sections 5 and 6. Section 7 concludes the article. 

2. A Brief Overview of the Most 

Important Trends in Hardware and 

Software Testing  

Embedded systems are becoming more widely used 

everywhere, controlling various widespread devices, some 

of which are critical in terms of security. Testing is the most 

commonly used method for validation of embedded 

systems. Effective testing techniques could be useful to 

increase the dependability of these systems. However, the 

development of such methods is a significant challenge. 

Embedded systems consist of software and hardware 

support layers. Layers can be tested separately. Hardware 

support layer can be used for other applications and, 

therefore, could have been tested extensively in the past.  

Interaction between the layers can be an outstanding source 

of defects. Embedded systems require especially high 

quality testing if they have some of the features 

implemented as hardware and some of the features 

implemented as software. Determining the expected 

reactions or the so-called "oracle problem" is a difficult 

problem for testing, but can be extremely complicated in 

embedded system testing [1]. 

First we will look at software test generation criteria. 

Software testing is the process of program execution, 

during which we need to make sure that the program code 

performs as intended.  Software testing can be classified 

as black-box (functional) testing and white-box (structural) 

testing. Black-box testing is used to ascertain the 
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circumstances under which the program does not work 

according to specifications. When using this method, test 

data is obtained without the use of knowledge about the 

internal structure of the program. Typical black-box testing 

methods include decision table testing, state transition table 

testing, partitioning the data and the results in the 

equivalent groups, and analysis of marginal values [2]. 

In general, black box testing is a relatively simple way to 

create test cases, because the testers do not need to check 

the program logic. If the specification is precise and 

rigorous enough, black box testing can be a powerful tool 

for revealing faults. However, black box testing is not 

sufficient to fully test the program when its internal 

structure is ignored. This can cause problems when a 

program or component of the system is up to date, and its 

corresponding specification has not been updated. 

On the other hand, white-box testing allows testers to 

examine the internal structure of the program in detail. This 

means that the testers are allowed to view the source code 

when creating test cases. White-box testing allows testers to 

evaluate how well the program is tested for this purpose 

using adequacy criteria. The test adequacy criterion is a 

predicate, which is used to determine whether a program 

has been tested "enough" [2]. The criteria are used to assess 

whether all the software operators have been executed by 

testing, whether there are any conditions untested 

(branches), or if all possible operator sequences (paths) 

have been tested. Overview [3] is an excellent description 

of the software testing criteria. 

Data flow testing is also a well-known white-box testing 

method. Data flow path selection is based on the 

application data flow counts to investigate the sequence of 

events associated with the data object status change. There 

are certainly whole families of data flow criteria, which are 

subject to testing programs. Testers must choose test cases 

that cover the selected criteria. White box testing can be 

more powerful than black box testing and is useful to reveal 

the hard-to-find errors. 

Testers can choose different test criteria that meet their 

needs. However, white-box testing can be more expensive 

than black-box testing. White box testing requires testers to 

understand the internal structure of the program being 

tested, and completeness of the testing. Finally, black-box 

testing and white box testing complement each other’s 

strengths and reduce weaknesses. 

Hardware testing used the stuck-at fault model for 

decades. Lately, the growing complexity of devices and 

their compactness highlighted the advantages of delay fault 

model, which is based on the assumption that defects affect 

signal propagation delay. Transition faults are based on the 

assumption that the delay is caused in one point. Path delay 

faults are based on the assumption that all points of the path 

affect signal delay. It is intended to detect delays of the 

longest paths [4]. 

Test case or, simply, the test consists of input data and 

the reference or, simply, the expected output results. 

Expected outputs from hardware tests are calculated using 

the model of the device. Tests are also used for checking 

the correctness of the hardware model. Verification of the 

model and software testing are similar processes. Expected 

output value calculation is based on the specification. Often 

the specifications are not detailed enough to determine the 

exact expected outputs. This complicates the creation of 

software tests.  

Increased complexity of projects, along with a very tight 

market schedule creates very strict requirements for 

embedded system designers. Parallel hardware and 

software design replaces the traditional design methods and 

more work is done by using a higher level of abstraction [5]. 

However, the testing of hardware and software parts of the 

system are still considered to be two completely different 

problems and very different methods are used to deal with 

them. There has been some work [6, 7] in order to reduce 

the gap between the two different domains, but the area is 

not yet well established. 

There are some similarities and differences between the 

methods used for testing software and hardware. It is clear 

that over time new software bugs do not occur if you do not 

change the software. However, it is not true when using 

hardware. Over time, equipment may be damaged, even 

though the fault was not present at the time when the 

hardware was manufactured and tested. 

