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Abstract: In the vicinity of a certain interior frequency, the current density on the surface of a perfect electric conducting 
scatterer, when illuminated by an incident field, is divided into two parts: an induced surface current caused by the incident 
field and a resonance surface current associated with the interior resonance mode. Equivalent RLC circuit models are 
proposed respectively for PEC scatterers associated with the electric field integral equation (EFIE) and the magnetic field 
integral equation (MFIE). Using the circuit models, together with the power conservation law, the different behavior of the 
resonance surface currents associated with EFIE and MFIE is analyzed and checked with numerical examples in 
two-dimensional space. It is shown that the interior resonance behavior has significant influence on the late time stability 
associated with time domain EFIE and MFIE. 
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1. Introduction 

Interior resonance phenomena exist in solving 
electromagnetic scattering problems with surface integral 
equations (SIEs) [1]-[4]. Many authors have investigated 
the problem and have proposed detailed explanation on 
why interior resonance occurs and how to eliminate it 
[5]-[16]. Interior resonance problem exists only in the sense 
of numerical solutions since it does not exist in a real solid 
perfect electrically conducting (PEC) scatterer. Basically, 
interior resonance problem is due to the fact that boundary 
conditions are not strictly satisfied when using EFIE or 
MFIE alone. To use EFIE or MFIE alone may lead to 
nonzero fields within a solid PEC scatterer. As pointed out 
by D. Yaghjian [6], when applying EFIE or MFIE to the 
interior region of a scatterer, non-unique solutions are 
present at frequencies equal to the resonance frequencies of 
the interior cavity bounded by perfectly conducting surface 
because the Maxwell’s equations allow homogeneous 
solutions; however, when applying EFIE or MFIE to the 
exterior region of the scatterer at these frequencies, 
homogeneous solutions are spurious solutions to Maxwell’s 
equations because they do not satisfy all necessary 

boundary conditions. Augmented electric and magnetic 
field integral equations are proposed in [6] to eliminate the 
spurious solutions. A. F. Peterson discussed the nature of 
the resonance problem by checking the eigenvalue behavior 
of the EFIE and MFIE [15]. At frequencies equal to the 
resonance frequencies of the interior cavity, the eigenvalues 
of EFIE and MFIE vanish. Consequently, when the SIEs 
are solved numerically, the resultant coefficient matrices 
tend to be ill-conditioned. However, the numerical 
solutions, although incorrect, are usually stable and unique. 
The author in [15] considered that the stability of the 
solutions is mainly attributed to the fact that the 
discretization error associated with the matrix operator may 
prevent the eigenvalues at the interior resonance 
frequencies being as small as expected so that the 
coefficient matrices are in fact not singular. This 
explanation seems reasonable for EFIE, but not so 
convincing for MFIE, because numerical results show that 
in the case of EFIE, if finer mesh and higher precision are 
used, the condition number [17] of the coefficient matrix 
increases with no apparent upper bound; on the contrast, in 
the case of MFIE, the condition number of the coefficient 
matrix is always bounded. Further analysis in this paper 
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shows that this limitation mainly comes from the power 
conservation law, which usually plays an important role in 
electromagnetic scattering problems [18].   

Marching on in time (MOT) method is well adopted to 
solve time domain integral equations (TDIE). The late time 
instability of MOT-TDEFIE is still not a completely solved 
problem, which prevents its wide-spread application. It is 
known that interior resonance is perhaps the most dominant 
factor to cause MOT-TDEFIE instability [19]. On the 
contrary, TDMFIE is usually stable [20], although 
TDMFIE also suffers from interior resonance problem. In 
this paper, the behavior of the numerical solutions to EFIE 
and MFIE at the interior resonance frequencies is 
re-checked. It is found that the resonance current amplitude 
associated with EFIE is generally unbounded, while that 
associated with MFIE is bounded by incident field 
according to the power conservation law. This observation 
may help to explain the different stability property of 
TDEFIE and TDMFIE. 

