
 

American Journal of Computer Science and Technology 
2018; 1(1): 24-30 

http://www.sciencepublishinggroup.com/j/ajcst 

doi: 10.11648/j.ajcst.20180101.14  
 

An Efficient Algorithm for Workflow Scheduling in the 
Clouds Based on Differential Evolution Method 

Toan Phan Thanh
1
, Loc Nguyen The

2
, Said Elnaffar

3 

1Faculty of Technology Education, Hanoi National University of Education, Ha Noi, Viet Nam 
2Faculty of Information Technology, Hanoi National University of Education, Ha Noi, Viet Nam 
3School of Engineering, Computer Science Department, American University of RAK, Ras al Khaimah, UAE 

Email address: 

 

To cite this article: 
Toan Phan Thanh, Loc Nguyen The, Said Elnaffar. An Efficient Algorithm for Workflow Scheduling in the Clouds Based on Differential 

Evolution Method. American Journal of Computer Science and Technology. Vol. 1, No. 1, 2018, pp. 24-30.  

doi: 10.11648/j.ajcst.20180101.14 

Received: October 27, 2017; Accepted: December 4, 2017; Published: January 2, 2018 

 

Abstract: The Cloud is a computing platform that provides on-demand access to a shared pool of configurable resources 

such as networks, servers, storage that can be rapidly provisioned and released with minimal management effort from clients. 

At its core, Cloud computing focuses on manimizing the effectiveness of the shared resources. Therefore, workflow scheduling 

is one of the challenges that the Cloud must tackle especially if a large number of tasks are executed on geographically 

distributed servers. The Cloud is comprised of computational and storage servers that aim to provision efficient access to 

remote and geographically distributed resources. To that end, many challenges, specifically workflow scheduling, are yet to be 

solved such. Despite it has been the focus of many researchers, a handful efficient solutions have been proposed for Cloud 

computing. In this work, we propose a novel algorithm for workflow scheduling that is derived from the Opposition-based 

Differential Evolution method, MODE. This algorithm not only ensures fast convergence but also averts getting trapped in 

local extrema. Our simulation experiments Cloud Sim show that MODE is superior to its predecessors. Moreover, the 

deviation of its solution from the optimal one is negligible. 
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1. Introduction 

The Cloud is a computing platform that provides 

convenient, on-demand access to a shared pool of 

configurable computing resources such as networks, servers, 

storage that can be rapidly provisioned and released with 

minimal management effort on clients. At its core, Cloud 

computing focuses on maximizing the effectiveness of the 

shared resources. Therefore, workflow scheduling is one of 

the challenges that the Cloud must tackle especially if a large 

number of tasks are executed on geographically distributed 

servers. This requires a reasonable scheduling algorithm in 

order to minimize a task completion time (makespan). 

Our work described in this paper is a new attempt to 

introduce a more efficient scheduling algorithm. Specifically, 

we introduce a Modified version of the Opposition-based 

Differential Evolution (ODE) method [19], which we call 

MODE. Via experiments, we demonstrate its effectiveness 

and performance in comparison with other algorithms. 

The rest of the paper is organized as follows. Section II 

reviews some of the related works germane to workflow 

scheduling algorithms. Section III describes the Opposition-

based Differential Evolution (ODE) method. Section IV 

describes the computation and communication model on 

which Cloud tasks operate. Based on this model, Section V 

presents our proposed scheduling algorithm MODE 

(Modified ODE). Section VI describes the experiments we 

conducted using the simulation tool CloudSim [1] in order to 

evaluate the proposed algorithm. Section VII concludes our 

paper and sketches future work. 

2. Related Work 

A workflow is a sequence of connected tasks. Workflow 



 American Journal of Computer Science and Technology 2018; 1(1): 24-30 25 

 

scheduling in Clouds is a challenge because each task needs to 

be mapped to an appropriate server while allowing that task to 

satisfy some performance constraints. In general, the scheduling 

problem, i.e. the mapping of tasks to the computation resources 

such as servers, is an NP-complete problem [4]. Hence, past 

works mainly banked on heuristic-based or metaheuristic-based 

solutions for scheduling workflows. 

Some researchers [13] proposed an algorithm for task 

scheduling based on two-level load balancing in the cloud 

environment. This algorithm not only meets user’s 

requirements but also provides high resource utilization. The 

authors also introduced the implementation of an efficient 

Quality of Service (QoS) based Meta-heuristic method. 