It should be noted that hardware and software testing are 

bound by the common idea of paths analysis. Software 

testing deals with control flow paths, but device testing 

examines signal propagation paths. Even though the paths 

are different in nature, it is possible to use a single criterion 

for testing hardware and software. 

Unified hardware and software testing criterion can only 

be a black box criterion. Input and output analysis is widely 

used in the industry. It reduces test data volume when 

generating software tests [8], as well as when generating a 

functional test of hardware [9, 10]. Input and output 

analysis is an economic term that refers to the investigation 

of individual sectors of the economy that affect the entire 

economy. This type of economic analysis was originally 

developed by Vasily Leontief, who later won the Nobel 

Prize in Economic Sciences for his work on this model. 

Input and output analysis allows analyzing the relationships 

inside the economic system as a whole, rather than 

individual components. 

A similar idea is used to generate functional delay tests 

for hardware, using a software prototype [11, 12]. The test 

generation process is used to find as much input and output 

connectivity as possible. An input is considered to be linked 

to an output if the changed input values change the value of 

the output. It is well associated with the detection of delays 

when considering input binary value changes from zero to 

one and vice versa. 

Finite state machine or finite automaton is a 

mathematical model used to create computer programs and 

circuits with state. Algorithmic description language (of 

circuit or program) is a finite automaton that has input, 

output, and state variables. Automaton behavior is 
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expressed by calculating output and new state variable 

values when given the input and the state variables. In 

general, state variables are considered those variables that 

affect the output or other state variables. State variables 

must be set before the calculation. State variables change 

old values, through functioning. 

Hardware description languages like VHDL and System 

C have clearly separated memory (state) variables. 

Meanwhile, software programs often do not. A software 

program is characterized by the fact that repeated program 

execution always produces the same results. This shows 

that the state variables are hidden inside an application. To 

really test the following program, the state variables should 

be treated similarly to the input variables. It is not an easy 

job to separate software program state variables from 

intermediate variables. The initial values of the 

intermediate variables do not change the program output 

and state variables. In this way, we should talk about the 

preparation for testing of software applications through the 

introduction of additional variables in the interface. 

Otherwise, we would have to be satisfied with software 

program testing, based solely on input and output variables. 

At first glance it seems that it is irrational to rely on only 

the input and output of a black box model, especially where 

only a small amount of inputs and outputs is present. This 

is the main source of skepticism. However, we must 

remember that model state variables expand the set of 

variables that affect the output. It also adds a set of 

variables that reflect the results. Experimental studies have 

confirmed [10] that black box models can be successfully 

used for detection of hardware defects. 

In order to obtain the desired values of state variables, it 

may take several executions of software applications. In 

this case, it comes to a series of test cases. Test sequences 

are used for testing hardware and software. In this respect, 

hardware and software testing is similar. It is therefore 

possible to formulate a unified test generation task when 

software program variables are transformed into binary 

variables. 

Deterministic test generation methods for hardware and 

software testing have been developed several decades ago 

and are constantly evolving. Hardware test generation 

process is based on the selection of input variables such 

that a modified variable value can be monitored on at least 

one output. This is related to the activation of signal 

propagation path. Similarly, software test generation 

process selects the values of input variables that determine 

the execution path of software program operators. Test 

generation process for hardware and software is based on 

the concept of the executive path. Conditions for the 

enforcement of the path are created by selecting input 

variable values. For this purpose it is necessary to address a 

system of constraints [13], because path performance 

conditions may require conflicting values of input variables. 

This poses a major problem in finding the solution. 

Satisfying solutions are widely used in solving the problem. 

Computer science when solving the problem of satisfying 

(often abbreviated as indicated in capital letters-SAT) must 

determine whether the Boolean variables can be allocated 

in such a way that the formula should be equal to the unit 

value. Binary satisfaction is probably the most studied 

combinatorial optimization/search problem. There have 

been great efforts in attempting to provide an effective 

practical solution to the problem. SAT is one of the key 

problems in computer science with a theoretical and 

practical significance and has a very efficient practical 

implementation [14]. SAT solvers are widely used in the 

hardware and software test generation. 

Hardware and software for test generation uses various 

search methods. It is very important to choose the 

encryption solution that would be easy to manipulate the 

search. In this way, the search can easily move from one 

solution to another, which has the same set of properties. 

Search methods like hill climbing, simulated annealing and 

Evolutionary Algorithms are widely used. Various search 

principles are well analyzed in the review [15]. At this time 

there exists a widespread symbolic execution principle, 

which assigns values of path variables, and which solves 

the system of restricted expressions [16]. 

