

American Journal of Computer Science and Technology
2018; 1(1): 24-30

http://www.sciencepublishinggroup.com/j/ajcst

doi: 10.11648/j.ajcst.20180101.14

An Efficient Algorithm for Workflow Scheduling in the
Clouds Based on Differential Evolution Method

Toan Phan Thanh
1
, Loc Nguyen The

2
, Said Elnaffar

3

1Faculty of Technology Education, Hanoi National University of Education, Ha Noi, Viet Nam
2Faculty of Information Technology, Hanoi National University of Education, Ha Noi, Viet Nam
3School of Engineering, Computer Science Department, American University of RAK, Ras al Khaimah, UAE

Email address:

To cite this article:
Toan Phan Thanh, Loc Nguyen The, Said Elnaffar. An Efficient Algorithm for Workflow Scheduling in the Clouds Based on Differential

Evolution Method. American Journal of Computer Science and Technology. Vol. 1, No. 1, 2018, pp. 24-30.

doi: 10.11648/j.ajcst.20180101.14

Received: October 27, 2017; Accepted: December 4, 2017; Published: January 2, 2018

Abstract: The Cloud is a computing platform that provides on-demand access to a shared pool of configurable resources

such as networks, servers, storage that can be rapidly provisioned and released with minimal management effort from clients.

At its core, Cloud computing focuses on manimizing the effectiveness of the shared resources. Therefore, workflow scheduling

is one of the challenges that the Cloud must tackle especially if a large number of tasks are executed on geographically

distributed servers. The Cloud is comprised of computational and storage servers that aim to provision efficient access to

remote and geographically distributed resources. To that end, many challenges, specifically workflow scheduling, are yet to be

solved such. Despite it has been the focus of many researchers, a handful efficient solutions have been proposed for Cloud

computing. In this work, we propose a novel algorithm for workflow scheduling that is derived from the Opposition-based

Differential Evolution method, MODE. This algorithm not only ensures fast convergence but also averts getting trapped in

local extrema. Our simulation experiments Cloud Sim show that MODE is superior to its predecessors. Moreover, the

deviation of its solution from the optimal one is negligible.

Keywords: Workflow Scheduling, Opposition-Based Differential Evolution, Cloud Computing, Differential Evolution

1. Introduction

The Cloud is a computing platform that provides

convenient, on-demand access to a shared pool of

configurable computing resources such as networks, servers,

storage that can be rapidly provisioned and released with

minimal management effort on clients. At its core, Cloud

computing focuses on maximizing the effectiveness of the

shared resources. Therefore, workflow scheduling is one of

the challenges that the Cloud must tackle especially if a large

number of tasks are executed on geographically distributed

servers. This requires a reasonable scheduling algorithm in

order to minimize a task completion time (makespan).

Our work described in this paper is a new attempt to

introduce a more efficient scheduling algorithm. Specifically,

we introduce a Modified version of the Opposition-based

Differential Evolution (ODE) method [19], which we call

MODE. Via experiments, we demonstrate its effectiveness

and performance in comparison with other algorithms.

The rest of the paper is organized as follows. Section II

reviews some of the related works germane to workflow

scheduling algorithms. Section III describes the Opposition-

based Differential Evolution (ODE) method. Section IV

describes the computation and communication model on

which Cloud tasks operate. Based on this model, Section V

presents our proposed scheduling algorithm MODE

(Modified ODE). Section VI describes the experiments we

conducted using the simulation tool CloudSim [1] in order to

evaluate the proposed algorithm. Section VII concludes our

paper and sketches future work.

2. Related Work

A workflow is a sequence of connected tasks. Workflow

 American Journal of Computer Science and Technology 2018; 1(1): 24-30 25

scheduling in Clouds is a challenge because each task needs to

be mapped to an appropriate server while allowing that task to

satisfy some performance constraints. In general, the scheduling

problem, i.e. the mapping of tasks to the computation resources

such as servers, is an NP-complete problem [4]. Hence, past

works mainly banked on heuristic-based or metaheuristic-based

solutions for scheduling workflows.

Some researchers [13] proposed an algorithm for task

scheduling based on two-level load balancing in the cloud

environment. This algorithm not only meets user’s

requirements but also provides high resource utilization. The

authors also introduced the implementation of an efficient

Quality of Service (QoS) based Meta-heuristic method.