Others [15] presented an optimized algorithm for task 

scheduling based on Hybrid Genetic Algorithms. They 

considered the QoS requirements like completion time, 

bandwidth, cost, distance, reliability of different type tasks. 

They used annealing in their implementation after the 

selection, crossover and mutation, to improve local search 

ability of genetic algorithm. 

In [16], the authors presented a model for task scheduling in 

cloud computing to minimize the overall time of execution and 

transmission. They proposed a particle swarm optimization 

algorithm to solve task scheduling that is based on small 

position value rule (SPVPSO). The researchers compared the 

SPVPSO algorithm with the CR-PSO and L-PSO and found that 

the SPVPSO algorithm had attained the optimal solution and 

converged faster in large tasks than the other two algorithms. 

Another work [17] proposed a hierarchical scheduling 

algorithm which satisfied the Service Level Agreement with 

quick response from the service provider. The authors used the 

response time as a Quality of Service (QoS) metric to prioritize 

the execution of jobs by estimating their completion times. 

Another paper [18] presented an optimized algorithm for 

task scheduling in cloud computing based on Activity-Based 

Costing (ABC). This algorithm assigns a priority level for 

each task and uses cost drivers. The priority is estimated 

based on four major factors: time, space, resources and profit. 

Pandey [9] presented a scheduling algorithm (PSO_H) to 

minimize the cost of the execution. However, instead of 

finding the schedule which has a minimum cost, PSO_H 

looked for the schedule that minimizes the execution cost at 

the nearest server. The author compared the PSO_H 

algorithm with the Random and Round Robin algorithm and 

showed that the optimal solution of PSO_H algorithm is 

better than two matching algorithms. 

3. Opposition-Based Differential 

Evolution (ODE) 

Opposition-based Differential Evolution (ODE) [19] is an 

evolutionary optimization technique that consists of two 

main steps: population initialization and producing new 

generations by genetic operations such as selection, crossover 

and mutation. ODE enhances these two steps by considering 

the opposite point of individuals in the population. 

3.1. Opposition-Based Learning 

The concept of Opposition-Based Learning (OBL) was 

original introduced by Tizhoosh [20]. The main idea behind 

OBL is the simultaneous consideration of an estimate and its 

corresponding opposite estimate in order to achieve a better 

approximation for the current candidate solution. 

Definition 1 (Opposite Number): Let x ∈ [a, b] be a real 

number, then the opposite number �̅ is defined as 

�̅ = � + � − �	                                (1) 

Definition 2 (Opposite Point in n-Dimensional Space): 

Similarly, the above definition can be extended for higher 

dimensions as follows: 

Let P(x1, x2,…,xD) be an D-dimemsional vector, where xi 

∈ [ai, bi]; i=1,2,…,D. The opposite of P is defined by: 	
 = (�̅�, �̅�, … , �̅�) where 

��� = 	�� +	�� −	�� 	                            (2) 

The opposition-based optimization can be defined as 

follows: 

Let P=(x1, x2,..,xD) be a point in D-dimensional space, and 

f(.) is the fitness function which is used to measure the 

candidate’s fitness. According to the definition of opposite 

point, 	
 = (�̅�, �̅�, … , �̅�) is the opposite of P=(x1, x2,..,xD). 

Now if �(	
) ≤ �(	) , then point P can be replaced by 	,�  

otherwise we continue with P. 

3.2. Opposition-Based Population Initialization 

Using the definition of opposite points, the opposition-

based initialization for the ODE can be described as follows: 

Procedure: Opposition-Based Population Initialization 

1. Random initialization of population P(x1, x2,…,xPopSize) 

2. Calculate opposite population by equal(2) 

3. OP ← Opposite (P) 

4. Selecting the PopSize fittest individuals from {P ∪ OP} 

as initial population. 

3.3. Opposition-Based Differential Evolution Algorithm 

By combining the Opposition-Based Learning method and 

the Differential Evolution algorithm, the ODE algorithm can 

be described as follows: 

Algorithm:Opposition-Based Differential Evolution 

1. Call Procedure: Opposition-Based Population 

Initialization 

2. for i=1 to PopSize do 

3. fi ← fitness(xi) 

4. while (criteria is not satisfied) do 

5. for i=1 to PopSize do 

6. r1, r2 ← Random(1, PopSize) 

7. F ← Random(0,1) 

8. vi(t) ← pbest + F×(xr1- xr2) 