Despite considerable efforts to improve deterministic test 

generation methods, in the meantime they are unable to 

find solutions for large-scale hardware and software within 

a reasonable period of time. Therefore, in practice random 

search methods remain competitive. This is explained by 

the need to find test sequences for large numbers of defects, 

each defect can be detected in a number of test sequences 

and, therefore, randomly generated test sequence detects 

many defects. In addition, deterministic test generation 

methods consume a lot of resources trying to find solutions, 

which do not exist. 

Design for the Testability (DFT) is widely used [17] in 

order to simplify the test generation task. The root of the 

problem stems from the fact that it is difficult or impossible 

to determine the appropriate states using only input values. 

Additional hardware is inserted into the device. This 

additional equipment makes it easier to transition the 

memory elements to the appropriate states. It may cause up 

to 30 percent increase in the volume of hardware, 

introducing an additional signal delay, but that is because it 

is impossible to effectively solve the test generation task. 

The same ideas are used in order to simplify software 

test generation. Generally, the program may include a test 

mode in which some of the variables in memory take on 

values via an additional input variable. First of all, values 

are given to the state variables that determine the 

enforcement of control flow graph paths. Test generation is 

complicated by the fact that state variable values depend on 

the values of other state variables. In order to obtain the 

desired values other values of state variables must be set 

before. Usually this can be done in several steps, and this 

fact leads to the need of an input sequence. The longer the 

input sequence required, the more difficult the construction 
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or selection, as the search space increases dramatically. 

Direct determination of the values of state variables 

facilitates obtaining the desired values. However, this can 

affect the quality of software objects collaboration testing. 

Meanwhile objects cooperation testing is very important 

because such errors are harder to find. It should also be 

noted that the variables can take value combinations on test 

mode that are not possible in the normal operating mode. 

Tools of software testability analysis and improvement are 

proposed in [18, 19]. 

During testing, test results are compared with the 

expected results. Software Test Oracle is a software tool 

that helps to determine whether the program has passed the 

test. It is always necessary to assess the correctness of the 

decision and the basis on which it was taken. Test Oracles 

are based on the tested object properties [20] or on the 

output results [21]. Test Oracles relying on the output 

results for some data combinations have predictable outputs 

and checks whether the received output value corresponds 

to the expected one. Test Oracle cannot make a decision on 

passing the test if a given combination of input data does 

not have the expected results stored in Oracle. Ratio of the 

quantity of the input data, when decision can be taken, with 

all of the input data volume determines the quality of the 

test oracle. Test Oracle can always decide on the expected 

values when it uses the model of the object being tested.  

In this case, the model adequacy determines the quality of 

the Test Oracle. The model must accurately reflect the test 

object. The degree of difference determines the quality of 

the Test Oracle, if different software implementation is 

used as a model. The use of different programming 

languages and solution methods increases the likelihood 

that the program, which is being tested, and the model will 

not have the same programming errors. Quality of Test 

Oracle is problematic to assess if the model is founded on 

the tested object [22]. It is important to assess the 

confidence of the Test Oracle. Confidence on the decision 

depends on the answer to these questions. Do we know the 

expected values of all output variables or only a portion of 

them? Do we know and have we measured the values of 

state variables? 

Test oracle, which is based on the test object properties, 

checks the values of test object properties, which shall be 

valid to all data. Failure to receive a normal test object 

property value indicates a fault. In this case, the test oracle 

quality depends on the number of defects that cause 

properties of the tested object to be abnormal. Therefore, 

assessment of the quality of a test oracle, which is based on 

properties, is particularly difficult. Finite state machine 

(FSM) testing principles used in testing hardware and 

software [23], demonstrate the possibilities of using test 

criteria based on state variables [24]. Status variables create 

preconditions on the basis of test oracles, to check 

properties that are more diverse and more accurate. The 

ability to detect defects characterizes the quality of the test. 

Test quality depends on testing criteria used in test 

generation process, and also depends on the quality of the 

test oracle. Influence of testing criteria towards test quality 

is widely discussed in scientific publications. Influence of 

test oracle towards test quality is discussed less often. 

3. Hardware and Software Design and 

Testing 

Hardware and software design starts from the 

specification. The requirements engineering phase is clearly 

separated in the process of software development. During 

this phase, the specification is prepared. A similar step is 

performed in the hardware development process as well, 

but less spoken about and is treated as self-evident and 

well-known thing. Everything that is written in 

requirements engineering, is suitable for the preparation of 

a hardware specification. Specifications of software 

engineering are more complex, more connected with 

customers. Meanwhile, hardware engineering specifications 

are more technical, more precisely defined. 

Merged software and hardware engineering processes 

show in Fig. 1 to demonstrate the commonalities and 

differences between the processes. Specification is prepared 

according to the customer needs in the requirements 

engineering stage. It depicts two blocks shown in Figure 1 

on the left side. 

