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Abstract: Due to multi input multi output variables affected the continuous stirred tank reactor its worthy to use the state 

space model to study the dynamics of this system. In this work, a saponifecation process was studded on which Ethel acetate 

was reacted with sodium hydroxide to produced sodium acetate and ethanol. one litter operation volume CSTR was used, the 

flow rate of Ethel acetate and cooling water were toke as disturbance variables and the concentration of sodium acetate and the 

temperature of reactor as response variables. The results show improvement compared with linearized model. 
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1. Introduction 

Continuous stirred tank reactors (CSTR) are the most 

basic of the continuous reactors used in chemical processes. 

Continuous stirred-tank reactors (CSTRs) are open systems, 

where material is free to enter or exit the system, that 

operate on a steady-state basis, where the conditions in the 

reactor don't change with time. Reactants are continuously 

introduced into the reactor, while products are continuously 

removed. CSTRs are very well mixed, so the contents have 

relatively uniform properties such as temperature, density, 

etc. throughout[1]. State-space equations, or simply state 

equations, is a description in the time domain which may be 

applied to a very wide category of systems, such as linear 

and nonlinear systems, time-invariant and time-varying 

systems, systems with nonzero initial conditions, and 

others. The term state of a system refers to the past, present, 

and future of the system. From the mathematical point of 

view, the state of a system is expressed by its state 

variables. State equations is a description which relates the 

following four elements: input, system, state variables, and 

output. In contrast, the differential equations, the transfer 

function, and the impulse response relate three elements: 

input, system, and output—wherein the input is related to 

the output via the system directly (i.e., without giving 

information about the state of the system). It is exactly for 

this reason that these three system descriptions are called 

input–output descriptions [2]. 

The theory and practice of control engineering since the 

mid-1900s provide some perspective for the material. In the 

1940s and 1950s, systems were represented in the frequency 

domain by transfer functions. Analysis techniques involving 

Evans root locus plots, Bode plots, Nyquist plots, and 

Nichols charts. The 1960s and 1970s witnessed a 

fundamental paradigm shift from the frequency domain to the 

time domain. Systems were represented in the time domain 

by a type of differential equation called a state equation. 

Performance and robustness specifications also were 

specified in the time domain, often in the form of a quadratic 

performance index. Key advantages of the state-space 

approach were that a time-domain formulation exploited the 

advances in digital computer technology and the analysis and 

design methods were well-suited to multiple-input, multiple-

output systems. Moreover, feedback control laws were 

calculated using analytical formulas, often directly 

optimizing a particular performance index. The 1980’s and 

1990’s were characterized by a merging of frequency domain 

and time-domain viewpoints. Specifically, frequency-domain 

performance and robustness specifications once again were 

favored, coupled with important theoretical breakthroughs 

that yielded tools for handling multiple-input, multiple-

output systems in the frequency domain. Further advances 

yielded state-space time-domain techniques for controller 

synthesis. In the end, the best features of the preceding 

decades were merged into a powerful, unified framework [3]. 

L.M. Patnaik et al. developed a state space model of a tubular 

ammonia reactor which is the heart of an ammonia plant in a 
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fertiliser complex. The lumped model is chosen such that the 

steady state temperature at the exit of the catalyst bed 

computed from the simplified state space model is close 

enough to the one computed from the nonlinear steady state 

model. The model developed is very useful for the design of 

continuous/discrete versions of single variable/multivariable 

control algorithms [4]. Neil Shephard suggested the use of 

simulation techniques to extend the applicability of the usual 

Gaussian state space filtering and smoothing techniques to a 

class of non-Gaussian time series models. This allows a fully 

Bayesian or maximum likelihood analysis of some 

interesting models, including outlier models, discrete Markov 

chain components, multiplicative models and stochastic 

variance models[5]. Jeremy F. Burri et al. presented a 

methodology for the construction of the attainable region 

(AR) and for the synthesis of globally optimal reactor 

networks employing isothermal, steady-state, plug flow 

reactors (PFR), continuous-stirred tank reactors (CSTR) as 

well as mixing. The problem is solved using the novel 

Infinite Dimensional State-space (IDEAS) approach. Point 

wise identification of the reactor network's attainable region 

is shown to be equivalent to the solution of an infinite 

dimensional linear program. A finite dimensional 

approximation strategy is presented [6]. Tapani Raiko et al. 

studied the learning of nonlinear state space models for a 

control task. Variational Bayesian learning provides a 

framework where uncertainty is explicitly taken into account 

and system identification can be combined with model-

predictive control. Three different control schemes are used. 