Others [15] presented an optimized algorithm for task

scheduling based on Hybrid Genetic Algorithms. They

considered the QoS requirements like completion time,

bandwidth, cost, distance, reliability of different type tasks.

They used annealing in their implementation after the

selection, crossover and mutation, to improve local search

ability of genetic algorithm.

In [16], the authors presented a model for task scheduling in

cloud computing to minimize the overall time of execution and

transmission. They proposed a particle swarm optimization

algorithm to solve task scheduling that is based on small

position value rule (SPVPSO). The researchers compared the

SPVPSO algorithm with the CR-PSO and L-PSO and found that

the SPVPSO algorithm had attained the optimal solution and

converged faster in large tasks than the other two algorithms.

Another work [17] proposed a hierarchical scheduling

algorithm which satisfied the Service Level Agreement with

quick response from the service provider. The authors used the

response time as a Quality of Service (QoS) metric to prioritize

the execution of jobs by estimating their completion times.

Another paper [18] presented an optimized algorithm for

task scheduling in cloud computing based on Activity-Based

Costing (ABC). This algorithm assigns a priority level for

each task and uses cost drivers. The priority is estimated

based on four major factors: time, space, resources and profit.

Pandey [9] presented a scheduling algorithm (PSO_H) to

minimize the cost of the execution. However, instead of

finding the schedule which has a minimum cost, PSO_H

looked for the schedule that minimizes the execution cost at

the nearest server. The author compared the PSO_H

algorithm with the Random and Round Robin algorithm and

showed that the optimal solution of PSO_H algorithm is

better than two matching algorithms.

3. Opposition-Based Differential

Evolution (ODE)

Opposition-based Differential Evolution (ODE) [19] is an

evolutionary optimization technique that consists of two

main steps: population initialization and producing new

generations by genetic operations such as selection, crossover

and mutation. ODE enhances these two steps by considering

the opposite point of individuals in the population.

3.1. Opposition-Based Learning

The concept of Opposition-Based Learning (OBL) was

original introduced by Tizhoosh [20]. The main idea behind

OBL is the simultaneous consideration of an estimate and its

corresponding opposite estimate in order to achieve a better

approximation for the current candidate solution.

Definition 1 (Opposite Number): Let x ∈ [a, b] be a real

number, then the opposite number �̅ is defined as

�̅ = � + � − �	 (1)

Definition 2 (Opposite Point in n-Dimensional Space):

Similarly, the above definition can be extended for higher

dimensions as follows:

Let P(x1, x2,…,xD) be an D-dimemsional vector, where xi

∈ [ai, bi]; i=1,2,…,D. The opposite of P is defined by: 	
 = (�̅�, �̅�, … , �̅�) where

��� = 	�� +	�� −	�� 	 (2)

The opposition-based optimization can be defined as

follows:

Let P=(x1, x2,..,xD) be a point in D-dimensional space, and

f(.) is the fitness function which is used to measure the

candidate’s fitness. According to the definition of opposite

point, 	
 = (�̅�, �̅�, … , �̅�) is the opposite of P=(x1, x2,..,xD).

Now if �(
) ≤ �() , then point P can be replaced by 	,�

otherwise we continue with P.

3.2. Opposition-Based Population Initialization

Using the definition of opposite points, the opposition-

based initialization for the ODE can be described as follows:

Procedure: Opposition-Based Population Initialization

1. Random initialization of population P(x1, x2,…,xPopSize)

2. Calculate opposite population by equal(2)

3. OP ← Opposite (P)

4. Selecting the PopSize fittest individuals from {P ∪ OP}

as initial population.

3.3. Opposition-Based Differential Evolution Algorithm

By combining the Opposition-Based Learning method and

the Differential Evolution algorithm, the ODE algorithm can

be described as follows:

Algorithm:Opposition-Based Differential Evolution

1. Call Procedure: Opposition-Based Population

Initialization

2. for i=1 to PopSize do

3. fi ← fitness(xi)

4. while (criteria is not satisfied) do

5. for i=1 to PopSize do

6. r1, r2 ← Random(1, PopSize)

7. F ← Random(0,1)

8. vi(t) ← pbest + F×(xr1- xr2)

9. for j=0 to D do

26 Toan Phan Thanh et al.: An Efficient Algorithm for Workflow Scheduling in the Clouds

Based on Differential Evolution Method

10. ��,� = ���,� 	�ế�	�����,�	 ≤ � 	ℎ"ặ$	% = &'()*+�,� 	�ế�	�����,� ≥ � 	ℎ"ặ$	%	 ≠ 	 &'()*