2. Behavior near the Interior Resonance 

Frequencies 

Consider a PEC scatterer excited by an incident wave, as 
shown in Fig.1. The scatterer is enclosed by surface S . 
The exterior region V  is the problem region. According 

to equivalence principle, the interior area 1V  may be 

assumed to be any medium that is convenient for solving 
the original problem. For example, the inner side of surface 

S (the side of S  facing 1V , hereafter denoted by S − ) 

can be assumed to be a PEC wall, or a perfect magnetically 
conducting (PMC) wall, or even an impedance wall. If the 
boundary condition at S  seen from region V  remains 
unchanged, these assumptions will not influence the 
solutions to the original problem in the exterior domain V . 

 ( ) ( ),in in
E r H r ( ) ( ),s sE r H r

n̂
S

V

1V

,ε µ
 

Figure 1. Scattering problem of a PEC scatterer. 

When the PEC scatterer is illuminated by an incident 

wave, a surface current density ind

sJ will be induced on S , 

which must satisfy the following EFIE and MFIE 
simultaneously: 

{ } ( )ˆ ˆind in

sjωµ × = ×n J n E rL ,            (1) 

{ } ( ) ( )1
ˆ ˆ

2
ind ind in

s s− × + = ×n J J r n H rK ,     (2) 

The operators in (1) and (2) are defined in their usual way 
as follows 

{ } ( ) ( ). . ,m
S

PV dS′ ′ ′= ∫f G r r f ri�K , 

{ } ( ) ( ). . ,e
S

PV dS′ ′ ′= ∫f G r r f ri�L , 

where ( ),e ′G r r  and ( ),m ′G r r  are the electric and 

magnetic dyadic Green’s functions in region V , 
respectively. The residual term stemmed from the 
singularity of the Green’s function is separated from the 
integral in (2). The notation P.V. means Cauchy principal 
value.  

Equations (1) and (2) come from the fact that the electric 
field and magnetic field in the interior region of the PEC 
scatterer are zeroes. Evidently, the tangential components 

of the electric field and the magnetic field on S −  are all 

zeroes, therefore, the surface S −  acts not only like a PEC 
wall but also like a PMC wall. The induced current density 
on S  is uniquely determined for a specified incident wave, 
and disappears with the incident wave. However, MFIE or 
EFIE is usually applied alone in electromagnetic scattering 
problems. As pointed out in [6], nontrivial solutions to the 
homogeneous equations associated with EFIE and MFIE 
may exist at frequencies equal to the resonance frequencies 
of the interior cavity bounded by a perfectly conducting 

surface S −  or a perfectly magnetic conducting surface 

S − . In these situations, the surface current at S  contains 

two parts: one part is the induced current ind

sJ  depending 

on the incident wave; the other part is related to nontrivial 
solutions to the associated homogeneous equation. We may 
denote 

( ) ( )ind e

s s sn= +J r J r J ,          (3) 

for EFIE, and 

( ) ( )ind h

s s sn= +J r J r J           (4) 

for MFIE. The vectors e

snJ  and h

snJ  are respectively the 

nontrivial solutions to the homogeneous equations 
associated with EFIE and MFIE, which are termed as 
eigencurrents in [15]. Subscript ‘sn’ is used because 
nontrivial solutions usually exist at discrete frequency 
points.   

The spatial distribution property of the nontrivial 

solutions e

snJ  and h

snJ  is independent of incident fields. 

Hence, these currents can be considered as independent 

current sources. However, the behavior of  e

snJ  and h

snJ  

is quite different from each other. 
The nontrivial solutions e

snJ  associated with EFIE 
satisfy  

{ }ˆ 0e

sn
jωµ × =n JL .             (5) 
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If interpreted explicitly, (5) tells that at frequencies 
corresponding to the eigenvalues of (5), there exist nonzero 
surface current sources on S , the tangential components 
of whose radiated electric fields on S  are zeroes.  

Although e

snJ  can be seen as independent current 

sources, they cannot radiate waves to the exterior region 
V [6] [14]. This feature can be proved easily using 
Huygens’ equivalence principle. On the other hand, the 
surface currents at frequencies equal to the resonance 
frequencies of the interior cavity bounded by a perfectly 
conducting surface S  are also subject to equation (5). 