One of them, optimistic inference control, is a novel method 

based directly on the probabilistic modelling [7]. C. Or et al. 

and John Kim studied Finite-dimensional state-space 

approximations of the Orr–Sommerfeld equation for plane 

Poiseuille flow with boundary input and output are 

discretized to state-space models using two spectral 

techniques. The models are compared for accuracy and 

discussed in the context of metrics important for a non-

normal dynamical system. Both state-space models capture 

the sensitivity behavior of the pole-zero perturbations and the 

pseudo spectrum properties [8]. R.N. Methekar et al. 

innovated form of state space models that facilitate the 

development of advanced control algorithms such as linear 

quadratic Gaussian (LQG) and model predictive control 

(MPC), and provide improved disturbance rejection 

necessary for these applications. Demonstrated the 

applications of such model based algorithms via simulations 

involving a distributed along-the-channel model of the 

PEMFC, and also presented experimental validation on a 

PEMFC setup [9]. Siem J. Koopman et al. reviewed and 

provided some adequate details and guidance for the 

adaptation of state space methods in univariate and 

multivariate time series analysis. Provide more detailed 

discussions for linear Gaussian model formulations and more 

concise reviews for nonlinear and non-Gaussian departures 

[10]. The transfer function approach is sufficient to calculate 

the response of linear control systems. The state-space 

approach is especially valuable in the field of optimal control 

of linear or nonlinear systems. The differential equations can 

be written in the form 

����� =  ����� +  
����                         (1) 

����� =  
���� +  �����                         (2) 

Equation (1) is a system of first-order differential 

equations and is known as the state equation of the system. 

The vector x(t) is the state vector, and u(t) is the input vector. 

Equation (2) is referred to as the output equation. A is called 

the state matrix, B the input matrix, C the output matrix, and 

D is the direct transition matrix. One advantage of the state 

space method is that the form lends itself easily to the digital 

and analog computation methods of solution. Further, the 

state space method can be easily extended to the analysis of 

nonlinear systems. State equations may be obtained from an 

nth order differential equation or directly from the system 

model by identifying appropriate state variables. To illustrate 

the first method, consider an nth order linear plant model 

described by the differential equation 

���
��� + ����

�����
����� + ⋯ + � ��

��
+ ��� = ����          (3) 

Where y(t) is the plant output and u(t) is the plant input. A 

state model for this system is not unique but depends on the 

choice of a set of state variables. A useful set of state 

variables, referred to as phase variables, is defined as: 

��  =  �; � � =  � � ;  � � = �� ; … ;  ��  = �����
�����          (4) 

Taking derivatives of the first n- 1 state variables, we have 

��� =  � �;  � ��  =  � �; … ;  �����  =  ��              (5) 

In addition, ���  comes from rearranging Eq. (3) and 

substituting from Eq. (4): 
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In matrix form, this looks like 
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Thus the output equation is simply 

� = +1 0 0 … 0, �                    (8) 

A transfer function that relates an output variable to an 

input variable represents an n
th

-order differential equation. In 

the state-space representation, the n
th

-order differential 

equation is written as n first-order differential equations in 
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terms of n state variables [11]. The matrix differential 

equation 

x�  = Ax + Bu 

used to describe a control system by the state-space 

method can be solved for the vector of state variables (x) by 

use of the transfer function matrix. It consists of a matrix of 

transfer functions that relate the state variables to the inputs. 

The transfer function matrix serves the same purpose in a 

multiple-input multiple-output system as the transfer function 

does for a single-input single-output system. The transfer 

function matrix is obtained from the matrix differential 

equatien by application of Laplace transforms[12]. The aim 

of this work is to study the dynamics of saponification 

process using state space model. A detail of the reaction and 

experimental works is shown in [13]. 