11. end for

12. if(f(ui(t))≤ f(xi(t)))

13. xi(t+1) = ui(t)

14. end if

15. end for

16. rand ← Random(0,1)

17. if(rand < Jr)

18. Calculating Opposite Population OP(PopSize)

19. Fitness Evaluation

20. Selecting PopSize Fittest Individuals from {Current

Population, OP}

21. end if

22. end while

4. Problem Formulation

We denote the workflow as a Directed Acyclic Graph

(DAG) represented by G=(V, E), where:

1. V is set of vertex, each vertex represents a task

2. T={T1, T2,…,TM } is the set of tasks, M is the number

of tasks

3. E represents the data dependencies between these tasks.

The edge (Ti, Tj) ∈ E means the task Ti is the father of

the task Tj, the data produced by Ti will be consumed

by the task Tj.

4. The Cloud’s computation resources are a set of servers

S = {S1, S2,….,SN}. N is the number of servers.

5. Each task Ti can be executed by any server Sj∈S, and

Si has to handle the whole the workload of Ti

6. The computation of task Ti denoted by Wi (flop-

floating point operations)

7. P(Si) : the computation power of the server Si (MI/s :

million instructions/second)

8. The bandwidth B(Si, Sj) between server Si and server Sj

is represented by the function B(): S×S → R
+.

 We

assume that B(Si, Si) = ∞ and B(Si, Sj) = B(Sj, Si)

9. Dij: data produced by task Ti and consumed by task Tj.

Each scheduling plan can be represented by the function

f(): T→S where f(Ti) is the server that handles the task Ti

Based on the above assumptions we have:

10. The execution time of the task Ti is

()()
i

i

W

P f T
 (3)

11. The communication time between the task Ti and Tj is

() ()(),

ij

i j

D

B f T f T

 (4)

Formally, we need to minimize the execution time, called

makespan, of the workflow:

makespan → min

where makespan is the time difference between the start

and finish of a sequence of workflow's tasks.

5. Proposed Algorithm

5.1. Particle Representation

In the proposed scheduling algorithm, the solution is

represented as a vector of length equal to the number of

tasks. The value corresponding to each position i in the

vector represents the server to which task i was executed.

Example 1

Consider a workflow with a set of tasks T={T1, T2, T3, T4,

T5}, a set of servers S = {S1, S2, S3}. So the particle xi
k
 = [1;

2; 1; 3; 2] gives us the following scheduling plan:

T1 T2 T3 T4 T5

S1 S2 S1 S3 S2

In that scheduling plan, tasks T1 and T3 will be executed

by the server S1, tasks T2 and T5 are assigned to the server

S2 and task T4 is handled by server S3.

5.2. Method to Calculate the Opposite of Individuals

The design of ODE entails calculating the opposite of

individuals in the population, which can be carried out as

follows:

Let a = Max{P(Si)}; ∀i=1,2,..,N

b = Min{P(Si)}; ∀i=1,2,..,N

Assuming that the particle xi = (Siπ(1), Siπ(2),…,Siπ(M)); Siπ(j)

∈ S, ∀j=1,2,..,M; the opposite of xi, denoted by ��� , will be

calculated as follows:

��� = (.�̅/(�), .�̅/(�), … , .�̅/(0))	 (5)

where:

.�̅/(�) = � + � − .�/(�); 	∀3 = 1,2, . . , 7

We we subsequently assign the value corresponding to

each position j of vector ��� by identifying the server which

has a computation power closer to .�̅/(�) than any other

server

��8

 	← :	�ế�	;	(.<) − .�̅/(�); ≤ 	 ;	(.') − .�/(�);	∀.' (6)

Algorithm: OP_Algorithm

Input: population p = (x1, x2,…,xPopSize)

Output: opposite of population OP

1. a ← Max{P(Si)}; ∀i=1,2,…,N

2. b ← Min{P(Si)}; ∀i=1,2,…,N

3. for i=1 to PopSize do

4. ��� ← "++"=%>?	(��); �@	?A��>%"�	(5)
5. assign the identity of the server to each position j of

vector ��� by equation (6)

6. end for

return OP

5.3. Rank-Based Roulette Wheel Selection

Rank-based roulette wheel selection is the selection

strategy where the probability of a particle being selected is

based on its fitness rank relative to the entire population.