Therefore, nontrivial solutions e

snJ actually correspond to 

currents associated with interior resonance modes of the 

virtual cavity bounded by a PEC surface S − . Therefore, 
e

snJ  are usually referred to as nontrivial solutions or 

interior resonance currents. Because the tangential 

component of the electric field by the non-zero e

snJ  on 

S −  is zero, the surface S −  can be regarded as a PEC wall. 

Intuitively speaking, e

snJ  are current sources placed 

infinitely near a closed PEC surface, hence, it is reasonable 

to predict that e

snJ  can not radiate fields to the exterior 

region V .  
The nontrivial solutions h

snJ  to the homogeneous 
equation associated to MFIE satisfy,  

{ } ( )1
ˆ 0,   

2
h h

sn sn S− × + = ∈n J J r rK ,         (6) 

Since h

snJ  exist under no excitation, they can also be treated 

as independent sources just like e

snJ . Intuitively, h

snJ  are 

current sources placed infinitely near a closed PMC surface, 
so it can radiate fields to the exterior region V .  It has also 
been verified that at resonance modes of a cavity formed by 

a perfect magnetically conducting surface S − , the 
associated resonance magnetic current on the cavity wall 
satisfies exactly the same equation of (6). Therefore, 
nontrivial solutions to equation (6) are corresponding to the 
resonance modes of the interior cavity bounded by a PMC 
wall. 

It is important to notice that solenoidal static currents 
also satisfy (5), but do not satisfy (6). This means that EFIE 
admits interior resonance at 0ω = , or DC resonance, while 
MFIE has no interior resonance at DC. 

Theoretically, the interior resonance occurs only at 
discrete frequency points, and the spectrum should be 
discrete single lines. However, in practical applications, the 
SIEs need to be solved with numerical methods. The 
spectrum may be blurred due to discretization errors, and 
the interior resonance might occur in a narrow band in the 
vicinity of the discrete resonance frequencies.  

Equivalent circuit mode can be used to illustrate this 
problem. In the case of EFIE, at interior resonance 
frequencies, the tangential components of the total electric 
fields should vanish in theory, so there should be no ohmic 

loss on the PEC surface S . The interior cavity associated 
with the scatterer in this situation can be modeled as an 
ideal resonator. However, due to the discretization errors, 
the numerically calculated tangential components of the 
total electric fields may have nonzero small values, which 
will lead to a numerical ohmic loss lossP  on the surface 

S ,  

( ) { } ( )*  in ind e e

loss s sn sn
S

P j dSωµ = − + ∫ E r J J J ri� L ,  (7) 

where the upper script “*” means conjugate. This numerical 
loss makes the interior cavity a dumping resonator. Assume 

that lossP  is dissipated by an effective resistor e

numR , then 

the behavior of the interior resonator may be approximately 
described using the equivalent RLC circuit model shown in 
Fig.2(a). The Q-factor of the cavity resonator will not be 

infinitely large because of the effect of e

numR . Therefore, 

the corresponding resonance current is finite, and the 
interior resonance may span to occupy a narrow spectrum 
band. If finer mesh structure is adopted to get higher 

numerical accuracy, e

numR  tends to become smaller, 

leading to larger Q-factor, narrower band and larger 
resonance current. This feature is in agreement with the 
observation in other papers (e.g., [15]).  

 

eC
eL

e

numR

( )a

hC hL

h

numR

( )b

rR

 

Figure 2. (a) Circuit model for interior resonance associated with EFIE. 

(b) Circuit model for interior resonance associated with MFIE. 

In the case of MFIE, the resonance current may radiate 
fields to the exterior region. This can be regarded as a 
radiation loss seen from the interior cavity. Therefore, the 
interior resonance associated with MFIE can be described 
using the equivalent RLC circuit model in Fig.2 (b), with 

h

numR  accounting for the numerical loss and rR  

accounting for the radiation loss. Because rR  is usually 

much larger than h

numR , the Q-factor associated with the 

interior cavity in the case of MFIE is much smaller than 
that in EFIE. Consequently, comparing to the case of EFIE, 
the spectrum band associated with MFIE at a resonance 
frequency is much wider and the amplitude of the 
resonance current is much smaller.   