2. Results and Discussion 

The dynamic behavior of saponification process in 

continuous stirred tank reactor was studied experimentally 

using step change in the manipulated variables (Ethel acetate 

flow rate and water coil flow rate (F and Face)) and examine 

the transient response of sodium acetate and reaction 

temperature as control variables. The matrics described the 

dynamics of saponification process as fallow: 


.
/ =  

!"
"#
0.0222�3.��4

156 	 1 52�3.��4
216 	 10.00562�84

216 	 1 5.92�3.��4
216 	 1 %&

&' ::; 

The reactions inside the reactor can be described by 

following reaction :-  

Ethyl acetate (A) + Sodium hydroxide (B)� Sodium acetate 

(D) + Ethanol (E) 

A detailed of the system was shown in [13]. 

The state space was found by MATLAB and converted to 

Block diagram to compare with the open loop MIMO system. 

The above matrics can be represented in MATLAB as fallow: 

>> den={ [15 1], [21 1]; [21 1], [21 1]}; 

>> num={0.022 ,5 ; 0.0056 , 5.9}; 

>> p=tf (num,den) 

p  =  

From input 1 to output. 

 

From input 2 to output. 

 

Continuous-time transfer function. 

>> p.iodelay = [0.33 0.33; 6 0.33]; 

p  =  

From input 1 to output. 

 

From input 2 to output. 

 

Continuous-time transfer function. 

>> Sys=ss (p) 

sys  

a  =  

 x1 x2 x3 

x1 -0.06667 0 0 

x2 0 -0.04762 0 

x3 0 0 -0.04762 

b  =  

 u1 u2 

x1 0.03125 0 

x2 0.01563 0 

x3 0 1 

c  =  

 x1 x2 x3 

y1 0.04693 0 0.2381 

y2 0 0.01707 0.281 

d  =  

 u1 u2 

y1 0 0 

y2 0 0 

From Continuous-Time State-Space Model of MATLAB 

answer is the state space matrics 

<��<��<��
 = = 0.06667 0 00  0.04762 00 0  0.04762@ <�<�<�

 

+=0.03125 00.9563 00 1@ B�B� 

C�C� = D0.04693 0 0.23810 0.01707 0.281 F <�<�<�
 

Where: 

C� � 0.04693 <� 	 0.2381 <� 

C� � 0.01707 <� 	 0.281 <� 
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<�� �   0.06667<� 	 0.03125 B�                (9) 

<�� �   0.04762<� 	 0.9563 B�              (10) 

<�� �   0.04762 <� 	 B�                     (11) 

Convert <��  to S-Domain from Equation (9) 

6<��G� �  0.06667<��G� 	 0.03125 B� 

�6 	 0.06667� <��G� � 0.03125 B�  

<��G� � 3.3���H
IJ3.3888K  B�                          (12) 

Convert <��  to S-Domain from Equation (13) 

6<��G� �   0.04762<��G� 	 0.9563 B� 

�6 	 0.04762�<��G� � 0.9563 B� 

<��G� � 3.LH8�
IJ3.3MK8� B�                          (13) 

Convert <��  to S-Domain from Equation (14) 

6<��G� �   0.04762 <��G� 	  B� 

�6 	 0.04762� <��G� �  B� 

<��G� � �
IJ3.3MK8� B�                          (14) 

Equations (12), (13) and (14) used to design state space block 

diagram of CSTR in MIMO system as shown in figure (1). 

 

Figure 1. Block diagram of state space modeling. 

 

Figure 2. Block diagrams of state space model connected with experimental results. 
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Time min 

Figure 3. Shows a comparison between the response of the experimental results using 50% step change in feed of ethyl acetate and the state space model. 

  

Time min 

Figure 4. Shows a comparison between the response of the experimental results using 50% step change in water flow rate in coil and the state space model. 

Figure 2 shows the block diagram of state space model 

connected with experimental results to compare the 

responses. Figure 3 shows a comparison between the 

response of the experimental results using 50% step change 

in feed of ethyl acetate and the state space model. Figure 4 

shows a comparsion between the response of the 

experimental results using 50% step change in water flow 

rate in coil and the state space model. 

It's clear that from figures 3 and 4 that great identical was 

found when using a state space model. Unsatisfied behavior 

was conducted in previous work in which is a comparison 

between linearized model and experimental results was 

shown [13]. 

3. Conclusion 

A great improvement was found in using a state space 

model to analysis the dynamic of the saponifecation process 

compared with the linearized model on which a awkward 

results was shown. 
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