9. for j=0 to D do 
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10. ��,� = ���,� 	�ế�	�����,�	 ≤ � 	ℎ"ặ$	% = &'()*+�,� 	�ế�	�����,� ≥ � 	ℎ"ặ$	%	 ≠ 	 &'()*  

11. end for 

12. if(f(ui(t))≤ f(xi(t))) 

13. xi(t+1) = ui(t) 

14. end if 

15. end for 

16. rand ← Random(0,1) 

17. if(rand < Jr) 

18. Calculating Opposite Population OP(PopSize) 

19. Fitness Evaluation 

20. Selecting PopSize Fittest Individuals from {Current 

Population, OP} 

21. end if 

22. end while 

4. Problem Formulation 

We denote the workflow as a Directed Acyclic Graph 

(DAG) represented by G=(V, E), where: 

1. V is set of vertex, each vertex represents a task 

2. T={T1, T2,…,TM } is the set of tasks, M is the number 

of tasks 

3. E represents the data dependencies between these tasks. 

The edge (Ti, Tj) ∈ E means the task Ti is the father of 

the task Tj, the data produced by Ti will be consumed 

by the task Tj. 

4. The Cloud’s computation resources are a set of servers 

S = {S1, S2,….,SN}. N is the number of servers. 

5. Each task Ti can be executed by any server Sj∈S, and 

Si has to handle the whole the workload of Ti 

6. The computation of task Ti denoted by Wi (flop-

floating point operations) 

7. P(Si) : the computation power of the server Si (MI/s : 

million instructions/second) 

8. The bandwidth B(Si, Sj) between server Si and server Sj 

is represented by the function B(): S×S → R
+.

 We 

assume that B(Si, Si) = ∞ and B(Si, Sj ) = B(Sj, Si) 

9. Dij: data produced by task Ti and consumed by task Tj. 

Each scheduling plan can be represented by the function 

f(): T→S where f(Ti) is the server that handles the task Ti 

Based on the above assumptions we have: 

10. The execution time of the task Ti is 

( )( )
i

i

W

P f T
                                       (3) 

11. The communication time between the task Ti and Tj is 

( ) ( )( ),

ij

i j

D

B f T f T

                                    (4) 

Formally, we need to minimize the execution time, called 

makespan, of the workflow: 

makespan → min 

where makespan is the time difference between the start 

and finish of a sequence of workflow's tasks. 

5. Proposed Algorithm 

5.1. Particle Representation 

In the proposed scheduling algorithm, the solution is 

represented as a vector of length equal to the number of 

tasks. The value corresponding to each position i in the 

vector represents the server to which task i was executed. 

Example 1 

Consider a workflow with a set of tasks T={T1, T2, T3, T4, 

T5}, a set of servers S = {S1, S2, S3}. So the particle xi
k
 = [1; 

2; 1; 3; 2] gives us the following scheduling plan: 

T1 T2 T3 T4 T5 

S1 S2 S1 S3 S2 

In that scheduling plan, tasks T1 and T3 will be executed 

by the server S1, tasks T2 and T5 are assigned to the server 

S2 and task T4 is handled by server S3. 

5.2. Method to Calculate the Opposite of Individuals 

The design of ODE entails calculating the opposite of 

individuals in the population, which can be carried out as 

follows: 

Let a = Max{P(Si)}; ∀i=1,2,..,N 

b = Min{P(Si)}; ∀i=1,2,..,N 

Assuming that the particle xi = (Siπ(1), Siπ(2),…,Siπ(M)); Siπ(j) 

∈ S, ∀j=1,2,..,M; the opposite of xi, denoted by ��� , will be 

calculated as follows: 

��� = (.�̅/(�), .�̅/(�), … , .�̅/(0))	                   (5) 

where: 

.�̅/(�) = � + � − .�/(�); 	∀3 = 1,2, . . , 7 

We we subsequently assign the value corresponding to 

each position j of vector ���  by identifying the server which 

has a computation power closer to .�̅/(�)  than any other 

server 

��8



 	← :	�ế�	;	(.<) − .�̅/(�); ≤ 	 ;	(.') − .�/(�);	∀.'   (6) 

Algorithm: OP_Algorithm 

Input: population p = (x1, x2,…,xPopSize) 

Output: opposite of population OP 

1. a ← Max{P(Si)}; ∀i=1,2,…,N 

2. b ← Min{P(Si)}; ∀i=1,2,…,N 

3. for i=1 to PopSize do 

4. ��� ← "++"=%>?	(��); �@	?A��>%"�	(5) 
5. assign the identity of the server to each position j of 

vector ���  by equation (6) 

6. end for 

return OP 

5.3. Rank-Based Roulette Wheel Selection 

Rank-based roulette wheel selection is the selection 

strategy where the probability of a particle being selected is 

based on its fitness rank relative to the entire population. 