Although the spatial distribution of the resonance 
currents is independent on the incident fields, their 
excitation is strongly dependent on the incident fields. 
Consider the scattered fields by an incident field at a certain 
interior resonance frequency. As has been pointed out 
previously, the total surface current contains an induced 
current and a resonance current. In the case of EFIE, we 
can write  
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( ) { }ˆ 0,     in ind e

s sn
j Sωµ × − + = ∈ n E r J J rL .    (8) 

When solving this equation with method of moment, the 
condition number of the coefficient matrix tends to be very 
large at interior frequencies, as can also be predicted using 
the RLC circuit mode shown in Fig.2 (a). The solution may 
be unstable if iteration solver is used. However, since 
equation (8) is a Fredholm type equation of the second kind, 
a stable and unique solution can still be found using pseudo 
inversion technique [7]. Theoretically, the scattered fields 
are not influenced by the resonance current in the case of 
EFIE. The induced current can be separated from the total 
current by  

( ) ( )ˆ ,     in s ind e ind

s sn s
S × + + = ∈ n H r H J J J r .  (9) 

Power conservation must be observed in electromagnetic 

scattering problems. Because e

snJ  is independent to the 

incident fields, and do not radiate waves into the exterior 

region V , the scattered fields are totally caused by ind

sJ . 

In the case of a PEC scatterer, the power conservation law 
requires that 

( ) ( ) ( ) ( )
1

*
ˆ 0in s ind in s ind

s s
S

dS   + × + =   ∫ E r E J H r H J ni� ,(10) 

where 1S  is an arbitrary closed surface enclosing the 

scatterer. Since the numerical ohmic loss is usually 
negligible, the relation of (10) is always easy to observe. 
The power conservation relation poses no limitation to the 

resonance current e

snJ , the amplitudes of which may 

possibly become very large if the discretization error is 
very small.    

In the case of MFIE, the total surface current 

( )ind h

s sn
+J J  satisfy 

{ } ( ) ( )1
ˆ ˆ ,   

2
ind h ind h in

s sn s sn S− × + + + = × ∈n J J J J n H r rK .(11) 

The spatial distribution of h

snJ  is also independent to the 

incident fields. However, since h

snJ  can radiate waves to 

the exterior region V , the amplitudes of h

snJ  are limited 

by the incident fields according to the power conservation 
law. For example, if the scatterer is a perfect conductor, the 
total outgoing power must be equal to the total ingoing 
power. Because of this limitation, when solving (11) with 
MoM, the condition number of the coefficient matrix is 
always a finite value, and the amplitude of the resonance 
current is bounded. This feature has also been predicted 
using the RLC circuit model illustrated in Fig.2 (b).  

Two-dimensional examples are used to verify the above 
observations. A PEC cylinder is illuminated by a TM plane 

wave with ˆ jkx

ze
−=E a [V/m]. The permittivity and 

permeability of the background medium are ,  ε µ , 

respectively.  Let 
, ,ˆTM e TM e

sn sn
j=J z  denote the surface 

current density of the n th interior resonance mode 
associated with EFIE when it is excited by the TM plane 

wave. Then ,TM e

snJ  satisfy 

( ) ( ) ( )2 ,
0

1
ˆ 0

4
TM e

sn
C

j H k l dl
j

ωµ ′ ′ ′× − =∫ρ ρ ρ J� , 

where ( ) ( )2

0H k ′−ρ ρ  is the zeroth-order Hankel function 

of the second kind. Expanding the Hankel function using 
the addition formula, and exchanging the operation of 
summation and integration yields  

( ) ( ) ( )2 ,ˆ 0TM e jn

n n sn

n

J ka H ka j e φ
∞

=−∞

=∑φ ɶ ,       (12) 

where ,TM e

snjɶ  is the Fourier transform of ( ),TM e

snj φ .It can 

be seen from (12) that nonzero currents may exist only 

under the condition of ( ) 0
n

J ka = , namely, ,TM e

nl nlk a υ= , 

with nlυ  being the thl root of the thn order Bessel 

function. The discrete interior resonance frequencies 
,TM e

nlf  can be determined accordingly. Since nl nlυ υ− = , it 

is not difficult to verify that , ,TM e TM e

nl nlf f− = . Denote the 

normalized resonance surface current of the thn mode as 

( ), ˆTM e jn

sn
e φφ =j z .             (13) 

In the vicinity of ,TM e

nlf , the total surface current can 

be expressed as ( ),ind e TM e

s n snC+J j , where e

nC  is a 

coefficient depending on the discretization error and the 
frequency discrepancy from the resonance frequency.  