Device or program behavior is expressed by the 

algorithm description language. This is the third block from 

the left in Fig. 1. The programming language source code is 

the result of the software design process. The source code 

for hardware design language is a result of the hardware 

design process. Usually, the source code of the device 

design language is synthesized into a circuit. Circuit is 

shown in the third block from the left upper part of Fig. 1, 

while the lower part shows the programming language 

source code. Methodology on how to get the source code is 

very similar for the processes of software and hardware 

design. With the increasing volume of projects, hardware 

design took a lot of methods from the software design. 

Source code and circuit inspection in accordance to 

specifications and customer needs is demonstrated in Fig. 1. 

In this way hardware and software design correctness is 

verified. This means that checks are made to ensure the 

software source code and hardware circuit design have no 

errors. This is also called static testing. Inspections are 

carried out by a team of verifiers. Similar static testing 

techniques are used to search for hardware and software 

design errors. 

Software compiler converts the source code of the 

program into computer commands. Hardware compiler 

prepares the measures required for the production of the 

device. All this is shown in Fig.1 on the right side. 

It is considered that the software compiler does not make 

mistakes and programming language code is always 

properly transformed into computer commands, and there is 

no need to check the correspondence between the source 

and the computer program. Software testing checks 
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whether the compiled program meets specification and 

customer requirements as shown in Fig 1 on the right side 

in the bottom. Meanwhile, hardware defects during the 

manufacturing process can alter the functioning of the 

device. Therefore, hardware must be tested to determine 

whether they are functioning in accordance with designed 

circuit. Expected output values can be estimated on the 

basis of circuit model, which may be a software prototype. 

Therefore, thorough testing should be performed to 

ensure the designed circuit is functioning correctly. Circuit 

and software prototype compliance with the specification 

and the customer wishes are not determinable solely with 

inspection. Dynamic circuit software prototype testing can 

highlight additional errors. Compliance of the circuit 

prototype with the specification and customer requirements 

can be tested by software testing methods. In general, 

hardware test generation can use the specification to 

determine the expected outputs. In case there is an oracle 

problem, which is similar to the oracle problem in testing 

of software. 

Design of algorithmic language source code according to 

the specification is not fully automatic. Designer errors in 

the preparation of the device description in VHDL or 

System C language, in their nature are similar to the errors 

in preparing the source codes of programming languages 

like C + + or Java. Hardware description languages have 

specific characteristics associated with the use of signals 

and event synchronization. Limited linguistic structures are 

used because of the need to assess circuit synthesis 

capabilities. However, testing for design errors in hardware 

and software is very similar and hence the test quality 

criteria may be the same. Manufactured device has yet to 

be tested for physical damage associated with the 

production process. Physical fault testing is not required for 

the developed software

 

Figure 1. Hardware and software engineering processes 

Hardware test generation is moving into ever higher 

levels of abstraction and functional tests can be generated 

for a software prototype of the device. Tests generated from 

the software prototype can be used to test the design errors 

and physical faults. In general, without giving details of 

what is being tested, we assume that the defects are tested. 

Defects include design errors and manufacturing faults. 

Criteria for a good reflection of defects are essential for the 

generation of tests. 

Description of the behavior on the basis of design 

(VHDL, System C) or programming (C, Java) languages, 

corresponds to a finite state machine. Description has input, 

output, and status (memory) variables. Interactive program 

execution results depend on the values of state variables, 

which were calculated at the time of the previous program 

execution. Program status and output variables are 

calculated using the input and the initial values of state 

variables. Prior to that, calculated values of state variables 

are used as the initial state variable values. This is 

consistent with the behavior of a finite-state machine. 

Input and output variables are usually clearly defined. 

All the others are intermediate or status variables. The 

change of intermediate variables before the calculation 

does not affect the calculation results. Change of state 

variable values before the calculation can change the values 

of the output variables or state variables. Extraction of state 

variables is useful in order to facilitate the test generation 

and improve test quality. State variables separation from 

intermediate variables is not a trivial thing. This requires a 

good understanding of the use of the object tested. The 

presence of state variables indicate that defect testing must 

use a series of test cases. 

Hardware variables that are associated with the input and 

output pins can be treated as binary vectors. Status 

variables are also associated with binary vectors. Circuit 

synthesis tool decides how much and what triggers will be 

used. Some synthesis tools require explicitly defined 
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triggers in the source code. More abstract synthesis tools 

automatically insert triggers. The same test generation tools 

can be used to generate hardware and software tests if the 

input, output and state variables of source are associated 

with the binary vectors. 

4. The Overall Test Generation Task 

Hardware test operates with binary values of inputs, 

outputs, and triggers. Values of input, triggers states and 

output values are given as binary vectors. Input stimuli are 

marked with vector P = <p1,p2,...,pn>, triggers status is 

indicated by a vector B = < b1, b2, ...,bv>,  and output 

values are indicated by a vector R = < r1,r2, ..., rm>. 