Rank-based selection schemes first sort individuals in the

 American Journal of Computer Science and Technology 2018; 1(1): 24-30 27

population according to their fitness and then computes the

selection probabilities according to their ranks rather than the

fitness values. Rank-based selection uses a function to map

the indices of individuals in the sorted list to their selection

probabilities. The rank for an individual may be scaled

linearly using the following formula:

���:(+"=) = 2 − .	 +	C2 × (.	 − 1) × EFGH�
IFEJ�KLH�M; where 1.0 ≤

SP ≤ 2.0 (7)

The algorithm to selected individuals from population by

Rank-based Roulette Wheel Selection can be described as

follows:

Algorithm: RBRWS algorithm

Input: population p = (x1, x2,…,xPopSize)

Output: particle ps

Begin

1. SP ← [1.0, 2.0]

2. for i=1 to PopSize do

3. fi ← fitness(xi)

4. sort p by ascending of fi

5. for i=1 to PopSize do

6. pos[i] ← PopSize – 1

7. for i=1 to PopSize do

8. calculate ranki by equation (7)

9. rand ← Random(0,SP)

10. s← PopSize

11. while(rank[s] < rand && s>0)s= s-1

12. return xs

End.

5.4. The MODE Algorithm

The MODE algorithm can be described as follows:

Algorithm MODE ()

Input: T, S, size of workload W[1×M], P[1×N], B[N×N],

D[M×M], the number of particle NoP

Output: the best position gbest

1. Call procedure: Opposition-Based Population

Initialization

2. while(criteria is not satisfied)do

3. for i=1 to PopSize do

4. selecting p1 from population by RBRWS algorithm

5. selecting p2 from population by RBRWS algorithm

6. F ← Random(1,0)

7. vi ← pbest + F×(p1 – p2)

8. assign the identity of the server to each position j of

vector vi by equation (4)

9. randi,j ← Random(0,1)

10. Irand ← random(1,M)

11. ��,� = ���,�	�ế�	�����,�	 ≤ � 	ℎ"ặ$	% = &'()*��,�	�ế�	�����,� ≥ � 	ℎ"ặ$	%	 ≠ 	 &'()*

12. if (makespan(ui) < makespan(xi))

13. xi ← ui

14. if(rand < Jr)

15. Calculating Opposite Population OP by OP_Algorithm

16. Fitness Evaluation

17. Selecting PopSize Fittest Individuals from {Current

Population, OP}

18. End while

Return gbest;

In the Initialization step, we randomly generate a

population of PopSize individuals, and calculate the opposite

of individuals in the population using equation (5) and (6),

then select the Popsize fittest individuals from current

population and their counterpart opposites.

In each iteration, MODE selects two individuals from

population according to the Rank-based Roulette Wheel

Selection method. According to the mutation operator, a

mutant vector is generated by adding the weighted difference

between two selected vector of the target population

individuals to a third one as follows :

vi ← pbest + F×(p1 – p2)

where p1, p2 are two individuals selected by rank-based

roulette wheel selection method, and pbest is the best

individual in the population.

After the mutation phase, the crossover operator is applied

to obtain the trail vector ui using the following equation :

��,� = N��,� 	%�	�����,�	 ≤ � 	"�	% = &'()*��,�	%�	�����,� ≥ � 	"�	%	 ≠ 	 &'()*

Where randi,j is the j
th

 independent random number

uniformly distributed in the range of [0, 1]. Also Irand is a

random number in the range of [1, M]. CR is a user defined

crossover factor in the range [0, 1].

Now, we need to decide whether the trail vector ui should

be a member of the population of the next generation, it is

compared with the target individual xi. Finally, the selection

is based on the survival of the fitness as follows :

�� = N�� , %�	O�:?=+��(��) < O�:?=+��(��)�� , ">ℎ?�Q%=?	 R
After the crossover phase, we calculate the opposite of

individuals in the population by equation (5) and (6). The

fitness of individuals is evaluated, then the PopSize fittest

individuals are selected for the next generation.

6. Evaluation

We conducted some experiments in order to compare the

performance of the MODE against the PSO_H [9] and Random

[12]. Our experimental setup consists of a computer with Intel

Core i5 2.2 GHz, RAM 4GB, and Windows 7 Ultimate. The

experiments were carried out using the simulation tool

CloudSim [14] and the packet library Jswarm [1] and Java.