Numerical experiments are carried out in the vicinity of 

01ka υ= , sweeping from 2.4048255574357kaL =  to 

kaH = 2.4048255574757  with incremental step of 
121.0 10ka −∆ = × . The circumference of the cylinder is 

divided into 900 equal-length segments, and 900 roof-top 
basis functions are used to expand the surface current 
densities and the rotated tangential field components. 
Standard Galerkin’s scheme is used to discretize the 
corresponding EFIE. The calculated total surface currents 

are almost exactly of the form of ( ),ind e TM e

s n sn
C+J j . Fig.3 (a) 

shows the condition number of the coefficient matrix, and 

Fig.3 (b) shows the magnitude of 2 e

nC .  Both have a peak 

at 0ka . In the above-described numerical setup, the 
amplitude of the resonance current at the peak is calculated 

to be [ ]2 2.079 A me

n
C = , which is about 371 times of that 

of the induced surface current. Fig.3(c) shows that the 
numerical value of the induced current density agree very 
well with that obtained by using mode expansion method. 
The bi-static radar cross sections (RCSs) at three frequency 
points are plotted in Fig.3 (d), where the current density 
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and the RCSs are all normalized with wavelength. It can be 
seen that although very large resonance currents are mixed 
in the total currents, the calculated RCSs are almost not 
polluted. 
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Figure 3. The numerical results in the vicinity of 01ka υ= . (a) The 

condition number of the coefficient matrix. (b) The amplitudes of the 

resonance surface currents. (c) The induced surface current at 0ka . (d) 

The bi-static RCSs at three frequency points  

Let 
, ,ˆTM h TM h

sn snj=J z denote the surface current density of 

the thn interior resonance mode associated with the MFIE 
on the surface of the PEC cylinder under the excitation 

described previously. Then 
,TM h

snJ  satisfy  

( ) ( ) ( )2 , ,
0

1
ˆ ˆ ˆ 0

4
TM h TM h

sn sn
C

H k J dl J
j

φ ′ ′ ′ − × ∇ − × + =   
 

∫ρ ρ ρ z z�  

which can be transformed into 

( ) ( ) ( ) ,ˆ 0TM h jn

n n n sn

n

J ka J ka jY ka J e φ
∞

=−∞

′ − =  ∑z ɶ ,   (14) 

where
,TM h

snjɶ is the Fourier transform of ( ),TM h

snj φ . Nonzero 

surface currents may exist only under the condition of 

( ) 0
n

J ka′ = , i.e., ,TM h

nl nlk a µ= , with 
nl

µ  being the l th 

root of the derivative function of the thn order Bessel 
function. The corresponding normalized resonance surface 

currents also have the form of ( ), ˆTM h jn

sn e
φφ =j z , and the 

total surface currents can be expressed as ( ),ind h TM h

s n sn
C+J j , 

where h

n
C  is the coefficient of the surface current 

associated with the thn resonance mode. As has been 

discussed previously, h

n
C is bounded by the power 

conservation relation. In order to check this relation closely, 
the incident electric and magnetic fields are separated into 

an ingoing part and an outgoing part, respectively.  When 
a PEC cylinder is present, the outgoing wave will include 
not only the outgoing part of the incident wave, but also the 

scattered fields by the currents ( ),ind h TM h

s n sn
C+J j , which 

can be derived to be 

( ) ( ) ( )2 2s ind jn jn

z s n n
E J a H k e φ πρ

∞
−

−∞

=∑ ,       (15) 

( ) ( ) ( )2 2s ind jn jn

s n n

k
H J a H k e

j

φ π
φ ρ

ωµ

∞
−

−∞

′= − ∑ ,  (16) 

and 

( ) ( ) ( ) ( )2, , 2TM h TM h h jn jn

zn sn n n n nE J C b J ka H k e φ πρ −= , (17) 

( ) ( ) ( ) ( )2, , 2TM h TM h h jn jn

zn sn n n n n

k
H J C b J ka H k e

j

φ πρ
ωµ

−′= − ,(18) 

where ( ) ( ) ( )2

0n n na E J ka H ka= − , 2

2
jn

n

a
b e

ππ ωµ= − .  