Functionality of the circuit is described as a finite state 

machine and for that purpose initial state B
P 

need to be 

distinguished from state B
R
, which is obtained after filling 

the input vector P with initial values and sync signal. 

Functionality of the circuit is expressed as a response to 

stimuli and the initial state in a single cycle, and R,B
R
 = f 

(P,B
P
).  

In general, there may be 2 raised to the power n different 

input vectors. A sorted set of input vectors are labeled as 

input vector sequence s =<P
1
, P

2
, ...,P

h
>. The sequence may 

have the same input vector more than once. The sequence s 

of input vectors can be of any length, h > 1. S is the set of 

all possible input vector sequences, where s ∈ S. A test T is 

the set of input vector sequences, where T ∈ Ϭ (S), that is, 

any subset of the set S. Input vector sequence s detects 

some defects and a set of defects is marked as D (s). 

Different input vector sequences can detect the same and 

different defects. Input vector sequences of T test detects 

the set of defects D (T) =U D (s), where s ∈ T. We assume 

that the test T does not have redundant input vector 

sequences. Defect set D (T) does not change, after 

discarding redundant input vector sequence from the test. 

The quantity of elements of the set is indicated by means of 

vertical lines before and after the set, for instance - | D (s) |. 

During test generation T
max

 test is elected, which detects the 

maximum number of defects D (T
max

 ) = max | D (T) |, 

where T ∈ Ϭ (S).  The test length is also important. We 

can define the length of the input vector sequence as L (s) 

and T test length as L (T) = Σ L (s), where s ∈ T. The 

maximum amount of defects can be detected by more than 

one test. The test with a minimum length min L (T), where 

D (T) = D (T
max

 ) is to be selected. 

A general and unified test generation task is formulated. 

Circuit faults correspond to defects when testing hardware. 

Program bugs correspond to defects, when the software is 

being tested. We see that the test generation tasks of 

hardware and software in their nature are very similar. 

The task is based on binary vectors, and more faithfully 

represents hardware testing. Software testing faces a wide 

variety of variable types. Each program variable can be 

associated with the columns of a binary vector as shown in 

Fig. 2. 

 

Figure 2. Interconnecting of program variables with the input and output vectors. 

Vector P columns are transformed into the values of the 

program input variables, the values of the program's results 

are recorded in the corresponding columns of the R vector. 

Before the execution of the program, columns of the initial 

state vector B
P
 are transformed into the values of the 

program state variables. After program execution, program 

status variables are transformed to the appropriate columns 

of the B
R
 vector. Before the next program execution B

R
 



8 Rimantas Seinauskas et al.:  Examination of the Possibilities for Integrated Testing of Embedded Systems 

 

 

vector values are recorded in the vector B
P
. External 

program status variables monitoring and management is 

possible in this case. 

Test generation for programs requires conversion of 

variables to the binary vectors template. Program input, 

output and state variables must be associated with the 

binary vectors columns (bits). For this purpose, a 

specialized function is created, which relates the values of 

the variables with binary input and output vectors. 

Specialized procedures allow the wrapping of the program 

into the binary vector template. A specialized procedure is 

created for each type of program variable. Binary bit 

quantity, which is required for a linking depends on the size 

of possible variable values. The number of bits that are 

associated with a variable determines the amount of options 

analyzed in test generation. In this case, the search scope 

can be managed for a test generation task, and it can be 

used to find a compromise between test quality and test 

generation time. 

Search volume of test generation task depends on how 

much and what state variables have been identified. Test 

quality can also be managed, in this way. What will happen 

if some state variables are hidden? Hidden state variables 

affect the correlation between test quality and testing 

criteria. Test quality is measured by the quantity of defects 

detected. Compliance of the testing criteria with test quality 

is strong, if the test that detects more defects has a greater 

testing criterion value. A weakness of the correlation 

between test qualities and testing criteria is demonstrated, if 

a test that detects more defects is characterized by the same 

or even smaller testing criterion value. The more state 

variables have been highlighted the more strongly test 

criteria reflects on the quality of the test.  This feature has 

been observed in experiments with the testing criteria. Thus, 

discovery of state variables could be used for a more 

accurate calculation of the test criterion.  

The status variables that have been revealed can also be 

used for direct recording of values. Direct recording of state 

variables simplify the test generation task. The possibility 

of a direct recording of state variable values requires 

complementing a circuit or a software program. Circuit 

instrumentation is associated with additional equipment. 

This issue is examined in detail in DFT (design for 

testability) themes. Additional recording of variable values 

are used in the process of debugging programs or 

improving testability. Software Testability improvement 

efforts are similar to the hardware DFT techniques. 