6.1. Data

We use both random and real world instances in our

experiments using the following data sets:

The computation power of the servers and the bandwidth

of connections between servers are collected from a Cloud

28 Toan Phan Thanh et al.: An Efficient Algorithm for Workflow Scheduling in the Clouds

Based on Differential Evolution Method

provider such as Amazon [2] and its Web site (exp.

http://aws.amazon.com/ec2/pricing)

The sets of working data are collected from Montage

project [3]. The instances are divided into 6 groups based on

the number of servers N and the number of tasks M:

Group 1: M=10, N=3; Group 2: M=10, N=5; Group 3:

M=20, N=5; Group 4: M=20, N=8;

Group 5: M=25, N=8; Group 6: M=50, N=8;

We denote the ratio of the number of edges and the number

of vertexes of graph G by:

()1 / 2

E

M M
α =

× −

6.2. Configuration Parameters

The Cloud's configuration parameters are chosen as

follows:

1. Server’s computation power: from 1 to 250 (million

instructions/s)

2. Connection bandwidth B: from 10 to 100 (Mbps)

3. Communication data D: from 1 to 10000 (MB)

The MODE’s configuration parameters are:

1. Number of particles NoP=100; α : from 0.2 to 0.7;

2. Differential amplification factor F=0.5;

3. Crossover probability constant CR=0.9;

4. Jumping rate constant Jr = 0.3.

6.3. Results

Each problem instance was executed 30 times

continuously. The results summarized in Table 1 show that

the mean value (column Mean) and standard deviation value

(column STD) of MODE are better than those of PSO_H [9]

and Random [12] in most of the cases. When the number of

servers (N) and the number of tasks (M) are relatively large

(i.e. larger scale cloud), for example M=20 and N=8; M=25,

N=8; M=50, N=8, MODE is better than PSO_H and Random

with respect to all metrics: mean, standard deviation and best

value (column Best).

Figures 1-6 depict the performance of the three algorithms:

proposed algorithm MODE, PSO_H [9], and Random [12]

where the vertical axis represents the makespan (seconds) of

the schedule. For each instance, we compare the best position

vector (column BEST), the mean value (column MEAN) and

standard deviation value (column STD). At the first instance,

MODE even found the optimal solution.

Table 1. Comparison the makespan of MODE with other algorithms.

M N αααα
MODE PSO_H RANDOM

Best Mean STD Best Mean STD Best Mean STD

10 3 0.26 16.9 17.3 0.4 16.4 20.4 2.4 21.4 28.6 3.2

10 5 0.26 75.5 78.2 0.9 86.0 107.5 13.2 123.3 184.1 42.4

20 5 0.15 27.5 29.3 1.4 29.6 41.0 5.0 45.8 59.0 6.8

20 3 0.31 32.5 33.9 0.8 33.2 41.9 4.6 47.4 65.6 7.8

20 8 0.31 29.9 31.7 1.2 37.1 44.7 6.1 51.6 67.6 6.8

50 8 0.3 9.1 9.7 0.5 12.1 14.0 0.9 13.9 87.1 25.2

Figure 1. M=10, N=3.

Figure 2. M=10, N=5.

Figure 3. M=25, N=8.

Figure 4. M=20, N=3.

 American Journal of Computer Science and Technology 2018; 1(1): 24-30 29

Figure 5. M=25, N=8.

Figure 6. M=50, N=8.

7. Conclusion

The ultimate goal of any scheduling algorithm is to

minimize the execution time. Far from that goal, our

proposed algorithm also avoid being trapped on local

extrema. The contributions of our paper are:

1. Building a novel approach, represented by the formula

to calculate the opposite of individuals in the

population.

2. Proposing a new scheduling algorithm named MODE

by incorporating the ODE (Opposition-Based

Differential Evolution) strategy and Rank-based

Roulette Wheel Selection method.

The experimental results show that MODE is superior to

its predecessor especially when MODE works in a larger

scale Cloud, i.e. the number of servers and tasks are fairly

large. In the future, we are planning to improve the MODE

algorithm in order to solve bigger instances in a reasonable

makespan.