Rank-based selection schemes first sort individuals in the 
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population according to their fitness and then computes the 

selection probabilities according to their ranks rather than the 

fitness values. Rank-based selection uses a function to map 

the indices of individuals in the sorted list to their selection 

probabilities. The rank for an individual may be scaled 

linearly using the following formula: 

���:(+"=) = 2 − .	 +	C2 × (.	 − 1) × EFGH�
IFEJ�KLH�M; where 1.0 ≤ 

SP ≤ 2.0                                    (7) 

The algorithm to selected individuals from population by 

Rank-based Roulette Wheel Selection can be described as 

follows: 

Algorithm: RBRWS algorithm 

Input: population p = (x1, x2,…,xPopSize) 

Output: particle ps 

Begin 

1. SP ← [1.0, 2.0] 

2. for i=1 to PopSize do 

3. fi ← fitness(xi) 

4. sort p by ascending of fi 

5. for i=1 to PopSize do 

6. pos[i] ← PopSize – 1 

7. for i=1 to PopSize do 

8. calculate ranki by equation (7) 

9. rand ← Random(0,SP) 

10. s← PopSize 

11. while(rank[s] < rand && s>0)s= s-1 

12. return xs 

End. 

5.4. The MODE Algorithm 

The MODE algorithm can be described as follows: 

Algorithm MODE ( ) 

Input: T, S, size of workload W[1×M], P[1×N], B[N×N], 

D[M×M], the number of particle NoP 

Output: the best position gbest 

1. Call procedure: Opposition-Based Population 

Initialization 

2. while(criteria is not satisfied)do 

3. for i=1 to PopSize do 

4. selecting p1 from population by RBRWS algorithm 

5. selecting p2 from population by RBRWS algorithm 

6. F ← Random(1,0) 

7. vi ← pbest + F×(p1 – p2) 

8. assign the identity of the server to each position j of 

vector vi by equation (4) 

9. randi,j ← Random(0,1) 

10. Irand ← random(1,M) 

11. ��,� = ���,�	�ế�	�����,�	 ≤ � 	ℎ"ặ$	% = &'()*��,�	�ế�	�����,� ≥ � 	ℎ"ặ$	%	 ≠ 	 &'()* 

12. if (makespan(ui) < makespan(xi)) 

13. xi ← ui 

14. if(rand < Jr) 

15. Calculating Opposite Population OP by OP_Algorithm 

16. Fitness Evaluation 

17. Selecting PopSize Fittest Individuals from {Current 

Population, OP} 

18. End while 

Return gbest; 

In the Initialization step, we randomly generate a 

population of PopSize individuals, and calculate the opposite 

of individuals in the population using equation (5) and (6), 

then select the Popsize fittest individuals from current 

population and their counterpart opposites. 

In each iteration, MODE selects two individuals from 

population according to the Rank-based Roulette Wheel 

Selection method. According to the mutation operator, a 

mutant vector is generated by adding the weighted difference 

between two selected vector of the target population 

individuals to a third one as follows : 

vi ← pbest + F×(p1 – p2) 

where p1, p2 are two individuals selected by rank-based 

roulette wheel selection method, and pbest is the best 

individual in the population. 

After the mutation phase, the crossover operator is applied 

to obtain the trail vector ui using the following equation : 

��,� = N��,� 	%�	�����,�	 ≤ � 	"�	% = &'()*��,�	%�	�����,� ≥ � 	"�	%	 ≠ 	 &'()*  

Where randi,j is the j
th

 independent random number 

uniformly distributed in the range of [0, 1]. Also Irand is a 

random number in the range of [1, M]. CR is a user defined 

crossover factor in the range [0, 1]. 

Now, we need to decide whether the trail vector ui should 

be a member of the population of the next generation, it is 

compared with the target individual xi. Finally, the selection 

is based on the survival of the fitness as follows : 

�� = N�� , %�	O�:?=+��(��) < O�:?=+��(��)�� , ">ℎ?�Q%=?	 R 
After the crossover phase, we calculate the opposite of 

individuals in the population by equation (5) and (6). The 

fitness of individuals is evaluated, then the PopSize fittest 

individuals are selected for the next generation. 