Equations (17) and (18) are derived by directly solving 
the scattered fields of the resonance surface currents using 
the Green’s function and the addition formula. Taking 

advantage of the orthogonality of functions jne φ , one can 
see that the power conservation relation must be observed 
for every harmonic component. The ingoing power of the 
n th harmonic component is found to be  

2
02

2

inin

n n

E
P Sπρ

ωµ
= = ,          (19) 

while the total outgoing power can be obtained as follows, 

( ) ( )
( ) ( )

( )
2

22
0

1
0

2
2 1

2

out nout h

n n n n n

n

H kaE
P S C b J ka

E H ka
πρ

ωµ
 

= = −  
  

. (20) 

Power conservation law requires that in out

n nP P= , i.e., 

( ) ( )
( ) ( )

( )
2

1

0

2
1 1nh

n n n

n

H ka
C b J ka

E H ka

 
− = 

  
.      (21) 

Equation (21) lays a clear constraint to the amplitude 
of the resonance surface currents associated with MFIE. 
The maximum resonance surface current occurs when 
the second term in the left hand side of (21) equals to 2, 
which leads to  

( ) ( ) ( ) ( ) ( )
1

1 2

,max 0
h

n n n n nC E H ka H ka b J ka
−

 =   . (22) 

It can be further proven that ,max ,max
h h

n nC C− = . The overall 

resonance surface current that has the largest amplitude is 
found to be  
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( ),max ,max ,max ,max2 cosh h jn h jn h

sn n n n
J C e C e C nφ φ φ−

−= + = . (23) 

As a numerical example, the behavior of the interior 
resonance mode in the vicinity of 11 1.841ka µ= =  is 

numerically analyzed. The variable ka  changes from 

1.841202kaL =  to 1.841282kaH = , with an incremental 

step of 0.000002ka∆ = . The numerical setup is the same 
as that in the example for EFIE. The resonance surface 

current associated with this mode is ( )12 coshC φ . The 

condition number of the coefficient matrix is shown in Fig. 
4(a), and the calculated amplitude of the resonance surface 
current is plotted in Fig.4 (b).  Both reach their maximum 
value at 0ka . The amplitude of the resonance surface 
current is smaller than the amplitude of the induced current 

in this case. The coefficient 1,max2 h
C  at 0ka  is calculated 

to be ( )0.00193 0.00247j+ . The theoretic value of 

1,max2 h
C  at 0ka  can be obtained using (22). The 

discrepancy of the two results is less than 0.1% . The 

calculated surface currents at 0ka  are plotted in Fig.4(c), 
and the RCSs associated with them are plotted in Fig.4(d). 
Apparently, the interior resonance current has significant 
influence on the far fields. 
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Figure 4. The numerical results in the vicinity of 11ka µ= . (a) The 

condition number of the coefficient matrix. (b)The amplitudes of the 

resonance surface currents. (c) The calculated surface currents at 0ka . 

(d) The corresponding bi-static RCSs. 

3. Impact on the MOT Late Time 

Instability 

Two points worth to be emphasized concerning the 
behavior of EFIE and MFIE at interior resonance 
frequencies:  (1) EFIE admits DC resonance, while MFIE 
does not; (2) the amplitudes of the resonance currents 

associated with EFIE are almost unbounded, while those 
associated with MFIE are bounded by incident fields. In 
TDIE, the incident fields usually consist of wide band 
frequency components. Therefore, many interior 
resonances can be excited. However, according to the 
orthogonality property of interior resonance fields, only the 
part of the incident fields in a narrow band near an interior 
resonance frequency can contribute to the excitation of that 
interior resonance. In other words, the effective excitation 
field for each interior resonance is very small.  

In TDEFIE, the amplitudes of interior resonance currents, 
including DC resonance current, may possibly grow very 
large even for small excitations. However, in MFIE, the 
amplitudes of interior resonance currents are always very 
small because they are strictly limited by the small effective 
incident fields.  