References

[1] R. N. Calheiros, R. Ranjan, A. Beloglazov, Cesar A. F. De
Rose, and R. Buyya, CloudSim: A Toolkit for Modeling and
Simulation of Cloud Computing Environments and Evaluation
of Resource Provisioning Algorithms, Software: Practice and
Experience, volume 41, Number 1, Pages: 23-50, Wiley Press,
USA, 2011

[2] J. V. Vliet, F. Paganelli, Programming Amazon EC2, O'Reilly
Media, ISBN 1449393683, 2011

[3] http://montage.ipac.caltech.edu

[4] J. D. Ullman, NP-complete scheduling problems, Journal of
Computer and System Sciences, pages 384-393, volume 10,
issue 3, 1975

[5] S. Parsa, R. E. Maleki, RASA: A New Task Scheduling
Algorithm in Grid Environment, International Journal of
Digital Content Technology and its Applications, volume 3,
No. 4, 2009

[6] A. Agarwal, S. Jain, Efficient Optimal Algorithm of Task
Scheduling in Cloud Computing Environment, International
Journal of Computer Trends and Technology Volume 9, 2014

[7] J. Huang, The Workflow Task Scheduling Algorithm Based on
the GA Model in the Cloud Computing Environment, Journal
of software, volume 9, 2014

[8] H. Liu, A. Abraham, C. Grosan, A Novel Variable
Neighborhood Particle Swarm Optimization for Multi-
objective Flexible Job-Shop Scheduling Problems, Proc. of
2nd International Conference on Digital Information
Management (ICDIM '07), Volume 1, pages 138-145, 2007.

[9] S. Pandey, L. Wu1, S. M. Guru, R. Buyya1, A Particle Swarm
Optimization (PSO)-based Heuristic for Scheduling Workflow
Applications in Cloud Computing Environments, Proc. of 24th
IEEE International Conference on Advanced Information
Networking and Applications (AINA), pages 400-407, 2010

[10] J. Kennedy, R. C. Eberhart, Particle swarm optimization, Proc.
of IEEE International Conference on Neural Networks. pages
1942–1948, 1995

[11] A. E. M. Zavala, EVOLVE - A Bridge between Probability,
Set Oriented Numerics, and Evolutionary Computation IIA
Comparison, A Comparison Study of PSO Neighborhoods,
pages 251-295, Springer-Verlag Berlin Heideberg, 2013

[12] M. Mitzenmacher, E. Upfal, Probability and Computing:
Randomized Algorithms and Probabilistic Analysis,
Cambridge University Press (2005)

[13] Dr. Sudha Sadhasivam, R. Jayarani, Dr. N. Nagaveni, R.
Vasanth Ram, Design and Implementation of an efficient
Twolevel Scheduler for Cloud Computing Environment, In
Proceedings of International Conference on Advances in
Recent Technologies in Communication and Computing, 2009

[14] R. Buyya, R. Calheiros, Modeling and Simulation of Scalable
Cloud Environment and the Cloud Sim Toolkit: Challenges
and Opportunities, IEEE publication 2009, pp1-11

[15] G. Guo-Ning and H. Ting-Lei, Genetic Simulated Annealing
Algorithm for Task Scheduling based on Cloud Computing
Environment, In Proceedings of International Conference on
Intelligent Computing and Integrated Systems, 2010, pp. 60-63

[16] L. Guo, Task Scheduling Optimization in Cloud Computing
Based on Heuristic Algorithm, Journal of networks, v.7, No.3,
2012, pp. 547-552

[17] R. Rajkumar, T. Mala, Achieving Service Level Agreement in
Cloud Environment using Job Prioritization in Hierarchical
Scheduling, Proceeding of International Conference on
Information System Design and Intelligent Application, 2012,
vol 132, pp 547-554

[18] Q. Cao, W. Gong and Z. Wei, An Optimized Algorithm for
Task Scheduling Based On Activity Based Costing in Cloud
Computing, In Proceedings of Third International Conference
on Bioinformatics and Biomedical Engineering, 2009, pp.1-3

30 Toan Phan Thanh et al.: An Efficient Algorithm for Workflow Scheduling in the Clouds

Based on Differential Evolution Method

[19] R. Storn and K. Price, Differential Evolution-A Simple and
Efficient Heuristic for Global Optimization over Continuous
Spaces, Journal of Global Optimization, 1997, pp. 341-359

[20] H. R. Tizhoosh, Opposition-based learning: A new scheme for
machine intelligence, International Conference on
Computational Intelligence for Modelling, 2005, pp. 695-701