Additional recording of variable values requires amending 

and supplementing the program interface. Supplementing 

only works on the testing mode, which is added into the 

program. 

Extraction of state variables is an additional, not routine, 

but creative work, in order to adapt a software program for 

test generation. Program adaptation for testing requires 

additional time and labor costs. The cost pays off if the 

result allows us to find more bugs. 

Formulated test generation task has no effective solution 

methods. The search space is huge and evaluation of 

optimized functions requires large computing resources. We 

ought therefore to limit the search scope to simplify the 

calculation of optimized function with the use of random 

search-based solution methods. Deterministic search 

techniques are very effective for small-scale tasks. In other 

cases, we have to use methods based on random search. 

5. The Test Sequence Quality Criteria 

Considerable computing resources and analysis of the 

internal circuit and program structure is required to 

determine how many circuit faults or program bugs the 

input vector sequence detects. A lot of effort is always 

given to simplify the evaluation criteria, which can be 

easily calculated but reflect the quality of the input vector 

sequence. Popular black box evaluation criteria are 

associated with the input stimulus and response to stimuli. 

In general we will analyze function F, which executes the 

program to be tested.  Vector P and B
P
 can be combined 

into a single input vector C = P||B
P
 = < c1, c2, ..., cn+v>. The 

vector R and B
R
 can be connected to the output vector D = 

R||B
R
 = < d1, d2, ..., dn+v>. The values in the output vector D 

is a function F response to the input vector C, which means 

D = F (C). Let us accept that the state vector B
P1

 always has 

fixed values, usually zero. According to the first vector P
1
 

and state vector B
P1

 (C
1
 = P

1
 | | B

P1
) vector D

1
 = R

1
 | | B

R1
 is 

calculated. State B
R1

 vector values are overwritten in state 

vector B
P2

 (B
P2

 : = B
R1

 ) and C
2
 = P

2
 | | B

R1
 . In general, B

Pt
 

= B
Rt-1

 . Vector sequence s = <P
1
 , P

2
 , ..., P

t
 , ..., P

h
 >, 

uniquely determines the input vector <C
1
 , C

2
 , ..., 

C
t
 , ...,C

h
 > and output vector <D

1
 , D

2
 , ..., D

t
 , ...,D

h
 >.  

Input and output binary vector sequences determine the 

changes in the values of adjacent vectors. Each pair of  

values (ci
t
 , dj

t
 ) of the input and output vectors  C

t
 and D

t
  

has four options for changes: (ci
t-1

 = 0, ci
t
 = 1, dj

t-1
 = 0, dj

t
 = 

1); (ci
t-1

 = 1, ci
t
 = 0, dj

t-1
 = 1, dj

t
 = 0); (ci

t-1
 = 0, ci

t
 = 1, dj

t-1
 = 

1, dj
t
 = 0); (ci

t-1
 = 1, ci

t
 = 0, dj

t-1
 = 0, dj

t
 = 1);. The maximum 

amount of changes is equal to 4 * (n + v) * (m + v). The 

sequence s of input vectors determine the quantity G (s) of 

changes to the input and output pairs, and the whole T test 

determines the quantity G (T) =U G (s), where s ∈ T. 

Calculation of G (s) and G (T) to generate a test is much 

simpler and allows to consider more input vector sequences, 

but simplified evaluation criteria may not be sufficiently 

closely correlated with the circuit faults or program bugs. 

Experimental studies of circuit delay faults have confirmed 

that [9]. Therefore, this simple method of assessment of 

changes (criteria of changes - C) has been revised. Input 

and output entanglement is measured to obtain the tensile 

strength correlation with circuit delay defects. Only the 

input and output pairs, where reversal of the change in the 

input will change the output value are considered. Input 

value is replaced by the opposite value to cancel the change. 

Let's say that ci
t
 value of pair (ci

t
, dj

t
) is changed to the 
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opposite, where ci
t
 ≠ ci

t-1
 . Input i and output j are linked 

with each other, if the dj
t
 value changes in the opposite 

direction after the calculation of D
t
 = F (C

t
) with substituted 

ci
t
 value. Related changes criteria (RC) calculate changes 

only between the inputs and outputs that are related to each 

other. This significantly increases the volume of G (s) 

calculations, but experimental studies [9] showed that the 

input vector sequence selected by related changes criteria 

(RC), finds more circuit delay faults. Test criteria, that do 

not require extensive calculations, but reflect a quality that 

is reflected in audited circuit faults or errors in the program 

are more valuable. 

Verification of control flow paths are one of the strongest 

criteria used in testing software. A higher probability of 

finding bugs is observed when more program control flow 

paths executed by testing. Quantity control flow path 

depends on the number of conditions tested in the program. 