6. Evaluation 

We conducted some experiments in order to compare the 

performance of the MODE against the PSO_H [9] and Random 

[12]. Our experimental setup consists of a computer with Intel 

Core i5 2.2 GHz, RAM 4GB, and Windows 7 Ultimate. The 

experiments were carried out using the simulation tool 

CloudSim [14] and the packet library Jswarm [1] and Java. 

6.1. Data 

We use both random and real world instances in our 

experiments using the following data sets: 

The computation power of the servers and the bandwidth 

of connections between servers are collected from a Cloud 
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provider such as Amazon [2] and its Web site (exp. 

http://aws.amazon.com/ec2/pricing) 

The sets of working data are collected from Montage 

project [3]. The instances are divided into 6 groups based on 

the number of servers N and the number of tasks M: 

Group 1: M=10, N=3; Group 2: M=10, N=5; Group 3: 

M=20, N=5; Group 4: M=20, N=8; 

Group 5: M=25, N=8; Group 6: M=50, N=8; 

We denote the ratio of the number of edges and the number 

of vertexes of graph G by: 

( )1 / 2

E

M M
α =

× −
 

6.2. Configuration Parameters 

The Cloud's configuration parameters are chosen as 

follows: 

1. Server’s computation power: from 1 to 250 (million 

instructions/s) 

2. Connection bandwidth B: from 10 to 100 (Mbps) 

3. Communication data D: from 1 to 10000 (MB) 

The MODE’s configuration parameters are: 

1. Number of particles NoP=100; α : from 0.2 to 0.7; 

2. Differential amplification factor F=0.5; 

3. Crossover probability constant CR=0.9; 

4. Jumping rate constant Jr = 0.3. 

6.3. Results 

Each problem instance was executed 30 times 

continuously. The results summarized in Table 1 show that 

the mean value (column Mean) and standard deviation value 

(column STD) of MODE are better than those of PSO_H [9] 

and Random [12] in most of the cases. When the number of 

servers (N) and the number of tasks (M) are relatively large 

(i.e. larger scale cloud), for example M=20 and N=8; M=25, 

N=8; M=50, N=8, MODE is better than PSO_H and Random 

with respect to all metrics: mean, standard deviation and best 

value (column Best). 

Figures 1-6 depict the performance of the three algorithms: 

proposed algorithm MODE, PSO_H [9], and Random [12] 

where the vertical axis represents the makespan (seconds) of 

the schedule. For each instance, we compare the best position 

vector (column BEST), the mean value (column MEAN) and 

standard deviation value (column STD). At the first instance, 

MODE even found the optimal solution. 

Table 1. Comparison the makespan of MODE with other algorithms. 

M N αααα 
MODE PSO_H RANDOM 

Best Mean STD Best Mean STD Best Mean STD 

10 3 0.26 16.9 17.3 0.4 16.4 20.4 2.4 21.4 28.6 3.2 

10 5 0.26 75.5 78.2 0.9 86.0 107.5 13.2 123.3 184.1 42.4 

20 5 0.15 27.5 29.3 1.4 29.6 41.0 5.0 45.8 59.0 6.8 

20 3 0.31 32.5 33.9 0.8 33.2 41.9 4.6 47.4 65.6 7.8 

20 8 0.31 29.9 31.7 1.2 37.1 44.7 6.1 51.6 67.6 6.8 

50 8 0.3 9.1 9.7 0.5 12.1 14.0 0.9 13.9 87.1 25.2 

 

 

Figure 1. M=10, N=3. 

 

Figure 2. M=10, N=5. 

 

Figure 3. M=25, N=8. 

 

Figure 4. M=20, N=3. 
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Figure 5. M=25, N=8. 

 

Figure 6. M=50, N=8. 

7. Conclusion 

The ultimate goal of any scheduling algorithm is to 

minimize the execution time. Far from that goal, our 

proposed algorithm also avoid being trapped on local 

extrema. The contributions of our paper are: 

1. Building a novel approach, represented by the formula 

to calculate the opposite of individuals in the 

population. 

2. Proposing a new scheduling algorithm named MODE 

by incorporating the ODE (Opposition-Based 

Differential Evolution) strategy and Rank-based 

Roulette Wheel Selection method. 

The experimental results show that MODE is superior to 

its predecessor especially when MODE works in a larger 

scale Cloud, i.e. the number of servers and tasks are fairly 

large. In the future, we are planning to improve the MODE 

algorithm in order to solve bigger instances in a reasonable 

makespan. 
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