In TDEFIE and TDMFIE, the influence of discretization 
error is also different. Since higher accuracy generally leads 
to larger resonance current in EFIE, one cannot expect to 
lower the interior resonance currents by increasing 
numerical accuracy, even if it is difficult to conclude that 
higher accuracy inevitably cause larger interior resonance 
currents in TDEFIE. However, in TDMFIE, the effective 
excitation frequency band tends to become narrower with 
higher numerical accuracy, and the effective excitation field 
for each interior resonance tends to become smaller. 
Consequently, the interior resonance current amplitudes 
tend to decease with increasing numerical accuracy.  

 We use the following remark to conclude this section: 
the interior resonances have significant impact on the late 
time stability of MOT-TDEFIE solvers, but have very 
limited influence on the late time stability of 
MOT-TDMFIE solvers. This is in consistent with the 
observation by other researchers that TDMFIE is usually 
stable [20]. 

In the following, simple numerical results are provided 
to verify this remark.   

A PEC sphere with radius 1m is assumed to be 
illuminated by a Gaussian-shaped pulse plane wave 
expressed by  

( ) ( )21
ˆ ˆexp 6   V/m

x
vt

π
 = − − − ⋅
 

E a z r
� �

. 

The surface currents on the sphere are calculated using 

MOT-TDEFIE and MOT-TDMFIE, respectively. The 

sphere is meshed to 47 triangles, resulting 114 RWGs. We 

intentionally adopted a time consuming strategy for 

calculating the mutual coupling coefficients between 

RWGs in order to get high accuracy: the inner surface 

integration is performed analytically while the outer surface 

integration is performed using 25 points Gaussian 

quadrature for every pair of RWGs. We try to exclude the 

influence of numerical error on the late time instability in 
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this way, at the cost of long CPU time. Implicit MOT 

scheme is used to solve the original TDEFIE and TDMFIE, 

not their differentiated versions. The time step is set to be 

0.5nst∆ = , corresponding to a space-time discretization 

ratio of max 0.18c t lχ = ∆ = , where maxl is the largest edge 

length in the mesh triangles. The sphere center is located at 

the origin. The surface current near the point ( )0,0, 1m−  

is shown in Fig.5. It can be seen from Fig. 5(a) that the 

early time results agree well except that the result 

calculated by using TDEFIE has larger ripples. Fig. 5(b) 

shows the wide scope results till fifty-thousand time steps 

( 25µs ). The TD-MFIE result is stable, however, the 

TDEFIE result is divergent.   
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Figure 5. PEC sphere. (a) Early time results. (b) Late time stability 

property. 

The second scatterer examined is a PEC cubic with side 
length of 1m. Its mesh structure contains 154 triangles and 
231 RWGs. The same strategy is adopted for calculating 
the coupling coefficients. The incident field is assumed to 
be a modulated Gaussian-shaped plane wave, with center 
frequency of 100MHz, bandwidth of 50MHz, and time 
delay of 24

p
ct = .  The space-time discretization ratio is 

chosen to be 0.35χ = . The surface current density near the 

point of  ( )0.2m,0.1m, 0.5m− −  is shown in Fig.6.  
Similar to the previous example, the TDMFIE result is 
definitely stable. However, the TDEFIE result seems stable 
till thirty-thousand time steps (15µs ), but it eventually 
diverges, although very slowly. 
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Figure 6. PEC cubic. (a) Early time results.(b) Late time stability property. 

4. Conclusions 

In this paper, circuit models are used to explain the 
difference in behaviors of the interior resonances associated 
with EFIE and MFIE. The power conservation relation is 
checked in these situations. The results show that in the case 
of EFIE, the amplitudes of the resonance currents are 
essentially unbounded. Small excitation may possibly cause 
very large resonance currents; while in the case of MFIE, the 
amplitudes of the resonance currents are all strictly bounded 
by the incident fields according to power conservation law. 
It is observed with numerical examples in this paper that the 
interior resonance currents have significant impact on the 
late time instability of MOT-TDEFIE method, but will not 
deteriorate the stability of MOT-TDMFIE method. 
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