Each condition can be fulfilled or not fulfilled. According 

to the criteria for the execution of branches, each condition 

must be fulfilled at least once or defaulted during testing. 

Control flow path is associated with a number of conditions 

that can be met or not. These conditions, when combined 

and evaluated with all possible combinations, form a 

criterion. Number of such combinations is equal to 2 raised 

to the degree of the amount of possible conditions. This 

criterion will be called as a criterion for the combinations 

of conditions (CC). 

ATPG uses a wide variety of hardware testing criteria. 

We will examine only those that can be adapted to software 

testing. Black-box criteria discussed above fulfill this 

condition. 

Comparison of tests calculated on the basis of such 

criteria as the changes (C), related changes (RC), and 

combinations of conditions (CC) is interesting, and it is 

carried out in the next section. Assumptions to use the same 

methods to generate tests are formed only after discovering 

common criteria for hardware and software testing. This 

would contribute to an integrated test solution for 

embedded systems because some of their functions can be 

implemented as hardware, the other as software. 

6. Experimental Comparison of Test 

Generation Criteria 

The two largest, B14 and B15 functions of ITC'99 

benchmarks were chosen to compare test generation criteria. 

These circuits are synthesized, have descriptions of Verilog 

and VHDL and have software prototypes written in C 

programming language. B14 has only one running process, 

and B15 has three parallel functioning processes. Circuit 

B14 has 277 values in the input vector and 299 values in 

the output vector. Length of the input vector is equal to 485 

and the length of the output vector is equal to 519 in the 

b15 circuit. Circuit B14 can have the maximum amount of 

changes, which is equal to 4 ** 277 * 299 = 331292. 

Circuit B15 can have a maximum change in volume, which 

is equal to 4 * 485 * 519 = 1,006,860. 

Table 1. Test sequences selected according to the criteria of benchmarks examined 

Circuits 

Criterion of changes (C) Criterion of related changes (RC) Criterion of combinations of  conditions (CC) 

Amount of 

sequences 

Amount of 

changes 

Amount of 

sequences 

Amount of 

changes 

Amount of 

sequences 

Amount of combinations of 

conditions 

B14 5385 151380 3675 24508 3174 14565 

B15 11490 322288 3045 19899 5287 23052 

B14 4986 147806 6994 36372 2661 7444 

B15 9189 322240 15014 60780 5638 25919 

B14 2816 135703 2731 14928 7410 32768 

B15 6781 302043 3083 21260 13160 49630 

 

Random input sequences of 20 vectors were generated for 

the experiments with circuit B14. Random input sequences 

of 50 vectors were generated for the experiments with 

circuit B15. Experiments were carried out with 10 million 

input sequences, out of which we selected those that 

increase the summary value for the criteria. For circuit B14, 

5385 input vector sequences were selected, while on circuit 

B15 11,490 input vector sequences were selected according 

to the criteria for change (C). These sequences indicated 

151 380 and 322 288 changes accordingly. This is shown in 

Table 1, where 2 and 3 rows and columns intersect. Table 1 

has highlighted diagonal where amounts of marked changes 

are written, as well as the amount of input sequences, 

which were selected on the basis of criterion of related 

changes - RC (intersection of 4 and 5 rows and columns). 

The software prototype circuit B14 has 15 conditions and 

32 768 possible combinations. The selected input 

sequences (7410) examined all possible combinations of 

conditions. Meanwhile, the software prototype circuit b15 

has 9 conditions for process P0, 14 conditions for the 

process P1 and 4 conditions on the process P2. Total 

software prototype has 27 checked conditions. The selected 
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input sequences (13,160) covered only 49,630 

combinations of conditions. This is shown in Table 1 

diagonally (the intersection of 6 and 7 rows and columns). 

The maximum total quantity of the selected input 

sequences of the two circuits was obtained using the RC 

criteria. Input sequences selected against one criterion were 

further selected with respect to the other two criteria in 

order to compare the criteria with each other. The results 

obtained are shown in Table 1. The first two rows of Table 

1 show how many input vector sequences remain after 

further selection against the RC (column 4), and after 

selection against CC (column 6). Number of related 

changes and the quantity of combinations of conditions are 

shown next. Similarly, the remaining amount of input 

sequences that remain after further selection based on the 

other two criteria is shown in the following lines in pairs. 

Analysis of the results of Table 1 show that repeated 

selection of input sequences based on the other two test 

criteria significantly reduce the criterion values as 

compared with the original selection. This means that the 

criteria are not similar. Decrease in value of the test 

criterion (percentage) after the repeated selection on the 

basis of a different criterion was calculated to compare the 

test criteria. The summarized results are presented in Table 

2, where the input sequences selected on the basis of a 

single criterion that also meet other criteria are shown as a 

percentage in each row.

Table 2. Summarized results of the compared criteria. 

 
Criterion of 

changes (C)  

Criterion of related 

changes (RC) 

Criterion of combinations 

of conditions (CC) 
Average 

Criterion of changes (C) 100% 45,71% 45,65% 45,68% 

Criterion of related changes (RC) 99,24% 100% 40,49% 69,87% 

Criterion of combinations of conditions (CC) 92,42% 37,25% 100% 64,84% 

 

Table 2, second row, second cell shows that the value of 

the criterion of changes after repeated selection on the basis 

of the same criteria remain unchanged, that is, of one 

hundred percent. After repeated selection, the value of the 

criterion RC is reduced to 45.71 per cent as compared with 

the value obtained by the direct selection of criteria related 

changes (second row, third cell). Similarly, after repeated 

selection, the numerical value of CC is reduced to 45.65 per 

cent when compared with the value obtained using the 

direct selection of the criterion of combinations of 

conditions. The last column shows the average percentage 

by which testing criteria values were reduced. We see that 

most other criteria (69.87%) fulfilled the criteria of related 

changes. 

The experimental results indicate that it is appropriate to 

use different criteria to generate tests for hardware and 

software. Experimental studies have shown [10] that tests 

calculated on the basis of the criterion of related changes 

detect transition delay faults of circuits well and that this 

criterion can be successfully used for hardware test 

generation. Input sequences selected with respect to the 

changes criterion, detect less delay faults, but this sequence 

executes more combinations for the conditions than the 

input sequence selected on the basis of the RC criteria. 

Criterion combinations of conditions, covers control flow 

branches and path criteria that are most popular for 

software test generation. None of the investigated criteria 

are universal. Criterion of related changes is best suited for 

this role. 

Test generation based on the RC criterion cannot 

guarantee the detection of all defects of a circuit. Similarly, 

test generation based on the criterion CC cannot guarantee 

the detection of all bugs in a program. Input sequences 

obtained combining the input sequences selected on the 

basis of RC and CC criteria can detect more defects of the 

circuit and bugs of the program. However, in this case the 

amount of input sequences selected nearly doubled. It 

follows from Table I. This test is versatile and suitable for 

testing the functions that can be realized as hardware or 

software. Consistent selection of the input sequence that 

satisfies either RC or CC criterion reduces the amount of 

selected input sequences. Additional experiments showed 

that the levels of selected sequences decreased from 14,404 

to 9,114 on the circuit B14, and from 28,174 to 19,453 for 

the circuit b15. 

Examination of the two benchmarks is analogous to a 

case study approach. The results and comments can aid in 

making preliminary decisions and choosing comprehensive 

research directions. 

7. Conclusions 

Two case studies have shown that the most universal 

black-box test generation criteria that best reflect other 

criteria is the criterion of changes. Coherent selection of 

input vector sequences against several criteria permits the 

reduction of test length without sacrificing the quality of 

the test. This is appropriate for the generation of tests for 

embedded systems. 

Unified task to generate tests for hardware and software 

is formulated. For this purpose, a model (structure of the 
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description) of tested object is proposed. The model has the 

form of finite-state machine that has input output and state 

variables associated with the binary vectors. This enables 

the same methods to be used to generate tests for hardware 

and software. The experience accumulated in different 

areas such as hardware and software testing can be used to 

solve a unified task of test generation, in this case. 

Monitoring and management of state variables enables 

the flexibility to choose, and thus decide on the 

effectiveness of test generation process. Higher amount of 

highlighted state variables allows an increase of the quality 

of testing criteria to increase the testability of the tested 

object. 

Software programs wrapped into a binary vector 

template makes use of the same test generation methods 

and criteria for hardware and software. The way of binding 

variable values and columns of binary vectors influences 

the extent of the search for test generation. 

Hardware and software engineering process analysis 

showed that the performance and the problems are very 

similar. Different engineering domains can benefit from 

each other's strengths. 

Three test generation criteria were investigated. One of 

the criteria is for general purposes, the other for delay fault 

testing, and the third for software testing. General-purpose 

criteria matched the other two specialized criteria in terms 

of quality. The criterion for delay fault testing has been the 

closest to uniform criteria for hardware and software testing. 

However, it did not deny the desirability of generating tests 

based on two criteria when the tested function can be 

implemented as hardware or software. 

Black-box criteria make it possible to start generating 

tests in the early design stages, once the initial software 

prototype is established. The results are important for a 

reasonable choice of test generation criteria and attitudes 

towards embedded systems testing. The results can be used 

in finding a compromise between test quality and the test 

length. This requires detailed further study. 
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